

Article **Wiener Complexity versus the Eccentric Complexity**

Martin Knor 1,[†](https://orcid.org/0000-0003-3555-3994) and Riste Škrekovski 2,3,* ,[†](https://orcid.org/0000-0001-6851-3214)

- ¹ Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Radlinského 11, 81368 Bratislava, Slovakia; knor@math.sk
- ² Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia
³ Faculty of Information Studies, 2000 Neve Meste, Slovenia
- ³ Faculty of Information Studies, 8000 Novo Mesto, Slovenia
- ***** Correspondence: skrekovski@gmail.com
- † These authors contributed equally to this work.

Abstract: Let $w_G(u)$ be the sum of distances from *u* to all the other vertices of *G*. The Wiener complexity, $C_W(G)$, is the number of different values of $w_G(u)$ in *G*, and the eccentric complexity, $C_{\rm ec}(G)$, is the number of different eccentricities in *G*. In this paper, we prove that for every integer *c* there are infinitely many graphs *G* such that $C_W(G) - C_{ec}(G) = c$. Moreover, we prove this statement using graphs with the smallest possible cyclomatic number. That is, if $c \ge 0$ we prove this statement using trees, and if *c* < 0 we prove it using unicyclic graphs. Further, we prove that $C_{\rm ec}(G) \leq 2C_W(G) - 1$ if *G* is a unicyclic graph. In our proofs we use that the function $w_G(u)$ is convex on paths consisting of bridges. This property also promptly implies the already known bound for trees $C_{\rm ec}(G) \leq C_W(G)$. Finally, we answer in positive an open question by finding infinitely many graphs *G* with diameter 3 such that $C_{\text{ec}}(G) < C_W(G)$.

Keywords: graph; diameter; wiener index; transmission; eccentricity

Citation: Knor, M.; Škrekovski , R. Wiener Complexity versus the Eccentric Complexity. *Mathematics* **2021**, *9*, 79. [https://doi.org/](https://doi.org/10.3390/math9010079) [10.3390/math9010079](https://doi.org/10.3390/math9010079)

Received: 8 December 2020 Accepted: 26 December 2020 Published: 31 December 2020

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license [\(https://](https://creativecommons.org/licenses/by/4.0/) [creativecommons.org/licenses/by/](https://creativecommons.org/licenses/by/4.0/) [4.0/\)](https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let *G* be a graph. Denote by *V*(*G*) and *E*(*G*) its vertex and edge sets, respectively. If $u \in V(G)$, then $deg_G(u)$ denotes the degree of u in G , and if $S \subseteq V(G)$ then $N(S)$ denotes the set *S* together with the vertices which have a neighbour in *S*. Obviously, $|N(u)|$ = deg_{*G*}(*u*) + 1. If *R* ⊆ *E*(*G*) then *G* − *R* denotes a graph obtained when we remove all the edges of *R* from *G*. Similarly, if *S* ⊆ *V*(*G*) then *G* − *S* denotes a graph obtained when we remove all the vertices of *S* and all edges incident with a vertex of *S* from *G*. An edge *e* ∈ *E*(*G*) is a bridge if *G* − {*e*} has more components than *G*.

If $u, v \in V(G)$ then $dist_G(u, v)$ is the length of a shortest path from *u* to *v* in *G*. The longest distance from a vertex *u* is its eccentricity $e_G(u)$. Hence, $e_G(u) = \max\{\text{dist}_G(u, v); v \in G(u)\}$ *V*(*G*)}. Using the eccentricity we define the radius rad(*G*) = min{ $e_G(u)$; $u \in V(G)$ }, and the diameter diam(*G*) = max{ $e_G(u)$; $u \in V(G)$ } = max{ $dist_G(u, v)$; $u, v \in V(G)$ }. The *eccentric complexity* of *G* is defined as

$$
C_{\rm ec}(G) = |\{e_G(u); \ u \in V(G)\}|.
$$

Observe that $C_{\text{ec}}(G) = \text{diam}(G) - \text{rad}(G) + 1$. The eccentric complexity has been introduced in [\[1\]](#page-8-0). Also see [\[2\]](#page-8-1) for related connective eccentric complexity. On the other hand the *Wiener complexity* of *G* is

 $C_W(G) = |\{w_G(u); u \in V(G)\}|$

where $w_G(u) = \sum_{v \in V(G)} \text{dist}(u, v)$ is the transmission of *u* in *G*. The parameter $\frac{1}{2}\sum_{u\in V(G)}w_G(u)$ is known as the Wiener index $W(G)$. Hence, $W(G)=\sum_{u,v\in V(G)}\text{dist}(u,v)$. The Wiener complexity $C_W(G)$ of a graph *G* was introduced in [\[3\]](#page-8-2). Further research on $C_W(G)$ can be found in [\[4–](#page-8-3)[6\]](#page-8-4). For results on Wiener index see, e.g., [\[7\]](#page-8-5).

In [\[8\]](#page-8-6) the authors study the relation between $C_{\rm ec}(G)$ and $C_W(G)$. They prove the following statement.

Theorem 1. If T is a tree then $C_{\text{ec}}(T) \leq C_W(T)$.

