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Abstract: The aim of this paper is to introduce dependence between the claim frequency and the
average severity of a policyholder or of an insurance portfolio using a bivariate Sarmanov distribution,
that allows to join variables of different types and with different distributions, thus being a good
candidate for modeling the dependence between the two previously mentioned random variables.
To model the claim frequency, a generalized linear model based on a mixed Poisson distribution -like
for example, the Negative Binomial (NB), usually works. However, finding a distribution for the claim
severity is not that easy. In practice, the Lognormal distribution fits well in many cases. Since the
natural logarithm of a Lognormal variable is Normal distributed, this relation is generalised using
the Box-Cox transformation to model the average claim severity. Therefore, we propose a bivariate
Sarmanov model having as marginals a Negative Binomial and a Normal Generalized Linear Models
(GLMs), also depending on the parameters of the Box-Cox transformation. We apply this model to
the analysis of the frequency-severity bivariate distribution associated to a pay-as-you-drive motor
insurance portfolio with explanatory telematic variables.

Keywords: Box-Cox transformation; dependence; bivariate Sarmanov distribution; motor insurance;
telematic data

MSC: 60E05; 62H05; 62H10

1. Introduction

Calculating premiums is a fundamental task for an insurance company. To this
purpose, a simple procedure consists of considering the aggregate claims as the product
of the random variable (r.v.) number of claims and of the r.v. average cost of these claims,
then of fitting appropriate distributions to these two random variables; if, moreover,
the premium is evaluated for a given policyholder, some of its characteristics are often
included in the calculation as covariates in Generalized Linear Models (GLMs) used for
both variables. Then the pure premium is obtained as the product of the means of the
number of claims and of the average claim cost, procedure that implies assuming that
the two r.v.s are uncorrelated; however, there are evidences in the literature showing how,
in practice, the correlation between both variables is not zero (see References [1–4] for
some illustrations using GLM). Therefore, in this paper, we shall assume that the two
just mentioned r.v.s are dependent and jointly distributed using a bivariate Sarmanov
distribution with GLM marginals.
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Because it provides a flexible structure in joining different types of marginals, the bi-
variate Sarmanov distribution has recently found its place in actuarial studies like—
modeling continuous claim costs [5], modeling discrete claim frequencies [1,6], modeling
dependence between discrete frequency and continuous claims [7], ruin probability calcu-
lation [8,9] or modeling telematic variables [10].

The traditional approach to modeling count data by means of Poisson regression
failed due to over or under dispersion of the data. Therefore, in practice, count data models
based on mixed Poisson distributions are used for the number of claims (or frequency)
(see Reference [11]. As an alternative, generalized Poisson regression models have also
been considered in the literature (see Reference [12]). Specifically, for this variable, in this
paper a GLM based on the Negative Binomial distribution will be used.

To model the claim cost r.v. (severity), Gamma and Lognormal distributions are the
most common choices (see Reference [7] for comparing both cost distributions in a real
motor data set). However, it may be the case that neither of these two distributions fits the
data well enough. It may even be difficult to find a known distribution for the cost of claims.
To overcome this problem, in this paper it is assumed that by applying a Box-Cox trans-
formation to the claim cost r.v., the transformed data follow a Normal distribution. In the
insurance context, Harrington [13] proposed the Box-Cox transformation to generalize the
log-linear model in order to calculate pure premiums (see also Reference [14]).

The Box-Cox transformation [15] provides a family of power transformations that
is useful in linear regression when the normality assumption is violated, its aim being
to obtain a transformed r.v. that is Normal distributed. Furthermore, the Gamma and
Lognormal distributions, which have been traditionally used to adjust the distribution of
claims costs, are particular cases of this family; therefore, if the original r.v. follows one of
these two distributions, there is an optimal transformation so that the transformed variable
becomes Normal. This idea is generalized for some unknown distribution for which we
can find an optimal transformed r.v. that follows a Normal distribution. Using a Box-Cox
transformation of the distribution of the variable in the original scale can be considered as
a generalization of the Lognormal distribution, allowing a longer and heavier right tail as
λ1 decreases, and shifting the mode as λ2 increases.

