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Abstract: Let wG(u) be the sum of distances from u to all the other vertices of G. The Wiener
complexity, CW(G), is the number of different values of wG(u) in G, and the eccentric complexity,
Cec(G), is the number of different eccentricities in G. In this paper, we prove that for every integer
c there are infinitely many graphs G such that CW(G) − Cec(G) = c. Moreover, we prove this
statement using graphs with the smallest possible cyclomatic number. That is, if c ≥ 0 we prove
this statement using trees, and if c < 0 we prove it using unicyclic graphs. Further, we prove that
Cec(G) ≤ 2CW(G)− 1 if G is a unicyclic graph. In our proofs we use that the function wG(u) is
convex on paths consisting of bridges. This property also promptly implies the already known bound
for trees Cec(G) ≤ CW(G). Finally, we answer in positive an open question by finding infinitely
many graphs G with diameter 3 such that Cec(G) < CW(G).

Keywords: graph; diameter; wiener index; transmission; eccentricity

1. Introduction

Let G be a graph. Denote by V(G) and E(G) its vertex and edge sets, respectively.
If u ∈ V(G), then degG(u) denotes the degree of u in G, and if S ⊆ V(G) then N(S)
denotes the set S together with the vertices which have a neighbour in S. Obviously,
|N(u)| = degG(u) + 1. If R ⊆ E(G) then G− R denotes a graph obtained when we remove
all the edges of R from G. Similarly, if S ⊆ V(G) then G − S denotes a graph obtained
when we remove all the vertices of S and all edges incident with a vertex of S from G. An
edge e ∈ E(G) is a bridge if G− {e} has more components than G.

If u, v ∈ V(G) then distG(u, v) is the length of a shortest path from u to v in G. The
longest distance from a vertex u is its eccentricity eG(u). Hence, eG(u) = max{distG(u, v); v ∈
V(G)}. Using the eccentricity we define the radius rad(G) = min{eG(u); u ∈ V(G)}, and
the diameter diam(G) = max{eG(u); u ∈ V(G)} = max{distG(u, v); u, v ∈ V(G)}. The
eccentric complexity of G is defined as

Cec(G) = |{eG(u); u ∈ V(G)}|.

Observe that Cec(G) = diam(G)− rad(G) + 1. The eccentric complexity has been intro-
duced in [1]. Also see [2] for related connective eccentric complexity.

On the other hand the Wiener complexity of G is

CW(G) = |{wG(u); u ∈ V(G)}|,

where wG(u) = ∑v∈V(G) dist(u, v) is the transmission of u in G. The parameter
1
2 ∑u∈V(G) wG(u) is known as the Wiener index W(G). Hence, W(G) = ∑u,v∈V(G) dist(u, v).
The Wiener complexity CW(G) of a graph G was introduced in [3]. Further research on
CW(G) can be found in [4–6]. For results on Wiener index see, e.g., [7].

Mathematics 2021, 9, 79. https://doi.org/10.3390/math9010079 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3555-3994
https://orcid.org/0000-0001-6851-3214
https://doi.org/10.3390/math9010079
https://doi.org/10.3390/math9010079
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9010079
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/1/79?type=check_update&version=2


Mathematics 2021, 9, 79 2 of 9

In [8] the authors study the relation between Cec(G) and CW(G). They prove the
following statement.

Theorem 1. If T is a tree then Cec(T) ≤ CW(T).

Next, using cartesian products they prove that for every c ≥ 0 there are graphs G with
CW(G)− Cec(G) = c and for every k > 0 there are graphs G with Cec(G)− CW(G) = 2k.
Here we continue in their research. We prove that for every c ≥ 0 there are infinitely
many trees T such that CW(T)− Cec(T) = c. By Theorem 1 to construct graphs G with
Cec(G) > CW(G) we must abandon the class of trees. So we concentrate on graphs with
cyclomatic number 1. We prove that for every c > 0 there are infinitely many unicyclic
graphs G such that Cec(G)− CW(G) = c.

All graphs G with Cec(G) < CW(G) found in [8] have diameter at least 4, and it was
shown that there are no such graphs of diameter at most 2. So the authors posed in [8] the
following problem.

Problem 1. Does there exist a graph G with diameter 3 and Cec(G) > CW(G)?

We answer Problem 1 affirmatively and we find infinitely many graphs satisfying its
requirements.

