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Abstract: In this paper, optimality conditions for the group sparse constrained optimization (GSCO)
problems are studied. Firstly, the equivalent characterizations of Bouligand tangent cone, Clarke
tangent cone and their corresponding normal cones of the group sparse set are derived. Secondly,
by using tangent cones and normal cones, four types of stationary points for GSCO problems are
given: TB-stationary point, NB-stationary point, TC-stationary point and NC-stationary point, which
are used to characterize first-order optimality conditions for GSCO problems. Furthermore, both
the relationship among the four types of stationary points and the relationship between stationary
points and local minimizers are discussed. Finally, second-order necessary and sufficient optimality
conditions for GSCO problems are provided.

Keywords: group sparse constrained optimization; tangent cone; normal cone; first-order optimality
condition; second-order optimality condition

1. Introduction

The sparsity of a vector means that few entries of the vector are non-zero, while the
group sparsity of a vector means that non-zero entries or zero entries in the vector may
have some group structures, that is, they appear in blocks in certain areas. A vector can
be grouped according to the prior information of the group structure among the entries,
and then each group is examined to see if they are zeros entirely. For example, genes
of the same biological path can be regarded as a group in gene expression analysis, so
when they are described by a vector, the vector has group sparsity. Since it was first
proposed by Yuan and Lin [1] in 2006, the group sparse optimization has attracted much
attention of researchers [2–5]. The aim of group sparse optimization is to seek a solution
of group sparsity for a system. It is now known that group sparse optimization has
broad applications in bioinformatics, pattern recognition, image restoration, neuroimaging
and other fields [1,6–8]. For instance, we can restore the signal by use of group sparse
optimization according to the prior information of its group sparse structure. Moreover,
the stability of the recovery can be improved in the presence of noise while the accuracy of
the recovery can be improved in the absence of noise [2]. In practical problems, it is more
targeted to adopt the corresponding group sparse optimization model for problems with
group sparse structure [9].

The general sparse constrained optimization has been researched by many authors and
achieved a lot. Here we mention few of them. In [10], the authors proposed both concepts
of restricted strong convexity and restricted strong smoothness to ensure the existence of
unique solution for the sparse constrained optimization, and obtained the corresponding
error bounds. In [11], the authors defined NB-stationary point and NC-stationary point
for the sparse constrained optimization. Beck and Eldar [12] put forward three types of
first-order necessary optimality conditions for sparse constraints optimization. One of
them is the basic feasibility which is a generation of the necessary optimality condition
for zero gradient in unconstrained optimization. Another one of them is the L-stationary
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point which is based on the fixed point condition and can be used to derive the iterative
hard thresholding algorithm for solving sparse constrained optimization problems. As
we all know, Calamai and Mor̀e [13] introduced TB-stationary points and TC-stationary
points to describe the optimal conditions for general constrained optimization problems.
Although N-stationary points, L-stationary points and T-stationary points are equivalent for
convex optimization problems, they are not equivalent for sparse constrained optimization
problems because of the non-convexity. In [14], the authors provided a description of
the tangent cone and the normal cone of the sparse set, and then used to describe the
first-order optimality condition and the second-order optimality condition, furthermore,
they extended the results to the optimization problems subjected to sparse constraints
and non-negative constraints. Chen, Pan, and Xiu [15] characterized the solutions of
three kinds of sparse optimization problems and investigated the relationship among
them. Recently, Bian and Chen [16] gave an exact continuous relaxation problem for the
sparsity penalty optimization problem, and proposed a smoothing proximal gradient for
the relaxation problem.

However, the above works are mainly for general sparse optimization problems.
Due to the complexity of the group sparse structure, there still lacks of research on group
sparse constrained optimization problems. If the group sparsity is a penalty in the ob-
jective function, Peng and Chen [17] studied the first-order and second-order optimality
conditions for the relaxation problems for group sparse optimization problems, while Pan
and Chen [18] used a capped folded concave function to approximate the group sparsity
function and showed that the solution set of the continuous approximation problem and
the set of group sparse solutions are same.

This paper focuses on the following group sparse constrained optimization (GSCO)
problem, that is,

min
x∈Rn

f (x) s.t. ‖x‖2,0 ≤ k, (1)

where f : Rn → R is a continuously differentiable function or a twice continuously differ-
entiable function, x ∈ Rn is divided into m disjoint groups, denoted by x = (x>1 , · · · , x>m)>

with xi = (xi(1), · · · , xi(ni)
)> ∈ Rni , i = 1, · · · , m and ∑m

i=1 ni = n, ni ≥ 1, ‖x‖2,0 :=
∑m

i=1 ]{‖xi‖2 6= 0} counts the number of non-zero groups in x, where ‖xi‖2 is the `2 vector
norm of the ith group xi. Throughout this paper, for simplicity, ‖ · ‖ denotes the `2 vector
norm. Let k be a positive integer with k ≤ m ≤ n, and S := {x : ‖x‖2,0 ≤ k} be a group
sparse set.

Problem (1) is called GSCO due to the group structure in its entries. When m = n and
ni = 1, i = 1, · · · , m, Problem (1) reduces to the standard sparse constrained optimization.

Problem (1) is non-convex, non-smooth, and non-Lipschitz, for which the optimality
conditions are of the theoretical importance. It is the basis of analyzing and solving the
problem. The optimality conditions for constrained optimization are closely related to
tangent cones and normal cones of the constraint set. We will use Boligand tangent cone,
Clarke tangent cone and the corresponding normal cones of the group sparse set to describe
optimality conditions for Problem (1).

This paper is organized as follows. In Section 2, some basic notations and definitions
are introduced. In Section 3, the equivalent expressions of Boligand tangent cone, Clarke
tangent cone, and the corresponding normal cones of the group sparse constraint set S are
given. In Section 4, first-order optimality conditions for Problem (1) based on the tangent
cones and normal cones of S are provided. The relationship between stationary points
and local minimizers of Problem (1) is also discussed. In Section 5, second-order necessary
and sufficient optimality conditions for Problem (1) are given. At last, a brief concluding
remark is given in Section 6.
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2. Notations and Definitions

In this section, we introduce some notations and preliminaries including the defini-
tions of Boligand tangent cone, Clarke tangent cone and their corresponding normal cones.

For any x = (x>1 , x>2 , · · · , x>m)> ∈ Rn with xi ∈ Rni , the group support set of x is
denoted by

Γ(x) := {i ∈ {1, · · · , m} : xi 6= 0},

|Γ(x)| is the cardinality of the set Γ(x), then ‖x‖2,0 = |Γ(x)|, which means ‖x‖2,0 is the
number of groups in x that have nonzero `2-norm.

For the n-dimensional real number space Rn, Rxi denotes the xi coordinate axis,
and R2

xixj
denotes the xiOxj coordinate plane. Let ei ∈ Rn denote the n-dimensional

vector in which the entries in ith group are all ones and the other entries are all zeros. Let
eij(i = 1, · · · , m, j = 1, · · · , ni) denote the n-dimensional vector in which the jth entry of
the ith group is one and the other entries are all zeros.