Next, using cartesian products they prove that for every *c* ≥ 0 there are graphs *G* with $C_W(G) - C_{ec}(G) = c$ and for every $k > 0$ there are graphs *G* with $C_{ec}(G) - C_W(G) = 2^k$. Here we continue in their research. We prove that for every $c \geq 0$ there are infinitely many trees *T* such that $C_W(T) - C_{\text{ec}}(T) = c$. By Theorem [1](#page-1-0) to construct graphs *G* with $C_{\rm ec}(G) > C_W(G)$ we must abandon the class of trees. So we concentrate on graphs with cyclomatic number 1. We prove that for every $c > 0$ there are infinitely many unicyclic graphs *G* such that $C_{\text{ec}}(G) - C_W(G) = c$.

All graphs *G* with $C_{\text{ec}}(G) < C_W(G)$ found in [\[8\]](#page-8-6) have diameter at least 4, and it was shown that there are no such graphs of diameter at most 2. So the authors posed in [\[8\]](#page-8-6) the following problem.

Problem 1. *Does there exist a graph G with diameter* 3 *and* $C_{\text{ec}}(G) > C_W(G)$?

We answer Problem [1](#page-1-1) affirmatively and we find infinitely many graphs satisfying its requirements.

The outline of the paper is as follows. In Section [2](#page-1-2) we characterize all pairs c_1 and c_2 such that there is a tree *T* with $C_{\text{ec}}(T) = c_1$ and $C_W(T) = c_2$. Analogously, in Section [3](#page-4-0) we characterize all pairs c_1 and c_2 such that $c_1 < c_2$ and there is a unicyclic graph *G* with $C_W(G) = c_1$ and $C_{ec}(G) = c_2$. Finally, in Section [4](#page-6-0) we deal with Problem [1.](#page-1-1)

2. Trees

In this section we characterize pairs c_1 and c_2 such that there are (infinitely many) trees *T* with $C_{\text{ec}}(T) = c_1$ and $C_W(T) = c_2$. To do this, first we show that w_T is a strictly convex function on paths consisting of bridges; observe that in a tree, every edge is a bridge. However, firstly we state the following easy lemma.

Lemma 1. Let *G* be a connected graph with a bridge u_1u_2 . Let G_1 and G_2 be the two components of G $-$ u₁u₂, such that $u_i \in V(G_i)$, $1 \leq i \leq$ 2, and let n_i be the number of vertices in G_i . Then $w_G(u_1) - w_G(u_2) = n_2 - n_1$.

Proof. Let w_i be the transmission of u_i in G_i , $1 \le i \le 2$. Then

 $w_G(u_1) = w_1 + n_2 + w_2$ and $w_G(u_2) = n_1 + w_1 + w_2$.

Hence, $w_G(u_1) - w_G(u_2) = n_2 - n_1$. □

Recall that a function $f(i)$ defined on $\{0, 1, \ldots, t\}$ is *strictly convex*, if for every *i* ∈ {1,...,*t* − 1}, we have $2f(i) < f(i-1) + f(i+1)$, or equivalently $f(i) - f(i-1)$ < $f(i+1) - f(i)$. We have the following statement.

Lemma 2. Let G be a graph. Further, let $P = v_0v_1 \cdots v_t$ be a path in G such that every edge of P *is a bridge. Then* $f(i) = w_G(v_i)$ *is a strictly convex function on* $\{0, 1, \ldots, t\}$ *.*

Proof. Let $u_1u_2u_3$ be a subpath of *P*. Then $G - \{u_1u_2, u_2u_3\}$ has three components. Denote by G_i the component of $G - {u_1u_2, u_2u_3}$ which contains u_i , for each $i \in {1, 2, 3}$. Moreover, denote $s_i = |V(G_i)|$. By Lemma [1,](#page-1-3) we have

$$
w_G(u_1)+w_G(u_3)-2w_G(u_2)=(s_2+s_3-s_1)+(s_1+s_2-s_3)=2s_2>0.
$$

Consequently, $f(i) = w_G(v_i)$ is strictly convex on $\{0, 1, \ldots, t\}$. \Box

Observe that considering a diametric path, Lemma [2](#page-1-4) directly implies Theorem [1.](#page-1-0) However, we use it in the following statement which characterizes all possible pairs $C_{\text{ec}}(T)$, $C_W(T)$ for trees.

Theorem 2. *It holds:*

- (*i*) If $3 \le c_1 \le c_2$ then there are infinitely many trees T with $C_{\rm ec}(T) = c_1$ and $C_W(T) = c_2$.
- (*ii*) If $c_1 = 2$ and $c_2 \in \{2, 4\}$ then there are infinitely many trees T with $C_{\text{ec}}(T) = c_1$ and $C_W(T) = c_2$ *and no trees with* $C_{ec}(T) = c_1$ *and* $C_W(T) \notin \{2, 4\}.$
- (*iii*) If $c_1 = 1$ *then there are only two trees* T with $C_{\text{ec}}(T) = 1$ *and in this case* $C_W(T) = 1$ *as well.*