The outline of the paper is as follows. In Section 2 we characterize all pairs c1 and
c2 such that there is a tree T with Cec(T) = c1 and CW(T) = c2. Analogously, in Section 3
we characterize all pairs c1 and c2 such that c1 < c2 and there is a unicyclic graph G with
CW(G) = c1 and Cec(G) = c2. Finally, in Section 4 we deal with Problem 1.

2. Trees

In this section we characterize pairs c1 and c2 such that there are (infinitely many)
trees T with Cec(T) = c1 and CW(T) = c2. To do this, first we show that wT is a strictly
convex function on paths consisting of bridges; observe that in a tree, every edge is a bridge.
However, firstly we state the following easy lemma.

Lemma 1. Let G be a connected graph with a bridge u1u2. Let G1 and G2 be the two components
of G− u1u2, such that ui ∈ V(Gi), 1 ≤ i ≤ 2, and let ni be the number of vertices in Gi. Then
wG(u1)− wG(u2) = n2 − n1.

Proof. Let wi be the transmission of ui in Gi, 1 ≤ i ≤ 2. Then

wG(u1) = w1 + n2 + w2 and wG(u2) = n1 + w1 + w2.

Hence, wG(u1)− wG(u2) = n2 − n1.

Recall that a function f (i) defined on {0, 1, . . . , t} is strictly convex, if for every
i ∈ {1, . . . , t− 1}, we have 2 f (i) < f (i− 1) + f (i + 1), or equivalently f (i)− f (i− 1) <
f (i + 1)− f (i). We have the following statement.

Lemma 2. Let G be a graph. Further, let P = v0v1 · · · vt be a path in G such that every edge of P
is a bridge. Then f (i) = wG(vi) is a strictly convex function on {0, 1, . . . , t}.

Proof. Let u1u2u3 be a subpath of P. Then G−{u1u2, u2u3} has three components. Denote
by Gi the component of G−{u1u2, u2u3}which contains ui, for each i ∈ {1, 2, 3}. Moreover,
denote si = |V(Gi)|. By Lemma 1, we have

wG(u1) + wG(u3)− 2wG(u2) = (s2 + s3 − s1) + (s1 + s2 − s3) = 2s2 > 0.

Consequently, f (i) = wG(vi) is strictly convex on {0, 1, . . . , t}.
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Observe that considering a diametric path, Lemma 2 directly implies Theorem 1.
However, we use it in the following statement which characterizes all possible pairs Cec(T),
CW(T) for trees.

Theorem 2. It holds:

(i) If 3 ≤ c1 ≤ c2 then there are infinitely many trees T with Cec(T) = c1 and CW(T) = c2.
(ii) If c1 = 2 and c2 ∈ {2, 4} then there are infinitely many trees T with Cec(T) = c1 and

CW(T) = c2 and no trees with Cec(T) = c1 and CW(T) /∈ {2, 4}.
(iii) If c1 = 1 then there are only two trees T with Cec(T) = 1 and in this case CW(T) = 1

as well.

Proof. Consider (i). Here c1 ≥ 3. First suppose that c2 > c1. Let k = d c2−1
c1−1e. Take k paths

P0, P1, . . . , Pk−1 of length c1 − 1 and denote their vertices so that Pi = vi,0vi,1 · · · vi,c1−1,
where 0 ≤ i ≤ k− 1. Denote

` = c2 − 1− (
⌈ c2 − 1

c1 − 1
⌉
− 1)(c1 − 1).

Let Pk be a path of length ` so that Pk = vk,0vk,1 · · · vk,`. Since d c2−1
c1−1e(c1− 1) ≥ (c2− 1),

we have ` ≤ c1 − 1, and since d c2−1
c1−1e(c1 − 1) < (c2 − 1) + (c1 − 1), we have ` > 0. Thus,