For a smooth function f : Rn → R, let

[∇ f (x)]i := ([∇ f (x)]i(1), · · · , [∇ f (x)]i(ni)
)>, ∇ f (x) := ([∇ f (x)]>1 , · · · , [∇ f (x)]>m)

>,

where xi(j) ∈ R denotes the jth entry in xi and [∇ f (x)]i(j) denotes the jth entry in [∇ f (x)]i.
The following example shows that the group sparse structure is different from the

sparse structure.

Example 1. Let x = (x1, x2, x3)
> be a 3-dimensional vector. We show the different ways of

grouping and the corresponding group sparsity of x as follows.

(1) When x = (x1, x2, x3)
>, n1 = n2 = n3 = 1,

if ‖x‖2,0 = 0, then x = 0;
if ‖x‖2,0 = 1, then x ∈ {x|x1 ∈ R\{0}, x2 = x3 = 0}⋃{x|x2 ∈ R\{0}, x1 = x3 =
0}⋃{x|x3 ∈ R\{0}, x1 = x2 = 0};
if ‖x‖2,0 = 2, then x ∈ {x|x1, x2 ∈ R\{0}, x3 = 0}⋃{x|x1, x3 ∈ R\{0}, x2 = 0}⋃{x|x2,
x3 ∈ R\{0}, x1 = 0};
if ‖x‖2,0 = 3, then x ∈ {x|x1, x2, x3 ∈ R\{0}}.

(2) When x = (x1, (x2, x3))
>, n1 = 1, n2 = 2,

if ‖x‖2,0 = 0, then x = 0;
if ‖x‖2,0 = 1, then x ∈ {x|x1 ∈ R\{0}, x2 = x3 = 0}⋃{x|x1 = 0, (x2, x3)

> ∈ R2\{0}};
if ‖x‖2,0 = 2, then x ∈ {x|x1 ∈ R\{0}, (x2, x3)

> ∈ R2\{0}}.
(3) When x = ((x1, x2, x3))

>, n1 = 3,
if ‖x‖2,0 = 0, then x = 0;
if ‖x‖2,0 = 1, then x ∈ {x|(x1, x2, x3)

> 6= 0}.

In the end of this section, we will introduce the definition of Bouligand tangent cone,
Clarke tangent cone and their corresponding normal cones [19].

Definition 1 ([19]). Let Ω ⊆ Rn be an arbitrary nonemepty set. The Bouligand tangent cone
TB

Ω(x̂), the Clarke tangent cone TC
Ω(x̂) and their corresponding normal cone NB

Ω(x̂) and NC
Ω(x̂) to

the set Ω at the point x̂ ∈ Ω are defined as follows.

(1) Bouligand tangent cone:

TB
Ω(x̂) :=

{
d ∈ Rn : ∃{xt} ⊂ Ω, lim

t→∞
xt = x̂, ∃λt ≥ 0, t ∈ N, s.t. lim

t→∞
λt(xt − x̂) = d

}
;

(2) Fréchet normal cone:

NB
Ω(x̂) := [TB

Ω(x̂)]◦ =
{

u ∈ Rn : 〈u, z〉 ≤ 0, ∀z ∈ TB
Ω(x̂)

}
;
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(3) Clarke tangent cone:

TC
Ω(x̂) :=

d ∈ Rn :
∀{xt} ⊂ Ω, lim

t→∞
xt = x̂, ∀{λt} ⊂ R+, lim

t→∞
λt = 0, ∃{dt} ⊂ Rn,

s.t. lim
t→∞

dt = d and xt + λtdt ∈ Ω, t ∈ N

;

(4) Clarke normal cone:

NC
Ω(x̂) := [TC

Ω(x̂)]◦ =
{

u ∈ Rn : 〈u, z〉 ≤ 0, ∀z ∈ TC
Ω(x̂)

}
.

3. Tangent Cones and Normal Cones of the Group Sparse Set S

Tangent cones and normal cones are widely used to describe optimality conditions for
constrained optimization problems [19]. The following two theorems give the equivalent
characterizations of Bouligand tangent cone, Clarke tangent cone and their corresponding
normal cones to the group sparse constraint set S.

Theorem 1. For any x̂ ∈ S, the Boligand tangent cone TB
S (x̂) and Fréchet normal cone NB

S (x̂) to
the group sparse set S at the point x̂ has the following equivalent expressions:

TB
S (x̂) = {d∈ Rn : ‖d‖2,0 ≤ k, ‖x̂ + γd‖2,0 ≤ k, ∀γ ∈ R}

=
⋃

J∈Θ(x̂)

{d∈ Rn : di = 0, i /∈ J}

=
⋃

J∈Θ(x̂)

span{eij, i ∈ J, j = 1, · · · , ni};

NB
S (x̂) =

{
{u ∈ Rn : ui = 0, i ∈ Γ(x̂)} = span{eij, i 6∈ Γ(x̂), j = 1, · · · , ni}, ‖x̂‖2,0 = k,
{0}, ‖x̂‖2,0 < k,

where Γ(x̂) = {i ∈ {1, · · · , m} : x̂i 6= 0}, Θ(x̂) = {J ⊆ {1, · · · , m} : Γ(x̂) ⊆ J, |J| = k},
di ∈ Rni is the ith group of d ∈ Rn, ui ∈ Rni is the ith group of u ∈ Rn.

Proof. (i) According to the definition of Bouligand tangent cone, we have

TB
S (x̂) = {d ∈ Rn : ∃{xt} ⊆ S, lim

t→∞
xt = x̂, ∃λt ≥ 0, t ∈ N, s.t. lim

t→∞
λt(xt − x̂) = d}.

Firstly, we prove that TB
S (x̂) = H(x̂) := {d ∈ Rn : ‖d‖2,0 ≤ k, ‖x̂ + γd‖2,0 ≤ k, ∀γ ∈ R}.

For any d ∈ TB
S (x̂), there exists {xt} ⊆ S such that lim

t→∞
xt = x̂, then

Γ(x̂) ⊆ Γ(xt) and |Γ(x̂)| ≤ |Γ(xt)|

for any sufficiently large t. It follows from xt ∈ S that

|Γ(xt)| = ‖xt‖2,0 ≤ k.

Since d = lim
t→∞

λt(xt − x̂) with λt ≥ 0, then Γ(d) ⊆ Γ(xt − x̂). Due to Γ(x̂) ⊆ Γ(xt),

we obtain

Γ(d) ⊆ Γ(xt − x̂) ⊆ Γ(xt).

Therefore,

‖d‖2,0 = |Γ(d)| ≤ |Γ(xt)| ≤ k. (2)
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According to Γ(x̂) ⊆ Γ(xt) and Γ(d) ⊆ Γ(xt), then Γ(x̂ + γd) ⊆ Γ(xt) for any γ ∈ R.
Hence we get

‖x̂ + γd‖2,0 = |Γ(x̂ + γd)| ≤ |Γ(xt)| ≤ k. (3)

Combining (2) with (3), we get TB
S (x̂) ⊆ H(x̂).