To conclude, in this paper it is considered a bivariate Sarmanov distribution that
allows us to join a Normal GLM distribution for the transformed average claim cost r.v.
(see Reference [16] for Sarmanov with Normal marginal distributions) with a Negative
Binomial GLM distribution for the number of claims (see Reference [6] for Sarmanov with
Negative Binomial GLM marginals). This model can be used to obtain the distribution
of the total cost of claims based on the collective model, for a policyholder with specific
characteristics. The bivariate Sarmanov distribution allows to fit a non-linear dependence
between frequency and severity, and to analyze if the riskier profiles implies larger depen-
dency. Furthermore, the marginal severity distribution based on a Box-Cox transformation
allows a longer and heavier right tail than classical models like Gamma and Lognormal.

As numerical illustration, a database containing information on a portfolio of pol-
icyholders that have contracted an auto insurance which involved the installation of a
GPS/inertial device in their vehicle is used. This device provides a source of information
(telematic variables) to motor insurers that complements the variables that have tradition-
ally been used in a-priori pricing in auto insurance. The telematic variables provide an
innovative way to calculate car insurance pricing (see References [17–22] where a similar
database is considered and the telematic variables are used to predict accident rate).
Furthermore, for each policyholder in the database, the number of claims and their mean
cost are known; these variables are right skewed and have excess of zeros, characteristics
that are common in insurance auto databases.

Traditionally, tariffication in auto insurance has been based on the total number of
claims of the policyholders. Given the large number of zeros, the models commonly used
for fitting the claim frequency variable are the NB and the Zero Inflated Poisson [22,23].
Alternatively, some works analyze the number of claims using multivariate models, that
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is, considering that there are different types of claims—with civil liability, with personal
injury, and so forth [1,6,24]. More recently, tariffication based on the collective model has
been proposed, that is, the premium is deduced from the distribution of the total cost
variable, which in turn is deduced from the bivariate distribution of frequency and severity
claims. Two alternative approaches have been proposed—on the one hand, the bivariate
model is deduced from the frequency distribution and from the severity distribution
conditioned to frequency defined for the average claim size distribution using the number
of claims as covariate [2,4]. On the other hand, Czado et al. [25] proposed bivariate models
based on copulae (see also References [26] for a more general approach). Furthermore, the
bivariate Sarmanov model has also been analyzed in the collective model framework [7].

The rest of the paper is organized as follows—in Section 2.1, we describe the pro-
posed Sarmanov model relating the r.v. number of claims and the r.v. average claim cost;
its properties and particular cases for the proposed marginal distributions are presented in
Section 2.2; moreover, some characteristics of the inference from margin (IFM) estimation
procedure are pointed out in Section 2.3. The application on a real database using telematic
variables to predict the total cost of claims of a given insured is discussed in Section 3.
Finally, Section 4 concludes. This paper ends with Appendixes A and B containing the
proofs and additional results.

2. The Dependence Model and Its Properties

Let Ni, i = 1, ..., m, be the counting r.v. representing the number of claims of individual
i and let Yi be the r.v. representing the average claim cost per insured. Then, the resulting
aggregate claims of individual i can be represented as

Si = NiYi, (1)

where the usual assumption under which this model is considered is that Yi is independent
of Ni. We assume that Yi > 0 if and only if Ni > 0; otherwise, both variables take the value
zero. Therefore, we define the r.v. Ỹi representing Yi > 0 and, based on it, the expectation
and variance of Si (which are useful to obtain a-priori ratemaking in insurance) are given by:

ESi = ENiEỸi,

VarSi = E
[
Ỹ2

i

]
VarNi + (ENi)

2VarỸi.