1 ≤ ` ≤ c1 − 1. Now attach to vi,c1−2 exactly i− 1 new pendant vertices, 2 ≤ i ≤ k− 1,
and attach to vk,`−1 exactly q− 1 new vertices. We expect that q is a big number. Finally,
identify the vertices v0,0, v1,0, . . . , vk,0 into a single vertex, which we denote by c, and denote
the resulting tree by T, see Figure 1. Observe that there is 1 pendant vertex attached to
v0,c1−2 in T and exactly i pendant vertices are attached to vi,c1−2, 1 ≤ i ≤ k− 1. Further,
since k ≥ 2 (k ≥ 1 would suffice since there is also P0) we have rad(T) = c1 − 1 and
diam(T) = 2(c1 − 1), so that Cec(T) = c1. Obviously, if u and v are pendant vertices
attached to the same vertex in T then wT(u) = wT(v). Also, wT(u) = wT(v) if u = v0,i and
v = v1,i, 1 ≤ i ≤ c1 − 1. In all other cases we show that wT(u) 6= wT(v). Hence, we show
that c, v1,1, v1,2, . . . , vk,` have different transmissions.

Denote r = c1 − 1. Let P be a path in T consisting of vertices of Pa and Pb, 1 ≤
a < b ≤ k− 1. Then P = va,r · · · va,1 c vb,1 · · · vb,r. Let T′ be the nontrivial component of
T− {va,1, . . . , va,r, vb,1, . . . , vb,r}. Denote by w′ the transmission of c in T′ and denote by z
the number of vertices of T′. Then

wT(va,r) = 2(a−1) + (2r+1
2 ) + 2r(b−1) + w′ + (z−1)r;

wT(va,i) = (r−i)(a−1) + (r−i+1
2 ) + (r+i+1

2 ) + (r+i)(b−1) + w′ + (z−1)i, 1 ≤ i ≤ r− 1;

wT(c) = r(a−1) + (r+1
2 ) + (r+1

2 ) + r(b−1) + w′;

wT(vb,i) = (r+i)(a−1) + (r+i+1
2 ) + (r−i+1

2 ) + (r−i)(b−1) + w′ + (z−1)i, 1 ≤ i ≤ r− 1;

wT(vb,r) = 2r(a−1) + (2r+1
2 ) + 2(b−1) + w′ + (z−1)r.

Since wT(va,i)− wT(vb,i) = (r− i)(a− b) + (r + i)(b− a) = 2i(b− a) > 0 if 1 ≤ i ≤
r− 1 and wT(va,r)−wT(vb,r) = (2r− 2)(b− a) > 0, we have wT(va,j) > wT(vb,j), 1 ≤ j ≤ r.
And since q and consequently also z are big, the terms containing z in the above expressions
are crucial. Therefore wT(va,1) < wT(vb,2) and in general wT(va,i) < wT(vb,i+1), where
1 ≤ i < r. So we conclude that

wT(c) < wT(vb,1) < wT(va,1) < wT(vb,2) < wT(va,2) < wT(vb,3) < · · · < wT(va,r).

Now let P be a path consisting of Pa and Pk, 1 ≤ a ≤ k− 1. Then P = va,r · · · va,1 c vk,1
· · · vk,` = ua+`ua+`−1 · · · u0. We remark that uj are just different labels for vertices of
P which will be used later. Similarly as above, let T′ be the nontrivial component of
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T − {va,1, . . . .va,r, vk,1, . . . , vk,`}. Denote by w′ the transmission of c in T′ and denote by z
the number of vertices of T′. Then

wT(va,r) = 2(a−1) + (r+`+1
2 ) + (r+`)(q−1) + w′ + (z−1)r;

wT(va,i) = (r−i)(a−1) + (r−i+1
2 ) + (`+i+1

2 ) + (`+i)(q−1) + w′ + (z−1)i, 1 ≤ i ≤ r− 1;

wT(c) = r(a−1) + (r+1
2 ) +

(
`+ 1

2

)
+ `(q−1) + w′;

wT(vk,i) = (r+i)(a−1) + (r+i+1
2 ) + (`−i+1

2 ) + (`−i)(q−1) + w′ + (z−1)i, 1 ≤ i ≤ `− 1;

wT(vk,`) = (r+`)(a−1) + (r+`+1
2 ) + 2(q−1) + w′ + (z−1)`.

Observe that u2 = vk,`−2 if ` ≥ 3, u2 = c if ` = 2 and u2 = va,1 if ` = 1. In any case,
we have wT(vk,l)− wT(u2) ≥ (r+`+1

2 )− (r+`−1
2 )− (2

2) > 0, and so wT(u0) > wT(u2). And
since q is big, analogously as above we conclude that

wT(u1) < wT(u2) < wT(u0) < wT(u3) < wT(u4) < · · · < wT(ur+`).