Conversely, for any d ∈ H(x̂), take any sequence {λt} such that λt > 0 and λt → ∞,
let xt = x̂ + d

λt
, then lim

t→∞
xt = x̂. Since ‖x̂ + γd‖2,0 ≤ k for any γ ∈ R, we get

‖xt‖2,0 = ‖x̂ +
d
λt
‖2,0 ≤ k,

which means {xt} ⊆ S. It follows from lim
t→∞

xt = x̂ that Γ(x̂) ⊆ Γ(xt). Hence we obtain

‖x̂‖2,0 = |Γ(x̂)| ≤ |Γ(xt)| = ‖xt‖2,0 ≤ k.

From xt = x̂ + d
λt

, we get

lim
t→∞

λt(xt − x̂) = d.

Hence we have d ∈ TB
S (x̂), which means TB

S (x̂) ⊇ H(x̂).
The above proof yields TB

S (x̂) = H(x̂).
It is easy to prove that

H(x̂) =
⋃

J∈Θ(x̂)

{d ∈ Rn : di = 0, i /∈ J} =
⋃

J∈Θ(x̂)

span{eij, i ∈ J, j = 1, · · · , ni}.

(ii) According to the definition of Fréchet normal cone,

NB
S (x̂) = [TB

S (x̂)]
◦ = {u∈ Rn : 〈u, d〉 ≤ 0, ∀d ∈ TB

S (x̂)}.

For any u ∈ NB
S (x̂) and any d ∈ TB

S (x̂), it must hold 〈u, d〉 ≤ 0.
If ‖x̂‖2,0 = k, we have

〈u, d〉 = ∑
i∈Γ(x̂)

〈ui, di〉+ ∑
i/∈Γ(x̂)

〈ui, di〉.

Since d ∈ TB
S (x̂) =

⋃
J∈Θ(x̂){d ∈ Rn : di = 0, i /∈ J}, for any J ∈ Θ(x̂), we have

Γ(x̂) ⊆ J and di = 0, i /∈ J. Thus we have di = 0, i /∈ Γ(x̂), ∑
i/∈Γ(x̂)

〈ui, di〉 = 0, and then

〈u, d〉 = ∑
i∈Γ(x̂)

〈ui, di〉 ≤ 0,

which, together with the arbitrariness of di ∈ Rni for i ∈ Γ(x̂), implies ui = 0, i ∈ Γ(x̂).
Therefore, NB

S (x̂) = {u ∈ Rn : ui = 0, i ∈ Γ(x̂)}. It is easy to prove that {u ∈ Rn : ui =
0, i ∈ Γ(x̂)} = span{eij, i 6∈ Γ(x̂), j = 1, · · · , ni}.

If ‖x̂‖2,0 < k, for any J ∈ Θ(x̂), it holds

〈u, d〉 = ∑
i∈J
〈ui, di〉+ ∑

i/∈J
〈ui, di〉.

We also have 〈u, d〉 = ∑
i∈J
〈ui, di〉 ≤ 0, which also implies ui = 0, i ∈ J. Due

to ‖x̂‖2,0 < k, Γ(x̂) ⊆ J and |J| = k, it must hold
⋃

J∈Θ(x̂)
J = {1, 2, · · · , m}, and then

NB
S (x̂) = {0}.
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Next, we give the equivalent characterizations of Clarke tangent cone and Clarke
normal cone of the group sparse constraint set S.

Theorem 2. For any x̂ ∈ S, the Clarke tangent cone and the Clarke normal cone of the group
sparse set S at x̂ have the following equivalent expressions:

TC
S (x̂) = {d∈ Rn : Γ(d) ⊆ Γ(x̂)}

= {d∈ Rn : di = 0, i /∈ Γ(x̂)}
= span{eij, i ∈ Γ(x̂), j = 1, · · · , ni};

NC
S (x̂) = {u∈ Rn : ui = 0, i ∈ Γ(x̂)}

= span{eij, i /∈ Γ(x̂), j = 1, · · · , ni}.

Proof. (i) According to the definition of Clarke tangent cone, we have

TC
S (x̂) =

{
d ∈ Rn :

∀{xt} ⊆ S, limt→∞ xt = x̂, ∀{λt} ⊂ R+, limt→∞ λt = 0, ∃{yt} ⊂ Rn,
s.t. limt→∞ yt = d, ‖xt + λtyt‖2,0 ≤ k, ∀t ∈ N

}
.

We first prove TC
S (x̂) = {d ∈ Rn : Γ(d) ⊆ Γ(x̂)}.

To prove TC
S (x̂) ⊆ {d ∈ Rn : Γ(d) ⊆ Γ(x̂)}, we assume, on the contrary, that there

exists d ∈ TC
S (x̂), but Γ(d) 6⊆ Γ(x̂). Then there exists i0 ∈ Γ(d) but i0 /∈ Γ(x̂), which implies

that x̂i0 = 0 but di0 6= 0.
Note that |Γ(x̂)| ≤ k. For any t ∈ N, take Γt ⊆ {1, 2, · · · , m} \ {Γ(x̂)⋃{i0}} such that

|Γ(x̂)|+ |Γt| = k.

Let λt =
1
t2 ↓ 0 and

xt
i =


xi, i ∈ Γ(x̂)
1
t 1ni , i ∈ Γt,
0, i ∈ {1, 2, · · · , m} \ {Γt

⋃
Γ(x̂)}.

where 1ni is an ni-dimensional vector of all ones. Then

Γ(xt) = Γ(x̂)
⋃

Γt, ‖xt‖2,0 = |Γ(x̂)|+ |Γt| = k,

and thus {xt} ⊆ S, xt
i0
= 0, and lim

t→∞
xt = x̂. For any yt → d, we have

xt
i + λtyt

i =


xt

i +
1
t2 yt

i → x̂i, i ∈ Γ(x̂),
1
t 1ni +

1
t2 yt

i → 0, i ∈ Γt,
0 + 1

t2 yt
i0
→ 0, i = i0,

0 + 1
t2 yt

i → 0, i ∈ {1, 2, · · · , m} \ {Γt
⋃

Γ(x̂)
⋃{i0}}.

Since yt
i0
→ di0 6= 0, for any sufficiently large t, we have

‖xt + λtyt‖2,0 ≥ |Γ(x̂)
⋃

Γt
⋃
{i0}| = k + 1,

Therefore, xt + λtyt /∈ S for any sufficiently large t, which means d /∈ TC
S (x̂) according

to the definition of TC
S (x̂). This contradiction shows that TC

S (x̂) ⊆ {d ∈ Rn : Γ(d) ⊆ Γ(x̂)}.
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To prove {d ∈ Rn : Γ(d) ⊆ Γ(x̂)} ⊆ TC
S (x̂), let d ∈ {d ∈ Rn : Γ(d) ⊆ Γ(x̂)}. For any

{xt} ⊆ S, with lim
t→∞

xt = x̂ and any {λt} ⊂ R+ with limt→∞ λt = 0, we have

Γ(d) ⊆ Γ(x̂) ⊆ Γ(xt). (4)

Let yt = xt − x̂ + d, then from (4), we get Γ(yt) ⊆ Γ(xt) and

‖xt + λtyt‖2,0 = |Γ(xt + λtyt)| ≤ |Γ(xt)| ≤ k.