Proof. Consider (*i*). Here $c_1 \geq 3$. First suppose that $c_2 > c_1$. Let $k = \lceil \frac{c_2-1}{c_1-1} \rceil$ *c*₁^{−1}]. Take *k* paths *P*₀, *P*₁, . . . , *P*_{*k*−1} of length *c*₁ − 1 and denote their vertices so that $P_i = v_{i,0}v_{i,1} \cdots v_{i,c_1-1}$, where $0 \le i \le k - 1$. Denote

$$
\ell = c_2 - 1 - \left(\lceil \frac{c_2 - 1}{c_1 - 1} \rceil - 1 \right) (c_1 - 1).
$$

Let P_k be a path of length ℓ so that $P_k = v_{k,0}v_{k,1}\cdots v_{k,\ell}$. Since $\lceil\frac{c_2-1}{c_1-1}\rceil$ $\frac{c_2-1}{c_1-1}$ $(c_1-1) \ge (c_2-1)$, we have $\ell \leq c_1 - 1$, and since $\lceil \frac{c_2-1}{c_1-1} \rceil$ $\frac{c_2-1}{c_1-1}(c_1-1) < (c_2-1)+(c_1-1)$, we have $\ell > 0$. Thus, 1 ≤ ℓ ≤ c_1 − 1. Now attach to v_{i,c_1-2} exactly $i-1$ new pendant vertices, 2 ≤ $i \leq k-1$, and attach to $v_{k,\ell-1}$ exactly $q - 1$ new vertices. We expect that q is a big number. Finally, identify the vertices $v_{0,0}, v_{1,0}, \ldots, v_{k,0}$ into a single vertex, which we denote by *c*, and denote the resulting tree by *T*, see Figure [1.](#page-4-1) Observe that there is 1 pendant vertex attached to *v*_{0,*c*₁−2} in *T* and exactly *i* pendant vertices are attached to v_{i,c_1-2} , 1 ≤ *i* ≤ *k* − 1. Further, since $k \ge 2$ ($k \ge 1$ would suffice since there is also P_0) we have rad(*T*) = $c_1 - 1$ and $diam(T) = 2(c_1 - 1)$, so that $C_{ec}(T) = c_1$. Obviously, if *u* and *v* are pendant vertices attached to the same vertex in *T* then $w_T(u) = w_T(v)$. Also, $w_T(u) = w_T(v)$ if $u = v_{0,i}$ and *v* = *v*_{1,*i*}, 1 ≤ *i* ≤ *c*₁ − 1. In all other cases we show that $w_T(u) ≠ w_T(v)$. Hence, we show that $c, v_{1,1}, v_{1,2}, \ldots, v_{k,\ell}$ have different transmissions.

Denote $r = c_1 - 1$. Let *P* be a path in *T* consisting of vertices of P_a and P_b , 1 \leq $a < b \leq k-1$. Then $P = v_{a,r} \cdots v_{a,1} c v_{b,1} \cdots v_{b,r}$. Let *T*^{*'*} be the nontrivial component of $T - \{v_{a,1}, \ldots, v_{a,r}, v_{b,1}, \ldots, v_{b,r}\}$. Denote by w' the transmission of *c* in T' and denote by *z* the number of vertices of T' . Then

$$
w_T(v_{a,r}) = 2(a-1) + {2r+1 \choose 2} + 2r(b-1) + w' + (z-1)r;
$$

\n
$$
w_T(v_{a,i}) = (r-i)(a-1) + {r-i+1 \choose 2} + {r+i+1 \choose 2} + (r+i)(b-1) + w' + (z-1)i, 1 \le i \le r-1;
$$

\n
$$
w_T(c) = r(a-1) + {r+1 \choose 2} + {r+1 \choose 2} + r(b-1) + w';
$$

\n
$$
w_T(v_{b,i}) = (r+i)(a-1) + {r+i+1 \choose 2} + {r-i+1 \choose 2} + (r-i)(b-1) + w' + (z-1)i, 1 \le i \le r-1;
$$

\n
$$
w_T(v_{b,r}) = 2r(a-1) + {2r+1 \choose 2} + 2(b-1) + w' + (z-1)r.
$$

Since $w_T(v_{a,i}) - w_T(v_{b,i}) = (r - i)(a - b) + (r + i)(b - a) = 2i(b - a) > 0$ if $1 \le i \le n$ $r-1$ and $w_T(v_{a,r})-w_T(v_{b,r})=(2r-2)(b-a)>0$, we have $w_T(v_{a,j})>w_T(v_{b,j})$, $1\leq j\leq r.$ And since *q* and consequently also *z* are big, the terms containing *z* in the above expressions are crucial. Therefore $w_T(v_{a,1}) < w_T(v_{b,2})$ and in general $w_T(v_{a,i}) < w_T(v_{b,i+1})$, where $1 \leq i < r$. So we conclude that

$$
w_T(c) < w_T(v_{b,1}) < w_T(v_{a,1}) < w_T(v_{b,2}) < w_T(v_{a,2}) < w_T(v_{b,3}) < \cdots < w_T(v_{a,r}).
$$