Let S = {c, v1,1, . . . , vk,`}. As shown above, vertices in S have pairwise different
transmissions, while the vertices outside S have transmissions as some vertices in S. Since

|S| = 1 + (d c2 − 1
c1 − 1

e − 1)(c1 − 1) + [c2 − 1− (d c2 − 1
c1 − 1

e − 1)(c1 − 1)] = c2,

we have CW(T) = c2.
Now suppose c2 = c1. Let P = v0,c1−1 · · · v0,1 c v1,1 · · · v1,c1−1 be a path of length

2(c1 − 1). We attach to both v0,c1−2 and v1,c1−2 exactly q pendant vertices and we denote
by T the resulting tree, see Figure 2. Then T has 2c1 − 1 + 2q vertices, rad(T) = c1 − 1
and diam(T) = 2(c1 − 1), so that Cec(T) = c1. Denote r = c1 − 1. By symmetry, we have
wT(v0,i) = wT(v1,i), 1 ≤ i ≤ r, and wT(u) = wT(v) if u and v are pendant vertices of T. So
it remains to show that the vertices v0,r, . . . , v0,1, c have different transmissions. However,
since wT(v0,1) = vT(v1,1), by Lemma 2 we get

wT(c) < wT(v0,1) < · · · < vT(v0,r)

and so CW(T) = r + 1 = c1.
Now, consider (ii). So, let c1 = 2. If T is a tree with rad(T) ≥ 3, then diam(T) ≥ 5

and consequently Cec(T) ≥ 3, a contradiction. Hence, either rad(T) = 1 and diam(T) = 2,
in which case T is a star K1,t, where t ≥ 2, or rad(T) = 2 and diam(T) = 3, in which
case T is a double star Da,b, i.e., a graph on a + b + 2 vertices obtained by attaching a
pendant vertices to one vertex of K2 and b pendant vertices to the other vertex of K2, where
1 ≤ a ≤ b. If T is a star K1,t, t ≥ 2, then CW(T) = 2 since the central vertex has transmission
smaller than is the transmission of pendant vertices. This establishes the case c1 = c2 = 2.
On the other hand if T is a double star then since pendant vertices adjacent to a common
vertex have the same transmission, we have CW(T) ≤ 4. In the next we consider T = Da,b,
where a < b, since CW(Da,a) = 2, a case already solved by stars. Let v0, v1, v2, v3 be a path
in Da,b such that degT(v1) = a + 1 and degT(v2) = b + 1. Then

wT(v0) = 2(a− 1) + 3 + 3b;

wT(v1) = a + 1 + 2b;

wT(v2) = 2a + 1 + b;

wT(v3) = 3a + 3 + 2(b− 1).

Since 0 < a < b, it is obvious that 2a + 1 + b < a + 1 + 2b < 3a + 1 + 2b < 2a + 1 + 3b.
Thus. wT(v2) < wT(v1) < wT(v3) < wT(v0), and so CW(T) = 4.
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Finally, consider (iii). Since there are only two trees T such that rad(T) = diam(T),
namely the complete graphs K1 and K2, this part of Theorem 2 is trivial.

Figure 1. The construction for c1 = 3, c2 = 7, and q = 6.

Figure 2. The construction for c1 = c2 = 4 and q = 5.

Theorem 2 has the following consequence.

Corollary 1. For every c ≥ 0 there are infinitely many trees T such that CW(T)− Cec(T) = c.

3. Unicyclic Graphs

In this section, we give counterparts of the previous results for unicyclic graphs.
We also bound the eccentric complexity in term of Wiener complexity and characterize
the pairs c1, c2 such that c1 < c2 and there are (infinitely many) unicyclic graphs G with
CW(G) = c1 and Cec(G) = c2. We start with the following lemma.

Lemma 3. Let G be a unicyclic graph with a cycle C. Further, let u2, v ∈ V(C) and let u1 be a
neighbour of u2 which is not in C. If wG(u1) ≤ wG(u2) then wG(u2) < wG(v).

Proof. Observe that u1u2 is a bridge in G. Hence, G− u1u2 has two components, say G1
and G2. Assume that ui ∈ V(Gi) and ni = |V(Gi)|, 1 ≤ i ≤ 2. By the assumptions and by
Lemma 1, wG(u1)− wG(u2) = n2 − n1 ≤ 0.