However, in practice, the independence assumption is not always true, in which
case the moments of Si must be deduced from a bivariate distribution associated to the
random vector (Ni, Yi), distribution that takes into account the dependence between the
two variables.

Moreover, we assume that for each i, the distributions of both random variables in
vector (Ni, Yi) depend on a set of k quantitative or binary covariates, which are represented
by the vector Xi = (Xi1, ..., Xik)

′. For simplicity, the covariates are assumed to be common,
but they can also be different between the two variables. In practice, we specify the
relation as a GLM and define the linear predictor Xi

′βj, where βj =
(

β
j
1, ..., β

j
k

)
, j ∈ {N, Y},

are vectors of parameters to be estimated; note that throughout the paper, such a j ∈ {N, Y}
should be interpreted as an upper index and not as a power.

2.1. The Model Relating the Counting and Average Claim Cost r.v.s

This dependence model is defined in two parts: the first part is the probability mass
function (pmf) of Ni = 0 and the second part is the conditional bivariate density function
that joins the pmf pN of the discrete r.v. Ni with the probability density function (pdf) fỸ of
the continuous r.v. Ỹi corresponding to Yi > 0. The model is:

fYi ,Ni (y, n|Xi) =

{
pN
(
0|X′iβN), n = y = 0

pN
(
n|X′iβN) fỸ

(
y|X′iβY)(1 + ωψ

(
n|X′iβN)φ(y|X′iβY)), n ≥ 1, y > 0

, (2)
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where ω is the Sarmanov dependence parameter and ψ(·) and φ(·) are bounded kernel
functions.

In order for (2) to define a proper pdf for all i, we impose the conditions:

∑
n≥1

ψ
(

n|X′iβN
)

pN

(
n|X′iβN

)
=

∫
R+

φ
(

y|X′iβY
)

fỸ

(
y|X′iβY

)
dy = 0, and (3)

1 + ωψ
(

n|X′iβN
)

φ
(

y|X′iβY
)
≥ 0, for all n ≥ 1, y > 0. (4)

Then, the kernel functions limits for each i are defined as:

mN(X′iβ
N) = inf

n≥1
ψ
(

n|X′iβN
)

, MN(X′iβ
N) = sup

n≥1
ψ
(

n|X′iβN
)

,

mY(X′iβ
Y) = inf

y>0
φ(y|(X′iβY)), MY(X′iβ

Y) = sup
y>0

φ
(

y|X′iβY
)

.

Taking into account the conditions defined in (3) and (4), limits are also defined for the
dependence parameter ω. However, since this parameter does not depend on the linear
predictor, new maximum and minimum values are defined as: m?

j = max
∀Xi

mj(X′iβ
j) and

M?
j = min

∀Xi
Mj(Xi

′βj), j ∈ {N, Y}, so that the limits of the dependence parameter are:

max
{
− 1

m?
Nm?

Y
,− 1

M?
N M?

Y

}
≤ ω ≤ min

{
− 1

m?
N M?

Y
,− 1

M?
Nm?

Y

}
. (5)

In the following proposition, the new formulae for the expectation and variance
of Si are presented. To simplify the notation, the functions used in the bivariate den-
sity expressed in (2) are rewritten as follows: pi(n) = pN

(
n|X′iβN), fi(y) = fỸ

(
y|X′iβY),

ψi(n) = ψ
(
n|X′iβN) and φi(y) = φ

(
y|X′iβY) .

Proposition 1. Under the dependence introduced by the bivariate Sarmanov distribution (2),
the expected value and variance of the aggregate claims Si defined in (1) for individual i are given
respectively, by

ESi = ENiEỸi + ωE[Niψi(Ni)]E
[
Ỹiφi

(
Ỹi
)]

,

VarSi = E
[
Ỹ2

i

]
VarNi + (ENi)

2VarỸi −ω2E2[Niψi(Ni)]E2[Ỹiφi
(
Ỹi
)]

+ω
(
E
[

N2
i ψi(Ni)

]
E
[
Ỹ2

i φi
(
Ỹi
)]
− 2ENi E[Niψi(Ni)] EỸi E

[
Ỹiφi

(
Ỹi
)])

.