Now let *P* be a path consisting of P_a and P_k , $1 \le a \le k-1$. Then $P = v_{a,r} \cdots v_{a,1}$ $c \, v_{k,1}$ $\cdots v_{k,\ell} = u_{a+\ell}u_{a+\ell-1}\cdots u_0$. We remark that u_j are just different labels for vertices of *P* which will be used later. Similarly as above, let *T'* be the nontrivial component of $T - \{v_{a,1}, \ldots, v_{a,r}, v_{k,1}, \ldots, v_{k,\ell}\}$. Denote by w' the transmission of *c* in T' and denote by *z* the number of vertices of T' . Then

$$
w_T(v_{a,r}) = 2(a-1) + {r+\ell+1 \choose 2} + (r+\ell)(q-1) + w' + (z-1)r;
$$

\n
$$
w_T(v_{a,i}) = (r-i)(a-1) + {r-i+1 \choose 2} + {(\ell+i+1) \choose 2} + (\ell+i)(q-1) + w' + (z-1)i, 1 \le i \le r-1;
$$

\n
$$
w_T(c) = r(a-1) + {r+1 \choose 2} + {\ell(q-1) \choose 2} + \ell(q-1) + w';
$$

\n
$$
w_T(v_{k,i}) = (r+i)(a-1) + {r+i+1 \choose 2} + {(\ell-i+1) \choose 2} + (\ell-i)(q-1) + w' + (z-1)i, 1 \le i \le \ell-1;
$$

\n
$$
w_T(v_{k,\ell}) = (r+\ell)(a-1) + {r+\ell+1 \choose 2} + 2(q-1) + w' + (z-1)\ell.
$$

Observe that $u_2 = v_{k,\ell-2}$ if $\ell \geq 3$, $u_2 = c$ if $\ell = 2$ and $u_2 = v_{a,1}$ if $\ell = 1$. In any case, w **c** have $w_T(v_{k,l}) - w_T(u_2) \ge (\frac{r+\ell+1}{2}) - (\frac{r+\ell-1}{2}) - (\frac{2}{2}) > 0$, and so $w_T(u_0) > w_T(u_2)$. And since *q* is big, analogously as above we conclude that

$$
w_T(u_1) < w_T(u_2) < w_T(u_0) < w_T(u_3) < w_T(u_4) < \cdots < w_T(u_{r+\ell}).
$$

Let $S = \{c, v_{1,1}, \ldots, v_{k,\ell}\}.$ As shown above, vertices in *S* have pairwise different transmissions, while the vertices outside *S* have transmissions as some vertices in *S*. Since

$$
|S| = 1 + \left(\left\lceil \frac{c_2 - 1}{c_1 - 1} \right\rceil - 1\right)(c_1 - 1) + \left[c_2 - 1 - \left(\left\lceil \frac{c_2 - 1}{c_1 - 1} \right\rceil - 1\right)(c_1 - 1)\right] = c_2,
$$

we have $C_W(T) = c_2$.

Now suppose $c_2 = c_1$. Let $P = v_{0,c_1-1} \cdots v_{0,1} c v_{1,1} \cdots v_{1,c_1-1}$ be a path of length $2(c_1 - 1)$. We attach to both v_{0,c_1-2} and v_{1,c_1-2} exactly *q* pendant vertices and we denote by *T* the resulting tree, see Figure [2.](#page-4-2) Then *T* has $2c_1 - 1 + 2q$ vertices, rad(*T*) = $c_1 - 1$ and diam(*T*) = $2(c_1 - 1)$, so that $C_{\text{ec}}(T) = c_1$. Denote $r = c_1 - 1$. By symmetry, we have $w_T(v_{0,i}) = w_T(v_{1,i})$, $1 \le i \le r$, and $w_T(u) = w_T(v)$ if *u* and *v* are pendant vertices of *T*. So it remains to show that the vertices $v_{0,r}, \ldots, v_{0,1}$, *c* have different transmissions. However, since $w_T(v_{0,1}) = v_T(v_{1,1})$, by Lemma [2](#page-1-4) we get

$$
w_T(c) < w_T(v_{0,1}) < \cdots < v_T(v_{0,r})
$$

and so $C_W(T) = r + 1 = c_1$.

Now, consider (*ii*). So, let $c_1 = 2$. If *T* is a tree with rad(*T*) ≥ 3 , then diam(*T*) ≥ 5 and consequently $C_{\text{ec}}(T) \geq 3$, a contradiction. Hence, either rad(*T*) = 1 and diam(*T*) = 2, in which case *T* is a star $K_{1,t}$, where $t \geq 2$, or $rad(T) = 2$ and $diam(T) = 3$, in which case *T* is a double star $D_{a,b}$, i.e., a graph on $a + b + 2$ vertices obtained by attaching *a* pendant vertices to one vertex of K_2 and b pendant vertices to the other vertex of K_2 , where $1 \le a \le b$. If *T* is a star $K_{1,t}$, $t \ge 2$, then $C_W(T) = 2$ since the central vertex has transmission smaller than is the transmission of pendant vertices. This establishes the case $c_1 = c_2 = 2$. On the other hand if *T* is a double star then since pendant vertices adjacent to a common vertex have the same transmission, we have $C_W(T) \leq 4$. In the next we consider $T = D_{a,b}$, where $a < b$, since $C_W(D_{a,a}) = 2$, a case already solved by stars. Let v_0 , v_1 , v_2 , v_3 be a path in $D_{a,b}$ such that $\deg_T(v_1) = a + 1$ and $\deg_T(v_2) = b + 1$. Then

$$
w_T(v_0) = 2(a-1) + 3 + 3b;
$$

\n
$$
w_T(v_1) = a + 1 + 2b;
$$

\n
$$
w_T(v_2) = 2a + 1 + b;
$$

\n
$$
w_T(v_3) = 3a + 3 + 2(b-1).
$$

Since $0 < a < b$, it is obvious that $2a + 1 + b < a + 1 + 2b < 3a + 1 + 2b < 2a + 1 + 3b$. Thus. $w_T(v_2) < w_T(v_1) < w_T(v_3) < w_T(v_0)$, and so $C_W(T) = 4$.