Let T be a tree obtained from G by removing an edge of C which is opposite (i.e., antipo-
dal) to v. Observe that if C has odd length, then there is a unique edge opposite to v, while
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if C has even length, then there are two edges opposite to v. Obviously, wG(v) = wT(v)
and wG(u2) ≤ wT(u2). Observe also that

0 ≥ wG(u1)− wG(u2) = wT(u1)− wT(u2).

Now, consider a path from u1 to v in T. Assume that the length of this path is k− 1
and denote their vertices by u1u2u3 · · · uk(= v). Since u1u2 is a bridge in T, we have
wT(u1)− wT(u2) = n2 − n1 again. And by Lemma 2 we get wT(u1) + wT(u3) > 2wT(u2)
or equivalently wT(u1)− wT(u2) > wT(u2)− wT(u3). Applying Lemma 2 several times
we get

0 ≥ wT(u1)− wT(u2) > wT(u2)− wT(u3) > · · · > wT(uk−1)− wT(v)

which implies wT(u1) ≤ wT(u2) < wT(u3) < · · · < wT(v) and consequently wG(u2) ≤
wT(u2) < wT(v) = wG(v).

The following statement characterizes all possible pairs CW(G), Cec(G) for unicyclic
graphs, provided that CW(G) < Cec(G).

Theorem 3. Every unicyclic graph G satisfies

Cec(G) ≤ 2CW(G)− 1.

Moreover, for any positive integers c1 and c2 with c1 < c2 ≤ 2c1− 1 there are infinitely many
unicyclic graphs G such that CW(G) = c1 and Cec(G) = c2.

Proof. Let G be a unicyclic graph with a cycle C of length k. Further, let P1 and P2
be two longest paths starting in different vertices of C and which contain only edges
which are not in C. Observe that if the length of P1 is positive, then the path terminates
in a pendant vertex of G. Similar statement holds for P2. Let `i be the length of Pi,
1 ≤ i ≤ 2, and let Pi = vi,0vi,1 · · · vi,`i

, where vi,0 ∈ V(C). Observe that in each of P1
and P2, there are at most two vertices with the same transmission, by Lemma 2. If there
are three vertices, say u1, u2 and u3, in V(P1) ∪V(P2) which have the same transmission
in G, then two of them are in one of the paths P1 and P2 while the third one is in the
other. Without loss of generality we may assume that u1, u2 ∈ V(P1) and u3 ∈ V(P3).
Then wG(v1,1) ≤ wG(v1,0) by Lemma 2, and so wG(v1,0) < wG(v2,0) by Lemma 3. If
wG(v2,1) ≤ wG(v2,0) then wG(v2,0) < wG(v1,0) by Lemma 3, a contradiction. Hence
wG(v2,0) < wG(v2,1), and by Lemma 2 wG(v2,0) < wG(v2,i) for every i, 1 ≤ i ≤ `2.
Consequently wG(u1) = wG(u2) ≤ wG(v1,0) < wG(v2,0) ≤ wG(u3). Hence, there are
not three vertices in V(P1) ∪ V(P2) which have the same transmission in G. Therefore
CW(G) ≥ d `1+`2

2 e+ 1.
On the other hand diam(G) ≤ `1 + `2 + bk/2c and rad(G) ≥ bk/2c. So Cec(G) =

diam(G)− rad(G) + 1 ≤ `1 + `2 + 1, and hence

2CW(G)− Cec(G) ≥ 2
⌈
`1 + `2

2

⌉
+ 2− l1 − l2 − 1 ≥ 1.

Now we prove the second result. Let c1 and c2 satisfy c1 < c2 ≤ 2c1 − 1. Denote
∆ = c2 − c1. Let C be a cycle of length 4∆ and let u1 and v1 be opposite vertices on C.
Attach to u1 (resp. v1) a path of length c1 − 1 u1u2 · · · uc1 (resp. v1v2 · · · vc1 ). Finally, attach
to both uc1−1 and vc1−1 exactly q ≥ 0 pendant vertices, and denote the resulting graph by
G, see Figure 3.
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Figure 3. The unicyclic graph on 13 vertices and with odd cycle that has Wiener complexity smaller
than eccentric complexity.