From Proposition 3 in Bolancé and Vernic [7], the following correlation for each i can
be easily deduced:

corr(Yi, Ni) =
ωE[Niψi(Ni)]E

[
Ỹiφi

(
Ỹi
)]

+ pi(0)ENiEỸi√
(1− pi(0))

(
VarỸi + pi(0)E2

[
Ỹi
])

VarNi

. (6)

To calculate the moments of Si and the correlation expressed in (6), we need to define
the marginal GLMs and the resulting particular bivariate Sarmanov model with given
kernel functions.

We propose to use exponential kernels. For the cost per insured Yi, the kernel function
is expressed as φi(y) = e−γy − LỸi

(γ), where LỸi
denotes the Laplace transform of Ỹi.
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For the number of claims with n ≥ 1 in (2), we let ψi(n) = e−δn − ki, and, to find ki,
we impose condition (3) as follows

∑
n≥1

ψi(n)pi(n) = ∑
n≥1

(
e−δn − ki

)
pi(n)

= ∑
n≥0

e−δn pi(n)− pi(0)− ki

(
∑
n≥0

pi(n)− pi(0)

)
= LNi (δ)− pi(0)− ki(1− p(0)) = 0.

Therefore, ki =
LNi (δ)−pi(0)

1−pi(0)
and ψi(n) = e−δn − LNi (δ)−pi(0)

1−pi(0)
, where LNi denotes the

Laplace transform of Ni.

2.2. Marginal Distributions
2.2.1. Counting Distribution

We assume that the distribution of the counting process Ni is the Negative Binomial
(NB), where we take µN

i = ENi = eX′i β
N

, so that in the GLM specification ln µN
i = X′iβ

N ,
and the pmf is:

pi(n) =
Γ(α + n)
n!Γ(α)

(
α

α + µN
i

)α(
µN

i
α + µN

i

)n

, (7)

where α > 0. The previous model is heteroscedastic and its variance is VarNi =
µN

i (α+µN
i )

α

for each i. Furthermore, the Laplace transform is LNi (δ) =

(
α

α+µN
i (1−e−δ)

)α

.

To obtain the correlation between the frequency and the severity per policyholder,
and the moments of Si from Proposition 1, we need to calculate E

[
N2

i
]
, E[Niψi(Ni)] and

E
[
N2

i ψi(Ni)
]
. The first one is direct, given that VarNi = E

[
N2

i
]
− (ENi)

2, while the other
two expectations can be directly deduced from the Proposition 5 of Bolancé and Vernic [7].
The results are:

E
[

N2
i

]
=

µN
i
(
α + µN

i + αµN
i
)

α
, (8)

E[Niψi(Ni)] =
µN

i αα+1(
α + µN

i
)[

α + µN
i
(
1− e−δ

)]α ×
{

α + µN
i

αeδ − µN
i
(
1− eδ

) (9)

−
(
α + µN

i
)α+1 −

(
α + µN

i
)(

α + µN
i
(
1− e−δ

))α

α
[(

α + µN
i
)α − αα

]
,

E
[

N2
i ψi(Ni)

]
=

µN
i αα+1(

α + µN
i
)[

α + µN
i
(
1− e−δ

)]α ×
{

αµN
i
(
α + µN

i
)
+
(
α + µN

i
)2eδ[

αeδ − µN
i
(
1− eδ

)]2 (10)

−
(

µN
i + α

(
1 + µN

i

))(α + µN
i
)α+1 −

(
α + µN

i
)(

α + µN
i
(
1− e−δ

))α

α2
[(

α + µN
i
)α − αα

]
.