In addition, lim
t→∞

yt = lim
t→∞

(xt − x̂ + d) = d. It is easy to know that d ∈ TC
S (x̂)

according to the definition of TC
S (x̂). From the arbitrariness of d ∈ {d ∈ Rn : Γ(d) ⊆ Γ(x̂)},

we have

{d ∈ Rn : Γ(d) ⊆ Γ(x̂)} ⊆ TC
S (x̂).

Therefore, we have proved that TC
S (x̂) = {d ∈ Rn : Γ(d) ⊆ Γ(x̂)}.

Since di = 0, i /∈ Γ(d) and Γ(d) ⊆ Γ(x̂) for any d ∈ {d ∈ Rn : Γ(d) ⊆ Γ(x̂)}, it must
hold di = 0, i /∈ Γ(x̂). Hence we get

TC
S (x̂) = {d ∈ Rn : Γ(d) ⊆ Γ(x̂)} = {d ∈ Rn : di = 0, i /∈ Γ(x̂)}. (5)

It is easy to prove that {d ∈ Rn : di = 0, i /∈ Γ(x̂)} = span{eij : i ∈ Γ(x̂), j =
1, · · · , ni}, then

TC
S (x̂) = span{eij : i ∈ Γ(x̂), j = 1, · · · , ni}. (6)

(ii) According to the definition of Clarke normal cone, we have

NC
S (x̂) = [TC

S (x̂)]
◦ = {u ∈ Rn : 〈d, u〉 ≤ 0, ∀d ∈ TC

S (x̂)}.

For any d ∈ TC
S (x̂) and any u ∈ NC

S (x̂), we have

〈d, u〉 = ∑
i∈Γ(x̂)

〈di, ui〉+ ∑
i/∈Γ(x̂)

〈di, ui〉 ≤ 0.

From (5), di = 0, i /∈ Γ(x̂), then we get ∑
i/∈Γ(x̂)

〈di, ui〉 = 0, and thus

〈d, u〉 = ∑
i∈Γ(x̂)

〈di, ui〉 ≤ 0.

which means ui = 0, i ∈ Γ(x̂) due to the arbitrariness of di ∈ Rni . Therefore, NC
S (x̂) =

{u ∈ Rn : ui = 0, i ∈ Γ(x̂)}.

Obviously, the following relationship holds for Boligand tangent cone, Clarke normal
cone and the corresponding normal cones of the group sparse set S at any point x̂ ∈ S:

TC
S (x̂) ⊆ TB

S (x̂), NB
S (x̂) ⊆ NC

S (x̂).

Remark 1. In [14], the authors gave the expressions of tangent cone and normal cone to the sparse
set {x ∈ Rn : ‖x‖0 ≤ k} . Theorems 1 and 2 in this paper are the extension of their results.

In the end of this section, we give an example of the tangent cones of S in R3.

Example 2. Consider the group sparse set

S = {x = (x1, (x2, x3))
> ∈ R3 : ‖x‖2,0 ≤ 1},
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where x1 is the first group, and (x2, x3)
> is the second group. Consider its Bouligand tangent cone

and Clarke tangent cone at three points: x1 = (0, (1, 1))>, x2 = (0, (1, 0))> and x3 = (1, (0, 0))>.
It is easy to get the following statements: Γ(x1) = {2}, Γ(x2) = {2}, Γ(x3) = {1}; Θ(x1) =

{2}, Θ(x2) = {2}, Θ(x3) = {1};
TB

S (x
1) = {x ∈ R3 : x1 = 0} = R2

x2x3
; TC

S (x
1) = {x ∈ R3 : x1 = 0} = R2

x2x3
;

TB
S (x

2) = {x ∈ R3 : x1 = 0} = R2
x2x3

; TC
S (x

2) = {x ∈ R3 : x1 = 0} = R2
x2x3

;
TB

S (x
3) = {x ∈ R3 : x2 = x3 = 0} = Rx1 ; TC

S (x
3) = {x ∈ R3 : x2 = x3 = 0} = Rx1 .

Therefore, TB
S (x

1) = TC
S (x

1) = TB
S (x

2) = TC
S (x

2) = R2
x2x3

, TB
S (x

3) = TC
S (x

3) = Rx1 .
Figure 1 provides the figures of the above Bouligand tangent cones and Clarke tan-

gent cones.

Figure 1. Bouligand tangent cones and Clarke tangent cones of S in R3, where S = {x ∈ R3 :
‖x‖2,0 ≤ 1}, x1 = (0, 1, 1), x2 = (0, 1, 0) and x3 = (1, 0, 0).

From example 3.1, we can see that the key of group sparsity is to survey whether each
group as a whole is zero instead of checking whether each entry is zero.

4. First-Order Optimality Conditions for Problem (1)

The optimality conditions for optimization problems are usually closely related to
their stationary points. In this section, we use Bouligand tangent cones, Clarke tangent
cones and their corresponding normal cones to specifically describe the N-stationary points
and T-stationary points of Problem (1), then based on the descriptions, we investigate the
relationship among the stationary points and the relationship between stationary points
and local minimizers.

Definition 2. x∗ ∈ S is called an N]-stationary point or T]-stationary point of Problem (1) if it
meets the following conditions respectively:
(i) N]-stationary point: 0 ∈ ∇ f (x∗) + N]

S(x
∗);

(ii) T]-stationary point: 0 = ‖∇]
S f (x∗)‖;

where ] ∈ {B, C} stands for the sense of Bouligand or Clarke, and

∇]
S f (x∗) = arg min

{
‖d +∇ f (x∗)‖ : d ∈ T]

S(x
∗)
}

is the projection gradient on Bouligand tangent cone or Clarke tangent cone.

Next, we will study the link between NB-stationary point and TB-stationary point of
Problem (1).
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Theorem 3. Suppose x∗ ∈ S, then the following statements hold for Problem (1):
(i) If ‖x∗‖2,0 = k, then x∗ is an NB-stationary point⇔ x∗ is a TB-stationary point;
(ii) If ‖x∗‖2,0 < k, then x∗ is an NB-stationary point⇔∇ f (x∗) = 0⇔ x∗ is a TB-stationary point.

Proof. (i) Let ‖x∗‖2,0 = k.
On one hand, suppose x∗ ∈ S is an NB-stationary point of Problem (1), then

0 ∈ ∇ f (x∗) + NB
S (x
∗),

that is, −∇ f (x∗) ∈ NB
S (x
∗). By Theorem 2, NB

S (x
∗) = {u ∈ Rn : ui = 0, i ∈ Γ(x∗)}, then

we have

−∇ f (x∗) ∈ {u ∈ Rn : ui = 0, i ∈ Γ(x∗)},

i.e.,

(∇ f (x∗))i

{
= 0, i ∈ Γ(x∗),
∈ Rni , i /∈ Γ(x∗).