Obviously, diam(G) = 2(c1 − 1) + 2∆ = 2c2 − 2. Since c2 ≤ 2c1 − 1, we have
c2− c1 ≤ c1− 1, and so 2∆ ≤ ∆+(c1− 1). Thus, rad(G) = max{rad(C), ddiam(G)/2e} =
∆ + (c1 − 1), which means that Cec(G) = diam(G)− rad(G) + 1 = c2.

On the other hand, denote by wT the transmission of u1 in the tree attached to C and
denote by wC the transmission of u1 in C. Then wG(u1) = wT + wC + 2∆(c1 − 1 + q) + wT ,
and similarly for every vertex v of C we have wG(v) = 2wT + wC + 2∆(c1 − 1 + q) as
well. By Lemmas 2 and 3 it holds wG(u1) < wG(u2) < · · · < wG(uc1) and by symmetry
wG(ui) = wG(vi), 1 ≤ i ≤ c1. Thus CW(G) = c1, and so G satisfies the assumptions of
the theorem.

Theorem 3 has the following consequence.

Corollary 2. For every integer c > 0 there are infinitely many unicyclic graphs G such that

Cec(G)− CW(G) = c.

We remark that the attachment vertices u1 and u2 do not need to be opposite on C
if c1 is big enough (compared to ∆ = c2 − c1). We can use also even cycles of length 6≡ 0
(mod 4) and odd cycles, but again c1 must be big enough. Though for small order graphs,
one with even cycle are quite abundant, the smallest unicyclic graph G with a cycle of odd
length satisfying CW(G) < Cec(G) has 13 vertices, and its cycle has length 9.

4. Graphs with Diameter 3

In this section we solve Problem 1. Observe that if diam(G) = 3 and Cec(G) > CW(G)
then rad(G) = 2, Cec(G) = 2 and CW(G) = 1. Hence, there is no unicyclic graph G
satisfying the requirements of Problem 1, by Theorem 3.

Let G be a graph with diameter 3. For every vertex u ∈ V(G), by di
G(u) we denote

the number of vertices of G which are at distance i from u. Denote σG(u) = d1
G(u)− d3

G(u).
We have the following statement.

Lemma 4. Let G be a graph with diameter 3. Then CW(G) = 1 if and only if all vertices of G have
the same value of σ.

Proof. Let u ∈ V(G). Then wG(u) = d1
G(u) + 2d2

G(u) + 3d3
G(u). Since d1

G(u) + d2
G(u) +

d3
G(u) = n − 1, where n = |V(G)|, we have d2

G(u) = n − 1− d1
G(u) − d3

G(u), and con-
sequently wG(u) = 2n − 2 − d1

G(u) + d3
G(u). Hence, if v ∈ V(G) with v 6= u, then

wG(v) = wG(u) is equivalent with σG(u) = σG(v).

By Lemma 4, in graphs G of diameter 3 with Cec(G) = 2 and CW(G) = 1, the vertices
of eccentricity 3 must have degree greater than is the degree of vertices of eccentricity 2.
This looks surprising, nevertheless, there exist such graphs.

Let G be a graph on 2r vertices and let S ⊆ V(G) such that |S| = r. By A(G, S) we
denote the graph obtained from G by adding two vertices, v and v′, where v is connected
to all vertices of S and v′ is connected to all vertices of V(G) \ S. We have:
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Proposition 1. Let G be a k-regular graph of diameter 2 on 2(k + 2) vertices. Moreover, let
S ⊆ V(G), |S| = k + 2, such that every vertex of S has a neighbour in V(G) \ S and every
vertex of V(G) \ S has a neighbour in S. Then diam(A(G, S)) = 3, Cec(A(G, S)) = 2 and
CW(A(G, S)) = 1.

Proof. First observe that NG(S) = V(G) = NG(V(G) \ S). Since every vertex of S has
a neighbour in V(G) \ S and every vertex of V(G) \ S has a neighbour in S, we have
eA(G,S)(u) = 2 for every u ∈ V(G). Since distA(G,S)(v, v′) = 3, we have diam(A(G, S)) = 3
and Cec(A(G, S)) = 2.