Figure 1. The construction for $c_1 = 3$, $c_2 = 7$, and $q = 6$.

Figure 2. The construction for $c_1 = c_2 = 4$ and $q = 5$.

Theorem [2](#page-2-0) has the following consequence.

Corollary 1. *For every c* \geq 0 *there are infinitely many trees T such that* $C_W(T) - C_{\text{ec}}(T) = c$.

3. Unicyclic Graphs

In this section, we give counterparts of the previous results for unicyclic graphs. We also bound the eccentric complexity in term of Wiener complexity and characterize the pairs c_1 , c_2 such that $c_1 < c_2$ and there are (infinitely many) unicyclic graphs *G* with $C_W(G) = c_1$ and $C_{ec}(G) = c_2$. We start with the following lemma.

Lemma 3. Let G be a unicyclic graph with a cycle C. Further, let u_2 , $v \in V(C)$ and let u_1 be a *neighbour of u₂ <i>which is not in C. If* $w_G(u_1) \leq w_G(u_2)$ *then* $w_G(u_2) < w_G(v)$ *.*

Proof. Observe that u_1u_2 is a bridge in *G*. Hence, $G - u_1u_2$ has two components, say G_1 and *G*₂. Assume that $u_i \in V(G_i)$ and $n_i = |V(G_i)|$, $1 \le i \le 2$. By the assumptions and by Lemma [1,](#page-1-3) $w_G(u_1) - w_G(u_2) = n_2 - n_1$ ≤ 0.

Let *T* be a tree obtained from *G* by removing an edge of *C* which is opposite (i.e., antipodal) to *v*. Observe that if *C* has odd length, then there is a unique edge opposite to *v*, while

if *C* has even length, then there are two edges opposite to *v*. Obviously, $w_G(v) = w_T(v)$ and $w_G(u_2) \leq w_T(u_2)$. Observe also that

$$
0 \geq w_G(u_1) - w_G(u_2) = w_T(u_1) - w_T(u_2).
$$

Now, consider a path from u_1 to v in *T*. Assume that the length of this path is $k - 1$ and denote their vertices by $u_1u_2u_3\cdots u_k (= v)$. Since u_1u_2 is a bridge in *T*, we have $w_T(u_1) - w_T(u_2) = n_2 - n_1$ $w_T(u_1) - w_T(u_2) = n_2 - n_1$ $w_T(u_1) - w_T(u_2) = n_2 - n_1$ again. And by Lemma 2 we get $w_T(u_1) + w_T(u_3) > 2w_T(u_2)$ or equivalently $w_T(u_1) - w_T(u_2) > w_T(u_2) - w_T(u_3)$ $w_T(u_1) - w_T(u_2) > w_T(u_2) - w_T(u_3)$ $w_T(u_1) - w_T(u_2) > w_T(u_2) - w_T(u_3)$. Applying Lemma 2 several times we get

$$
0 \geq w_T(u_1) - w_T(u_2) > w_T(u_2) - w_T(u_3) > \cdots > w_T(u_{k-1}) - w_T(v)
$$

which implies $w_T(u_1) \leq w_T(u_2) < w_T(u_3) < \cdots < w_T(v)$ and consequently $w_G(u_2) \leq$ $w_T(u_2) < w_T(v) = w_G(v)$. \Box

The following statement characterizes all possible pairs $C_W(G)$, $C_{ec}(G)$ for unicyclic graphs, provided that $C_W(G) < C_{\text{ec}}(G)$.

Theorem 3. *Every unicyclic graph G satisfies*

$$
C_{\rm ec}(G)\leq 2C_W(G)-1.
$$

Moreover, for any positive integers c_1 *and* c_2 *with* $c_1 < c_2 \leq 2c_1 - 1$ *there are infinitely many unicyclic graphs G such that* $C_W(G) = c_1$ *and* $C_{ec}(G) = c_2$ *.*