It is easy to check that the converse is also true. That is, when ‖x∗‖2,0 = k, it holds that

0 ∈ ∇ f (x∗) + NB
S (x
∗)⇔ (∇ f (x∗))i

{
= 0, i ∈ Γ(x∗),
∈ Rni , i /∈ Γ(x∗).

(7)

On the other hand, suppose x∗ ∈ S is a TB-stationary point of Problem (1), then

0 = ‖∇B
S f (x∗)‖.

By Theorem 1, TB
S (x

∗) = {d ∈ Rn : ‖d‖2,0 ≤ k, ‖x∗ + γd‖2,0 ≤ k, ∀γ ∈ R}. Hence,
in the case of ‖x∗‖2,0 = k, we have

d ∈ TB
S (x

∗)⇔ Γ(d) ⊆ Γ(x∗).

Accordingly, we have

∇B
S f (x∗) = arg min{‖d +∇ f (x∗)‖ : d ∈ TB

S (x
∗)}

= arg min{‖d +∇ f (x∗)‖ : Γ(d) ⊆ Γ(x∗)}.

For i /∈ Γ(x∗), di = 0, then 0 = (∇B
S f (x∗))i; For i ∈ Γ(x∗), obviously, (∇B

S f (x∗))i =
−(∇ f (x∗))i. Hence we get

(∇B
S f (x∗))i =

{
0, i /∈ Γ(x∗),
−(∇ f (x∗))i, i ∈ Γ(x∗),

According to 0 = ‖∇B
S f (x∗)‖, we have

(∇ f (x∗))i

{
= 0, i ∈ Γ(x∗),
∈ Rni , i /∈ Γ(x∗).

It is easy to check that the converse is also true. That is, in the case of ‖x∗‖2,0 = k,
the following equivalence holds

0 = ‖∇B
S f (x∗)‖ ⇔ (∇ f (x∗))i

{
= 0, i ∈ Γ(x∗),
∈ Rni , i /∈ Γ(x∗).

(8)
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Combining (7) with (8), we can conclude that, when ‖x∗‖2,0 = k, x∗ is an NB-stationary
point of Problem (1) if and only if it is a TB-stationary point of Problem (1).

(ii) In the case of ‖x∗‖2,0 < k, we first prove the equivalent relationship between
NB-stationary point of Problem (1) and ∇ f (x∗) = 0.

On one hand, suppose x∗ ∈ S is an NB-stationary point of Problem (1), then

0 ∈ ∇ f (x∗) + NB
S (x
∗),

that is, −∇ f (x∗) ∈ NB
S (x
∗). It follows from NB

S (x
∗) = {0} that ∇ f (x∗) = 0. Hence the

following implication holds

0 ∈ ∇ f (x∗) + NB
S (x
∗)⇒ ∇ f (x∗) = 0. (9)

On the other hand, suppose ∇ f (x∗) = 0. In the case of ‖x∗‖2,0 < k, by theorem 1,
NB

S (x
∗) = 0. Therefore

−∇ f (x∗) = 0 ∈ NB
S (x
∗),

i.e., 0 ∈ ∇ f (x∗) + NB
S (x
∗). Hence the following implication holds

∇ f (x∗) = 0⇒ 0 ∈ ∇ f (x∗) + NB
S (x
∗). (10)

From (9) and (10), we get the following equivalent relationship

0 ∈ ∇ f (x∗) + NB
S (x
∗)⇔ ∇ f (x∗) = 0, (11)

that is, in the case of ‖x∗‖2,0 < k, x∗ is an NB-stationary point if and only if ∇ f (x∗) = 0.
In the following part, we prove the equivalent relationship between TB-stationary

point of Problem (1) and ∇ f (x∗) = 0 in the case of ‖x∗‖2,0 < k.
Suppose x∗ ∈ S satisfies ∇ f (x∗) = 0, then by Theorem 1,

∇B
S f (x∗) = arg min{‖d +∇ f (x∗)‖ : d ∈ TB

S (x
∗)}

= arg min{‖d‖ : ‖d‖2,0 ≤ k, ‖x∗ + γd‖2,0 ≤ k, ∀γ ∈ R}
= 0.

That is,

∇ f (x∗) = 0⇒ 0 = ‖∇B
S f (x∗)‖. (12)

Conversely, suppose x∗ is a TB-stationary point of Problem (1), i.e.,

0 = ‖∇B
S f (x∗)‖,

then by Theorem 1,

0 = ∇B
S f (x∗) = arg min{‖d +∇ f (x∗)‖ : d ∈ TB

S (x
∗)}

= arg min{‖d +∇ f (x∗)‖ : ‖d‖2,0 ≤ k, ‖x∗ + γd‖2,0 ≤ k, ∀γ ∈ R}.

Hence we get that ‖∇ f (x∗)‖ = ‖0 + ∇ f (x∗)‖ ≤ ‖d + ∇ f (x∗)‖ for any d ∈ Rn

satisfying ‖d‖2,0 ≤ k, ‖x∗ + γd‖2,0 ≤ k, ∀γ ∈ R.
For any i0 ∈ {1, 2, · · · , m}, take d̂ ∈ Rn such that Γ(d̂) = {i0} and d̂i0 = −(∇ f (x∗))i0 .

Following from |Γ(x∗)| = ‖x∗‖2,0 < k, we have

‖x∗ + γd̂‖2,0 = |Γ(x∗) ∪ {i0}| ≤ |Γ(x∗)|+ 1 ≤ k.



Mathematics 2021, 9, 84 11 of 17

From ‖∇ f (x∗)‖ ≤ ‖d̂ + ∇ f (x∗)‖, we obtain ‖(∇ f (x∗))i0‖ ≤ ‖ − (∇ f (x∗))i0 +
(∇ f (x∗))i0‖, and then

(∇ f (x∗))i0 = 0.

According to the arbitrariness of i0, we get ∇ f (x∗) = 0. That is,

0 = ‖∇B
S f (x∗)‖ ⇒ ∇ f (x∗) = 0, (13)

Combining (12) with (13), in the case of ‖x∗‖ < k, the following equivalent
relationship holds

0 = ‖∇B
S f (x∗)‖ ⇔ ∇ f (x∗) = 0.

The proof is thus finished.

Furthermore, for Problem (1), its NC-stationary point and TC-stationary point have
the following equivalent relationship.

Theorem 4. For Problem (1), let x∗ ∈ S, then x∗ is an NC-stationary point if and only if it is a
TC-stationary point.

Proof. On one hand, by Theorem 2, NC
S (x

∗) = {u ∈ Rn : ui = 0, i ∈ Γ(x∗)}. Then we
have the following equivalences:

x∗ is an NC-stationary point of Problem (1)
⇔ 0 ∈ ∇ f (x∗) + NC

S (x
∗)

⇔ −∇ f (x∗) ∈ NC
S (x

∗)

⇔ (∇ f (x∗))i

{
= 0, i ∈ Γ(x∗),
∈ Rni , i /∈ Γ(x∗).