If u ∈ V(G) then degA(G,S)(u) = σA(G,S)(u) = k+ 1. On the other hand degA(G,S)(v) =
degA(G,S)(v

′) = k + 2. Moreover, since in G holds N(S) = V(G) = N(V(G) \ S), we have
d3

A(G,S)(v) = d3
A(G,S)(v

′) = 1. Thus σA(G,S)(v) = σA(G,S)(v′) = k + 1 and CW(A(G, S)) = 1,
by Lemma 4.

Since there is no 2-regular graph on 8 vertices with diameter 2, the smallest graph
G satisfying assumptions of Proposition 1 is the Petersen graph in which S is the set of
vertices of one of its 5-cycles. If G is the Petersen graph and S is the set of vertices of one of
its 5-cycles, then A(G, S) has 12 vertices.

However, there are also other graphs satisfying the assumptions of Proposition 1.

Lemma 5. Let k ≥ 6 be an even number, and let D = ({1, 4, 7, . . . } ∩ {1, 2, . . . , k + 1}) ∪
{k + 1, k, k − 1, . . . , i} with |D| = k/2. Let G be the Cayley graph with V(G) = Z2k+4 and
E(G) = {ij; i − j ∈ D ∪ −D}. Finally, let S = {0, 2, . . . , 2k + 2}. Then G and S satisfy the
assumptions of Proposition 1.

Proof. Obviously, G is k-regular. Since 1 ∈ D and S = {0, 2, . . . , 2k + 2}, S satisfies the
assumptions of Proposition 1. Hence, it remains to prove that diam(G) = 2.

We only show that eG(0) = 2, and since G is vertex-transitive, we conclude that
diam(G) = 2. So it is enough to show that if 1 ≤ r ≤ k + 2, then either 0r ∈ E(G),
or 0(r−1) ∈ E(G) or 0(r+1) ∈ E(G), because α : u → 2k + 4− u is an isomorphism
of G. Let t = k/2 and let D′ be a set of t numbers starting with 1 and continuing with
difference 3. Then D′ = {1, 4, 7, . . . , 3t− 2}. Since k ≥ 6, we have t ≥ 3 and 3t− 2 ≥ k + 1.
Hence, it follows that k + 1 ∈ D which means that distG(0, k + 2) = 2. And since D ⊇
D′ ∩ {1, 2, . . . , k + 1}, we have 0r ∈ E(G) or 0(r−1) ∈ E(G) or 0(r+1) ∈ E(G) for every r
with 1 ≤ r ≤ k + 1. Thus, eG(0) = 2.

Let G be the Petersen graph or a graph from Lemma 5 and let S be as described. Then
A(G, S) has diameter 3 and Cec(A(G, S)) > CW(A(G, S)). However, all these graphs have
exactly 2 vertices with eccentricity 3. Next statement shows that there are required graphs
with 2t vertices with eccentricity 3 for arbitrary t ≥ 1.

Let H be a graph. By Bt(H) we denote a graph on t|V(H)| vertices obtained from H
by replacing every vertex by Kt. Moreover, vertices from different copies of Kt are adjacent
in Bt(H) if and only if these copies of Kt are obtained from adjacent vertices in H.

Theorem 4. Let G be a graph and S ⊆ V(G) such that G and S satisfy the assumptions of
Proposition 1. Moreover, let t ≥ 1. Then diam(Bt(A(G, S))) = 3, Cec(Bt(A(G, S))) = 2 and
CW(Bt(A(G, S))) = 1.

Proof. For t = 1 the statement reduces to Proposition 1. Therefore, in the following we
assume t ≥ 2. Denote H = Bt(A(G, S)). Let u be a vertex of H obtained from a vertex of G.
Then eH(u) = 2 and degH(u) = d1

H(u) = (t− 1) + kt + t, and so σH(u) = kt + 2t− 1.
Now let u′ be a vertex of H obtained from v or v′ (i.e., from the vertices of A(G, S)

which are not in G). Then eH(u′) = 3, degH(u
′) = d1

H(u
′) = (t − 1) + (k + 2)t and

d3
H(u

′) = t. Hence σ(u′) = kt + 2t− 1 as well. Thus, diam(H) = 3, Cec(H) = 2 and by
Lemma 4 we have CW(H) = 1.
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In [8] the authors checked all graphs on at most 10 vertices and none of them had
CW < Cec and diameter 3. We checked the same for graphs on 11 vertices. Thus, the smallest
graph with the above properties has 12 vertices and it is obtained using Proposition 1.
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