Proof. Let *G* be a unicyclic graph with a cycle *C* of length *k*. Further, let *P*¹ and *P*² be two longest paths starting in different vertices of *C* and which contain only edges which are not in *C*. Observe that if the length of P_1 is positive, then the path terminates in a pendant vertex of *G*. Similar statement holds for P_2 . Let ℓ_i be the length of P_i , $1 \leq i \leq 2$, and let $P_i = v_{i,0}v_{i,1}\cdots v_{i,\ell_i}$, where $v_{i,0} \in V(C)$. Observe that in each of P_1 and *P*2, there are at most two vertices with the same transmission, by Lemma [2.](#page-1-4) If there are three vertices, say u_1 , u_2 and u_3 , in $V(P_1) \cup V(P_2)$ which have the same transmission in *G*, then two of them are in one of the paths P_1 and P_2 while the third one is in the other. Without loss of generality we may assume that $u_1, u_2 \in V(P_1)$ and $u_3 \in V(P_3)$. Then $w_G(v_{1,1}) \leq w_G(v_{1,0})$ by Lemma [2,](#page-1-4) and so $w_G(v_{1,0}) < w_G(v_{2,0})$ by Lemma [3.](#page-4-3) If $w_G(v_{2,1}) \leq w_G(v_{2,0})$ then $w_G(v_{2,0}) < w_G(v_{1,0})$ by Lemma [3,](#page-4-3) a contradiction. Hence $w_G(v_{2,0}) \leq w_G(v_{2,1})$ $w_G(v_{2,0}) \leq w_G(v_{2,1})$ $w_G(v_{2,0}) \leq w_G(v_{2,1})$, and by Lemma 2 $w_G(v_{2,0}) \leq w_G(v_{2,i})$ for every *i*, $1 \leq i \leq \ell_2$. Consequently $w_G(u_1) = w_G(u_2) \leq w_G(v_{1,0}) < w_G(v_{2,0}) \leq w_G(u_3)$. Hence, there are not three vertices in $V(P_1) \cup V(P_2)$ which have the same transmission in *G*. Therefore $C_W(G) \geq \lceil \frac{\ell_1 + \ell_2}{2} \rceil + 1.$

On the other hand diam(*G*) $\leq \ell_1 + \ell_2 + \lfloor k/2 \rfloor$ and rad(*G*) $\geq \lfloor k/2 \rfloor$. So $C_{\text{ec}}(G)$ = $diam(G) - rad(G) + 1 \leq \ell_1 + \ell_2 + 1$, and hence

$$
2C_W(G) - C_{\text{ec}}(G) \ge 2\left\lceil \frac{\ell_1 + \ell_2}{2} \right\rceil + 2 - l_1 - l_2 - 1 \ge 1.
$$

Now we prove the second result. Let c_1 and c_2 satisfy $c_1 < c_2 \leq 2c_1 - 1$. Denote $\Delta = c_2 - c_1$. Let *C* be a cycle of length 4Δ and let u_1 and v_1 be opposite vertices on *C*. Attach to u_1 (resp. v_1) a path of length $c_1 - 1$ $u_1u_2 \cdots u_{c_1}$ (resp. $v_1v_2 \cdots v_{c_1}$). Finally, attach to both u_{c_1-1} and v_{c_1-1} exactly $q ≥ 0$ pendant vertices, and denote the resulting graph by *G*, see Figure [3.](#page-6-1)

Figure 3. The unicyclic graph on 13 vertices and with odd cycle that has Wiener complexity smaller than eccentric complexity.

Obviously, diam(*G*) = $2(c_1 - 1) + 2\Delta = 2c_2 - 2$. Since $c_2 \leq 2c_1 - 1$, we have $c_2 - c_1 \leq c_1 - 1$, and so 2∆ ≤ ∆ + ($c_1 - 1$). Thus, rad(*G*) = max{rad(*C*), [diam(*G*)/2]} = $\Delta + (c_1 - 1)$, which means that $C_{\text{ec}}(G) = \text{diam}(G) - \text{rad}(G) + 1 = c_2$.

On the other hand, denote by w^T the transmission of u_1 in the tree attached to C and denote by w^C the transmission of u_1 in *C*. Then $w_G(u_1) = w^T + w^C + 2\Delta(c_1 - 1 + q) + w^T$, and similarly for every vertex *v* of *C* we have $w_G(v) = 2w^T + w^C + 2\Delta(c_1 - 1 + q)$ as well. By Lemmas [2](#page-1-4) and [3](#page-4-3) it holds $w_G(u_1) < w_G(u_2) < \cdots < w_G(u_{c_1})$ and by symmetry $w_G(u_i) = w_G(v_i)$, $1 \le i \le c_1$. Thus $C_W(G) = c_1$, and so *G* satisfies the assumptions of the theorem. \square

Theorem [3](#page-5-0) has the following consequence.

Corollary 2. *For every integer c* > 0 *there are infinitely many unicyclic graphs G such that*

$$
C_{\rm ec}(G)-C_W(G)=c.
$$

We remark that the attachment vertices u_1 and u_2 do not need to be opposite on C if *c*₁ is big enough (compared to $\Delta = c_2 - c_1$). We can use also even cycles of length $\neq 0$ (mod 4) and odd cycles, but again *c*¹ must be big enough. Though for small order graphs, one with even cycle are quite abundant, the smallest unicyclic graph *G* with a cycle of odd length satisfying $C_W(G) < C_{ec}(G)$ has 13 vertices, and its cycle has length 9.

4. Graphs with Diameter 3

In this section we solve Problem [1.](#page-1-1) Observe that if $diam(G) = 3$ and $C_{ec}(G) > C_{W}(G)$ then rad(*G*) = 2, $C_{\text{ec}}(G) = 2$ and $C_W(G) = 1$. Hence, there is no unicyclic graph *G* satisfying the requirements of Problem [1,](#page-1-1) by Theorem [3.](#page-5-0)

Let *G* be a graph with diameter 3. For every vertex $u \in V(G)$, by $d_G^i(u)$ we denote the number of vertices of *G* which are at distance *i* from *u*. Denote $\sigma_G(u) = d_G^1(u) - d_G^3(u)$. We have the following statement.