(14)

On the other hand, by Theorem 2, TC
S (x

∗) = {d ∈ Rn : di = 0, i /∈ Γ(x∗)}. Then
according to the definition of ∇C

S f (x∗), we have that

∇C
S f (x∗) = arg min{‖d +∇ f (x∗)‖ : d ∈ TC

S (x
∗)}

= arg min{‖d +∇ f (x∗)‖ : di = 0, i /∈ Γ(x∗)}
= arg min{‖d +∇ f (x∗)‖2 : di = 0, i /∈ Γ(x∗)}

= arg min


 ∑

i∈Γ(x∗)
+ ∑

i 6∈Γ(x∗)

‖di + (∇ f (x∗))i‖2 : di = 0, i /∈ Γ(x∗)


= arg min

 ∑
i∈Γ(x∗)

‖di + (∇ f (x∗))i‖2 + ∑
i 6∈Γ(x∗)

‖(∇ f (x∗))i‖2 : di = 0, i /∈ Γ(x∗)


= arg min

 ∑
i∈Γ(x∗)

‖di + (∇ f (x∗))i‖2 : di ∈ Rni , i ∈ Γ(x∗); di = 0, i /∈ Γ(x∗)

.

Thus by directly computing, ∇C
S f (x∗) satisfies

(∇C
S f (x∗))i =

{
−(∇ f (x∗))i, i ∈ Γ(x∗),
0, i /∈ Γ(x∗).
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Therefore, the following equivalent relationships hold:

x∗ is a TC-stationary point of Problem (1)
⇔ 0 = ∇C

S f (x∗)

⇔ −(∇ f (x∗))i

{
= 0, i ∈ Γ(x∗),
∈ Rni , i /∈ Γ(x∗).

(15)

Combine (14) and (15), then we get the following equivalent relationships:

0 ∈ ∇ f (x∗) + NC
S (x

∗)⇔ (∇ f (x∗))i

{
= 0, i ∈ Γ(x∗),
∈ Rni , i /∈ Γ(x∗),

⇔ ‖∇C
S f (x∗)‖ = 0.

The proof is thus complete.

Next, we investigate the relationship among the four types of stationary points of
Problem (1).

Theorem 5. Let x∗ ∈ S, then the following statements hold for Problem (1):
(i) If x∗ is an NB-stationary point, then it must be an NC-stationary point;
(ii) If x∗ is a TB-stationary point, then it must be a TC-stationary point.

Proof. (i) Let x∗ is an NB-stationary point of Problem (1). There are two cases: ‖x∗‖2,0 = k
and ‖x∗‖2,0 < k.

Case 1: ‖x∗‖2,0 = k. In this case, by (7), x∗ is an NB-stationary point if and only if

(∇ f (x∗))i

{
= 0, i ∈ Γ(x∗),
∈ Rni , i /∈ Γ(x∗),

which, by (14), is equivalent to that x∗ is an NC-stationary point of Problem (1). Thus
we obtain that NB-stationary point and NC-stationary point are equivalent in the case of
‖x∗‖2,0 = k.

Case 2: ‖x∗‖2,0 < k. By (11), in this case, x∗ is an NB-stationary point of Problem (1) if
and only if

∇ f (x∗) = 0.

By (14), x∗ is an NC-stationary point of Problem (1) if and only if

(∇ f (x∗))i

{
= 0, i ∈ Γ(x∗),
∈ Rni , i /∈ Γ(x∗).

Clearly, in the case of ‖x∗‖2,0 < k, if x∗ is an NB-stationary point of Problem (1), it
must be an NC-stationary point (the converse is not true). That is,

NB−stationary point⇒ NC−stationary point. (16)

(ii) According to Theorems 3 and 4, the NB-stationary point of Problem (1) is equivalent
to its TB-stationary point, and the NC-stationary point of Problem (1) is equivalent to its
TC-stationary point, this is,

NB−stationary point⇔ TB−stationary point;

NC−stationary point⇔ TC−stationary point.
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Moreover, from (16),

NB−stationary point⇒ NC−stationary point.

Therefore,
TB−stationary point⇒ TC−stationary point.

The proof is finished.

To have a clear presentation, based on the proofs of Theorems 3 and 4, we use Table 1
to display the characterizations of the four types of stationary points of Problem (1).

Table 1. The characterizations of TB-, NB-, TC-, NC- stationary point for Problem (1).

Stationary Point ‖x∗‖2,0 = k ‖x∗‖2,0 < k

TB-stationary point (∇ f (x∗))i

{
= 0, i ∈ Γ(x∗)
∈ Rni , i /∈ Γ(x∗)

∇ f (x∗) = 0

NB-stationary point (∇ f (x∗))i

{
= 0, i ∈ Γ(x∗)
∈ Rni , i /∈ Γ(x∗)

∇ f (x∗) = 0

TC-stationary point (∇ f (x∗))i

{
= 0, i ∈ Γ(x∗)
∈ Rni , i /∈ Γ(x∗)

(∇ f (x∗))i

{
= 0, i ∈ Γ(x∗)
∈ Rni , i /∈ Γ(x∗)

NC-stationary point (∇ f (x∗))i

{
= 0, i ∈ Γ(x∗)
∈ Rni , i /∈ Γ(x∗)

(∇ f (x∗))i

{
= 0, i ∈ Γ(x∗)
∈ Rni , i /∈ Γ(x∗)

In the end of this section, we discuss the relationship between the local minimizers of
Problem (1) and its stationary points.

Theorem 6. Let x∗ ∈ S be a local minimizer of Problem (1), then the following two statements
hold:
(i) x∗ is an NB-stationary point and hence an NC-stationary point;
(ii) x∗ is a TB-stationary point and hence a TC-stationary point.

Proof. Since x∗ is a local minimizer of Problem (1), for sufficiently small α > 0, it holds that

f (x∗) ≤ f (x∗ + αeij), ∀i ∈ J ⊇ Γ(x∗), |J| = k; j = 1, · · · , ni,

and then

0 ∈ arg min{hij(α) , f (x∗ + αeij) : α ≥ 0}, ∀i ∈ J ⊇ Γ(x∗), |J| = k; j = 1, · · · , ni.

Due to x∗ ∈ S, there are two cases: ‖x∗‖2,0 < k and ‖x∗‖2,0 = k.
Case 1: ‖x∗‖2,0 < k. In this case,

⋃
J⊇Γ(x∗),|J|=k J = {1, · · · , m}, then

0 ∈ arg min{hij(α) = f (x∗ + αeij) : α ≥ 0}, ∀i = 1, · · · , m; ∀j = 1, · · · , ni.

By the optimality conditions for the above problems, we have

(∇ f (x∗))ij = h′ij(0) = 0, ∀i = 1, · · · , m; ∀j = 1, · · · , ni.