Lemma 4. Let *G* be a graph with diameter 3. Then $C_W(G) = 1$ if and only if all vertices of *G* have *the same value of σ.*

Proof. Let $u \in V(G)$. Then $w_G(u) = d_G^1(u) + 2d_G^2(u) + 3d_G^3(u)$. Since $d_G^1(u) + d_G^2(u) +$ $d_G^3(u) = n - 1$, where $n = |V(G)|$, we have $d_G^2(u) = n - 1 - d_G^1(u) - d_G^3(u)$, and consequently $w_G(u) = 2n - 2 - d_G^1(u) + d_G^3(u)$. Hence, if $v \in V(G)$ with $v \neq u$, then $w_G(v) = w_G(u)$ is equivalent with $\sigma_G(u) = \sigma_G(v)$. \Box

By Lemma [4,](#page-6-2) in graphs *G* of diameter 3 with $C_{\text{ec}}(G) = 2$ and $C_W(G) = 1$, the vertices of eccentricity 3 must have degree greater than is the degree of vertices of eccentricity 2. This looks surprising, nevertheless, there exist such graphs.

Let *G* be a graph on 2*r* vertices and let $S \subseteq V(G)$ such that $|S| = r$. By $A(G, S)$ we denote the graph obtained from *G* by adding two vertices, *v* and *v* 0 , where *v* is connected to all vertices of *S* and v' is connected to all vertices of $V(G) \setminus S$. We have:

Proposition 1. *Let G be a k-regular graph of diameter* 2 *on* 2(*k* + 2) *vertices. Moreover, let* $S \subseteq V(G)$, $|S| = k + 2$, such that every vertex of *S* has a neighbour in $V(G) \setminus S$ and every *vertex of* $V(G) \setminus S$ *has a neighbour in S. Then* diam $(A(G, S)) = 3$, $C_{ec}(A(G, S)) = 2$ *and* $C_W(A(G, S)) = 1.$

Proof. First observe that $N_G(S) = V(G) = N_G(V(G) \setminus S)$. Since every vertex of *S* has a neighbour in $V(G) \setminus S$ and every vertex of $V(G) \setminus S$ has a neighbour in *S*, we have $e_{A(G, S)}(u) = 2$ for every $u \in V(G)$. Since dist $_{A(G, S)}(v, v') = 3$, we have diam $(A(G, S)) = 3$ and $C_{\text{ec}}(A(G, S)) = 2$.

If $u \in V(G)$ then $\deg_{A(G,S)}(u) = \sigma_{A(G,S)}(u) = k+1.$ On the other hand $\deg_{A(G,S)}(v) =$ $deg_{A(G,S)}(v') = k + 2$. Moreover, since in *G* holds $N(S) = V(G) = N(V(G) \setminus S)$, we have $d_{A(G,S)}^3(v) = d_{A(G,S)}^3(v') = 1$. Thus $\sigma_{A(G,S)}(v) = \sigma_{A(G,S)}(v') = k+1$ and $C_W(A(G,S)) = 1$, by Lemma [4.](#page-6-2) \Box

Since there is no 2-regular graph on 8 vertices with diameter 2, the smallest graph *G* satisfying assumptions of Proposition [1](#page-7-0) is the Petersen graph in which *S* is the set of vertices of one of its 5-cycles. If *G* is the Petersen graph and *S* is the set of vertices of one of its 5-cycles, then $A(G, S)$ has 12 vertices.

However, there are also other graphs satisfying the assumptions of Proposition [1.](#page-7-0)

Lemma 5. Let $k \ge 6$ be an even number, and let $D = \{ \{1, 4, 7, ...\} \cap \{1, 2, ..., k+1\} \}$ ${k+1, k, k-1, \ldots, i}$ *with* $|D| = k/2$. Let G be the Cayley graph with $V(G) = \mathbb{Z}_{2k+4}$ and $E(G) = \{ij; i - j \in D \cup -D\}$ *. Finally, let* $S = \{0, 2, ..., 2k + 2\}$ *. Then G* and *S* satisfy the *assumptions of Proposition [1.](#page-7-0)*

Proof. Obviously, *G* is *k*-regular. Since $1 \in D$ and $S = \{0, 2, \ldots, 2k + 2\}$, *S* satisfies the assumptions of Proposition [1.](#page-7-0) Hence, it remains to prove that $diam(G) = 2$.

We only show that $e_G(0) = 2$, and since *G* is vertex-transitive, we conclude that diam(*G*) = 2. So it is enough to show that if $1 \le r \le k+2$, then either $0r \in E(G)$, or $0(r-1)$ ∈ $E(G)$ or $0(r+1)$ ∈ $E(G)$, because α : $u \to 2k+4-u$ is an isomorphism of *G*. Let $t = k/2$ and let *D'* be a set of *t* numbers starting with 1 and continuing with difference 3. Then $D' = \{1, 4, 7, ..., 3t - 2\}$. Since $k \ge 6$, we have $t \ge 3$ and $3t - 2 \ge k + 1$. Hence, it follows that $k + 1 \in D$ which means that $dist_G(0, k + 2) = 2$. And since $D \supseteq$ *D*^{\prime} ∩ {1, 2, . . . , *k* + 1}, we have 0*r* ∈ *E*(*G*) or 0(*r*−1) ∈ *E*(*G*) or 0(*r*+1) ∈ *E*(*G*) for every *r* with $1 \leq r \leq k+1$. Thus, $e_G(0) = 2$. \Box

Let *G* be the Petersen graph or a graph from Lemma [5](#page-7-1) and let *S* be as described. Then $A(G, S)$ has diameter 3 and $C_{ec}(A(G, S)) > C_W(A(G, S))$. However, all these graphs have exactly 2 vertices with eccentricity 3. Next statement shows that there are required graphs with 2*t* vertices with eccentricity 3 for arbitrary $t \geq 1$.

Let *H* be a graph. By $B_t(H)$ we denote a graph on $t|V(H)|$ vertices obtained from *H* by replacing every vertex by *K^t* . Moreover, vertices from different copies of *K^t* are adjacent in $B_t(H)$ if and only if these copies of K_t are obtained from adjacent vertices in *H*.

Theorem 4. Let G be a graph and $S \subseteq V(G)$ such that G and S satisfy the assumptions of *Proposition* 1*. Moreover, let* $t \geq 1$ *. Then* diam($B_t(A(G, S))$) = 3, $C_{ec}(B_t(A(G, S)))$ = 2 *and* $C_W(B_t(A(G, S))) = 1.$

Proof. For $t = 1$ the statement reduces to Proposition [1.](#page-7-0) Therefore, in the following we assume $t \geq 2$. Denote $H = B_t(A(G, S))$. Let *u* be a vertex of *H* obtained from a vertex of *G*. Then $e_H(u) = 2$ and $\deg_H(u) = d_H^1(u) = (t-1) + kt + t$, and so $\sigma_H(u) = kt + 2t - 1$.

Now let *u*' be a vertex of *H* obtained from *v* or *v*' (i.e., from the vertices of $A(G, S)$ which are not in *G*). Then $e_H(u') = 3$, $\deg_H(u') = d_H^1(u') = (t-1) + (k+2)t$ and $d_H^3(u') = t$. Hence $\sigma(u') = kt + 2t - 1$ as well. Thus, diam(*H*) = 3, $C_{\text{ec}}(H) = 2$ and by Lemma [4](#page-6-2) we have $C_W(H) = 1$. \Box

Author Contributions: Investigation, M.K. and R.Š.; Methodology, M.K. and R.Š. All authors have read and agreed to the published version of the manuscript.

Funding: The research was partially supported by Slovenian research agency ARRS, program Nos. P1-0383 and project J1-1692.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The first author acknowledges partial support by Slovak research grants APVV-15-0220, APVV-17-0428, VEGA 1/0142/17 and VEGA 1/0238/19. The research was partially supported by Slovenian research agency ARRS, program Nos. P1-0383 and project J1-1692.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Alizadeh, Y.; Došli´c, T.; Xu, K. On the eccentric complexity of graphs. *Bull. Malays. Math. Sci. Soc.* **2019**, *42*, 1607–1623. [\[CrossRef\]](http://dx.doi.org/10.1007/s40840-017-0564-y) 2. Alizadeh, Y.; Klavžar, S. Complexity of topological indices: The case of connective eccentric index. *MATCH Commun. Math.*
- *Comput. Chem.* **2016**, *76*, 659–667.
- 3. Alizadeh, Y.; Andova, V.; Klavžar, S.; Škrekovski, R. Wiener dimension: Fundamental properties and (5,0)-nanotubical fullerenes. *MATCH Commun. Math. Comput. Chem.* **2014**, *72*, 279–294.
- 4. Alizadeh, Y.; Klavžar, S. On graphs whose Wiener complexity equals their order and on Wiener index of asymmetric graphs. *Appl. Math. Comput.* **2018**, *328*, 113–118. [\[CrossRef\]](http://dx.doi.org/10.1016/j.amc.2018.01.039)
- 5. Jemilet, D.A.; Rajasingh, I. Wiener dimension of spiders, *k*-ary trees and binomial trees. *Int. J. Pure Appl. Math.* **2016**, *109*, 143–149.
- 6. Klavžar, S.; Jemilet, D.A.; Rajasingh, I.; Manuel, P.; Parthiban, N. General transmission lemma and Wiener complexity of triangular grids. *Appl. Math. Comput.* **2018**, *338*, 115–122. [\[CrossRef\]](http://dx.doi.org/10.1016/j.amc.2018.05.056)
- 7. Knor, M.; Škrekovski, R.; Tepeh, A. Mathematical aspects of Wiener index. *Ars Math. Contemp.* **2016**, *11*, 327–352. [\[CrossRef\]](http://dx.doi.org/10.26493/1855-3974.795.ebf)
- 8. Xu, K.; Iršič, V.; Klavžar, S.; Li, H. Comparing Wiener complexity with eccentric complexity. *Discret. Appl. Math.* **2021**, 290, 7–16. [\[CrossRef\]](http://dx.doi.org/10.1016/j.dam.2020.11.020)