That is, ∇ f (x∗) = 0.
Case 2: ‖x∗‖2,0 = k. In this case,

0 ∈ arg min{hij(α) = f (x∗ + αeij) : α ≥ 0}, ∀i ∈ Γ(x∗); ∀j = 1, · · · , ni.
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It can be derived that (∇ f (x∗))ij = 0, ∀i ∈ Γ(x∗), ∀j = 1, · · · , ni. That is, (∇ f (x∗))i =
0, ∀i ∈ Γ(x∗).

Combining the above two cases with (7) and (11), we know that x∗ is an NB-stationary
point of Problem (1). From Theorem 5, x∗ is also an NC-stationary point of Problem (1).

(ii) From (i), x∗ is both NB-stationary point and NC-stationary point. According to
Theorems 3 and 4, x∗ is both TB-stationary point and TC-stationary point. The proof
is complete.

As a summary of this section, we conclude the relationship among local minimizers
and the four stationary points of Problem (1) as follows:

local minimizer ⇒ NB-stationary point ⇔ TB-stationary point

⇓ ⇓
NC-stationary point ⇔ TC-stationary point.

5. Second-Order Optimality Conditions for Problem (1)

In this section, we provide some second-order necessary or sufficient optimality
conditions for Problem (1) by use of Clarke tangent cone.

Theorem 7 (Second-order necessary condition). Let x∗ ∈ S be a local minimizer of Problem (1),
then for any d ∈ TC

S (x
∗), it must hold that d>∇ f (x∗) = 0 and

d>∇2 f (x∗)d ≥ 0,

where ∇2 f (x∗) is the Hessian matrix of f at x∗.

Proof. Since x∗ ∈ S is a local minimizer of Problem (1), by Theorem 6, x∗ is also an
NC-stationary point. By (14),

(∇ f (x∗))i

{
= 0, i ∈ Γ(x∗),
∈ Rni , i /∈ Γ(x∗).

According to (5), for any d ∈ TC
S (x

∗),

di = 0, i /∈ Γ(x∗).

Thus, for any d ∈ TC
S (x

∗), it holds

d>∇ f (x∗) = 0. (17)

In addition, since x∗ is a local minimizer of Problem (1), for sufficiently small α > 0
and any d ∈ TC

S (x
∗), we have

f (x∗) ≤ f (x∗ + αd). (18)

By Taylor’s Theorem,

f (x∗ + αd) = f (x∗) + αd>∇ f (x∗) +
1
2

α2d>∇2 f (x∗)d + o(α2). (19)

Combine (17)–(19), then

f (x∗) ≤ f (x∗) + αd>∇ f (x∗) +
1
2

α2d>∇2 f (x∗)d + o(α2)

= f (x∗) +
1
2

α2d>∇2 f (x∗)d + o(α2).
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Hence,

0 ≤ 1
2

α2d>∇2 f (x∗)d + o(α2),

which implies d>∇2 f (x∗)d ≥ 0, ∀d ∈ TC
S (x

∗). The desired result is derived.

Finally, we give a second-order sufficient condition for the optimality of Problem (1).

Theorem 8 (Second-order sufficient condition). Let x∗ ∈ S be an NC-stationary point of
Problem (1), if for any d ∈ TC

S (x
∗) \ {0}, it holds d>∇2 f (x∗)d > 0, then the following two

statements hold:
(i) x∗ ∈ Rn

Γ(x∗) is a strictly local minimizer of Problem (1);
(ii) x∗ satisfies the second-order growth condition, that is, there are ω > 0 and δ > 0 such that for
any x ∈ B(x∗, δ)

⋂
Rn

Γ(x∗),

f (x) ≥ f (x∗) + ω‖x− x∗‖2.

where Rn
Γ(x∗) = span{eij, i ∈ Γ(x∗), j = 1, · · · , ni}.

Proof. (i) Since x∗ is an NC-stationary point of Problem (1), from Theorem 2, we have

(∇ f (x∗))i

{
= 0, i ∈ Γ(x∗),
∈ Rni , i /∈ Γ(x∗).

For any d ∈ TC
S (x

∗), by (5),

di = 0, i /∈ Γ(x∗).

Then for any d ∈ TC
S (x

∗) \ {0}, it holds

d>∇ f (x∗) = 0.

By Taylor’s Theorem, for any sufficiently small α > 0,

f (x∗ + αd) = f (x∗) + αd>∇ f (x∗) +
1
2

α2d>∇2 f (x∗)d + o(α2)

= f (x∗) +
1
2

α2d>∇2 f (x∗)d + o(α2).

Since dT∇2 f (x∗)d > 0, ∀d ∈ TC
S (x

∗) \ {0}, then for any sufficiently small α > 0,

f (x∗ + αd) = f (x∗) +
1
2

α2d>∇2 f (x∗)d + o(α2) > f (x∗).

Therefore, x∗ is a strictly local minimizer of Problem (1).
(ii) Assume, on the contrary, that the second-order growth condition does not hold at

x∗, then there is a sequence {xt}t∈N ⊂ Rn
Γ(x∗) such that {xt}t∈N → x∗ but

f (xt) < f (x∗) +
1
t
‖xt − x∗‖2.

Let zt = xt−x∗
‖xt−x∗‖ , then ‖zt‖ = 1. Since { xt−x∗

‖xt−x∗‖}t∈N is bounded, without loss of

generality, suppose zt → z, then ‖z‖ = 1.
It follows xt ∈ Rn

Γ(x∗) that Γ(xt) ⊆ Γ(x∗). Due to lim
t→∞

xt = x∗, we have Γ(x∗) ⊆ Γ(xt),

then
Γ(xt) = Γ(x∗)
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for any sufficiently large t. From zt = xt−x∗
‖xt−x∗‖ , we get

Γ(zt) ⊆ Γ(xt) = Γ(x∗) and zt ∈ Rn
Γ(x∗) \ {0}.

Moreover, from lim
t→∞

zt = z, it follows

Γ(z) ⊆ Γ(zt) ⊆ Γ(x∗) and z ∈ Rn
Γ(x∗) \ {0}

for any sufficiently large t. According to (6), it holds

Rn
Γ(x∗) = span{eij, i ∈ Γ(x∗), j = 1, · · · , ni} = TC

S (x
∗).

Hence, for any zt ∈ Rn
Γ(x∗) \ {0}, we have zt ∈ TC

S (x
∗) \ {0}, which together with

(5) yields

(zt)>∇ f (x∗) = 0.

By Taylor’s Theorem,

f (xt)− f (x∗) = (xt − x∗)>∇ f (x∗) +
1
2
(xt − x∗)>∇2 f (x∗)(xt − x∗) + o(‖xt − x∗‖2).

Since (xt−x∗)>

‖xt−x∗‖ ∇ f (x∗) = (zt)>∇ f (x∗) = 0, we have

f (xt)− f (x∗)
‖xt − x∗‖2 =

1
‖xt − x∗‖2

(
(xt − x∗)>∇ f (x∗) +

1
2
(xt − x∗)>∇2 f (x∗)(xt − x∗)

+o(‖xt − x∗‖2)
)

=
1
2 (x

t − x∗)>∇2 f (x∗)(xt − x∗)
‖xt − x∗‖2 + o(1)

=
1
2
(zt)>∇2 f (x∗)zt + o(1).

Under the assumption that f (xt) < f (x∗) + 1
t ‖xt − x∗‖2, we obtain

1
t
>

f (xt)− f (x∗)
‖xt − x∗‖2 =

1
2
(zt)>∇2 f (x∗)zt + o(1).

Letting t→ ∞, we get

zT∇2 f (x∗)z ≤ 0, where z ∈ Rn
Γ(x∗) \ {0} = TC

S (x
∗) \ {0},

which contradicts the condition that d>∇2 f (x∗)d > 0 holds for any d ∈ TC
S (x

∗) \ {0}.
Therefore, the second-order growth condition must hold at x∗.

6. Concluding Remarks

In this paper, the first-order optimality conditions are built for group sparsity con-
strained optimization problems by use of Bouligand tangent cone, Clarke tangent and their
corresponding normal cones, and the relationship among the local minimizers and the four
types of stationary points of Problem (1) is investigated. Furthermore, the second-order
sufficient and second-order necessary optimality conditions for group sparsity constrained
optimization problems are provided. The results show that NC-stationary points of Prob-
lem (1) may be strictly local minimizers, and even can fulfill the second-order growth
condition under some mild conditions. The results provide the theoretical basis for analyz-
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ing or solving the group sparsity constrained optimization problems. In the future, we will
use the optimality conditions to design algorithms for solving the problems.

Author Contributions: Methodology, D.P.; Project administration, D.P.; Supervision, D.P.; Writing
original draft, W.W.; Writing review and editing, D.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by NSFC (11861020), the Growth Project of Education De-
partment of Guizhou Province for Young Talents in Science and Technology ([2018]121), the Founda-
tion for Selected Excellent Project of Guizhou Province for High-level Talents Back from Overseas
([2018]03), and the Science and Technology Planning Project of Guizhou Province ([2018]5781).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yuan, M.; Lin, Y. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B 2006, 68, 49–67.

[CrossRef]
2. Huang, J.; Breheny, P.; Ma, S. A selective review of group selection in high-dimensional models. Stat. Sci. 2012, 27, 481–499.

[CrossRef] [PubMed]
3. Huang, J.; Ma, S.; Xue, H.; Zhang, C.H. A group bridge approach for variable selection. Biometrika 2009, 96, 339–355. [CrossRef]

[PubMed]
4. Meier, L.; van de Geer, S.; Bühlmann, P. The group Lasso for logistic regression. J. R. Stat. Soc. Ser. B 2008, 70, 53–71. [CrossRef]
5. Yang, Y.; Zou, H. A fast unified algorithm for solving group-lasso penalize learning problems. Stat. Comput. 2015, 25, 1129–1141.

[CrossRef]
6. Beck, A.; Hallak, N. Optimization involving group sparsity terms. Math. Program. 2018, 178, 39–67. [CrossRef]
7. Hu, Y.; Li, C.; Meng, K.; Qin, J.; Yang, X. Group sparse optimization via `p,q regularization. J. Mach. Learn. Res. 2017, 18, 1–52.
8. Jiao, Y.; Jin, B.; Lu, X. Group sparse recovery via the `0(`2) penalty: theory and algorithm. IEEE Trans. Signal Process. 2017, 65,

998–1012. [CrossRef]
9. Huang, J.; Zhang, T. The benefit of group sparsity. Ann. Stat. 2010, 38, 1978–2004. [CrossRef]
10. Agarwal, A.; Negahban, S.; Wainwright, M.J. Fast global convergence rates of gradient methods for high-dimensional statistical

recovery. Int. Conf. Neural Inf. Process. Syst. 2010, 23, 37–45.
11. Attouch, H.; Bolte, J.; Svaiter, B.F. Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms,

forward-backward splitting, and regularized Gauss-Seidel methods. Math. Program. 2013, 137, 91–129. [CrossRef]
12. Beck, A.; Eldar, Y. Sparsity constrained nonlinear optimization: Optimality conditions and algorithms. SIAM J. Optim. 2013, 23,

1480–1509. [CrossRef]
13. Calamai, P.H.; More, J.J. Projection gradient methods for linearly constrained problems. Math. Program. 1987, 39, 93–116.

[CrossRef]
14. Pan, L.L.; Xiu, N.H.; Zhou, S.L. On Solutions of Sparsity Constrained Optimization. J. Oper. Res. Soc. China 2015, 3, 421–439.

[CrossRef]
15. Chen, X. J.; Pan, L.L.; Xiu, N.H. Solution sets of three sparse optimization problems for multivariate regression. Appl. Comput.

Harmon. A 2020, revised.
16. Bian, W.; Chen, X.J. A smoothing proximal gradient algorithm for nonsmooth convex regression with cardinality penalty. SIAM J.

Numer. Anal. 2020, 58, 858–883. [CrossRef]
17. Peng, D.T.; Chen, X.J. Computation of second-order directional stationary points for group sparse optimization. Optim. Methods

Softw. 2020, 35, 348–376. [CrossRef]
18. Pan, L.L.; Chen, X.J. Group sparse optimization for images recovery using capped folded concave functions. SIAM J. Imaging Sci.

2021. Available online: https://www.polyu.edu.hk/ama/staff/xjchen/Re_gsparseAugust.pdf (accessed on 5 November 2020).
19. Rockafellar, R.T.; Wets, R.J. Variational Analysis; Springer: Berlin/Heidelberg, Germany, 2009.

http://dx.doi.org/10.1111/j.1467-9868.2005.00532.x
http://dx.doi.org/10.1214/12-STS392
http://www.ncbi.nlm.nih.gov/pubmed/24174707
http://dx.doi.org/10.1093/biomet/asp020
http://www.ncbi.nlm.nih.gov/pubmed/20037673
http://dx.doi.org/10.1111/j.1467-9868.2007.00627.x
http://dx.doi.org/10.1007/s11222-014-9498-5
http://dx.doi.org/10.1007/s10107-018-1277-1
http://dx.doi.org/10.1109/TSP.2016.2630028
http://dx.doi.org/10.1214/09-AOS778
http://dx.doi.org/10.1007/s10107-011-0484-9
http://dx.doi.org/10.1137/120869778
http://dx.doi.org/10.1007/BF02592073
http://dx.doi.org/10.1007/s40305-015-0101-3
http://dx.doi.org/10.1137/18M1186009
http://dx.doi.org/10.1080/10556788.2019.1684492
https://www.polyu.edu.hk/ama/staff/xjchen/Re_gsparseAugust.pdf 

	Introduction
	Notations and Definitions
	Tangent Cones and Normal Cones of the Group Sparse Set S
	First-Order Optimality Conditions for Problem (1)
	Second-Order Optimality Conditions for Problem (1)
	Concluding Remarks
	References