2.2.2. Severity Distribution

In what concerns the mean cost per policyholder represented by the r.v. Yi, we assume
that its distribution is unknown, but the variable Ỹi can be normalised using a Box-Cox
transformation. The one parameter Box-Cox transformation is given by:

Tλ(y) =

{
yλ−1

λ if λ 6= 0, y > 0,
ln(y) if λ = 0, y > 0,

(11)
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while the two parameters Box-Cox transformation is:

Tλ1,λ2(y) =

{
(y+λ2)

λ1−1
λ1

if λ1 6= 0, y > −λ2,
ln(y + λ2) if λ1 = 0, y > −λ2.

(12)

We assume that the two parameters Box-Cox transformation Tλ1,λ2(·) is applied to the
r.v. Ỹi and obtain the truncated normal r.v. Zi = Tλ1,λ2(Ỹi). Since the domain of Ỹi is left
bounded (also necessary in order to have a bounded kernel function), when λ1 ≥ 0, the r.v.
Zi is left truncated normal (LTN), Zi ∼ LTN

(
µZ

i , σ2; a
)
, while when λ1 < 0, the resulting

r.v. is doubly truncated normal (DTN), Zi ∼ DTN
(
µZ

i , σ2; a, b
)
, with a < b ≤ −λ−1

1 as we
shall see below.

Then, with ϕ(·) and Φ(·) denoting the pdf and, respectively, the cumulative distribu-
tion function of the standard normal distribution, the density of Ỹi is given by

fỸi
(y) =


T′λ1,λ2

(y)ϕ

(
Tλ1,λ2 (y)−µZ

i
σ

)
1

σΦ̄(za,i)
, λ1 ≥ 0

T′λ1,λ2
(y)ϕ

(
Tλ1,λ2 (y)−µZ

i
σ

)
1

σ(Φ(zb,i)−Φ(za,i))
, λ1 < 0

,

where Φ̄(z) = 1−Φ(z) and za,i =
a−µZ

i
σ , zb,i =

b−µZ
i

σ . More precisely:

• If λ1 > 0, the condition y > −λ2 implies

z = Tλ1,λ2(y) =
(y + λ2)

λ1 − 1
λ1

> − 1
λ1

= Tλ1,λ2(−λ2),

hence the left truncation point a must satisfy the condition a ≥ − 1
λ1

, for which we
obtain that the left truncation condition gives

z = Tλ1,λ2(y) > a⇒ y > (1 + aλ1)
1

λ1 − λ2.

Therefore, the pdf of Ỹi is

fỸi
(y) =

(y + λ2)
λ1−1

σ
√

2πΦ̄
(
za,i
) e
− 1

2σ2λ2
1

(
(y+λ2)

λ1−1−λ1µZ
i

)2

, y > (1 + aλ1)
1

λ1 − λ2, a ≥ − 1
λ1

. (13)

• If λ1 = 0, then y > −λ2 implies

z = Tλ1,λ2(y) = ln(y + λ2) > Tλ1,λ2(−λ2) = −∞,

so that the left truncation point a can be any real value. Then the left truncation
condition becomes

z = Tλ1,λ2(y) > a⇒ y > ea − λ2.

The distribution of Ỹi becomes the left truncated lognormal LTLN
(
µZ

i , σ2; a
)

hav-
ing pdf

fỸi
(y) =

1
(y + λ2)σ

√
2πΦ̄(za,i)

e−
1

2σ2 (ln(y+λ2)−µZ
i )

2

, y > ea − λ2.

• If λ1 < 0, the condition y > −λ2 implies

z = Tλ1,λ2(y) =
(y + λ2)

λ1 − 1
λ1

< − 1
λ1

= Tλ1,λ2(−λ2),
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and the left truncation point a must be such that a < − 1
λ1

. Again, the left truncation
condition gives

z = Tλ1,λ2(y) > a⇒ y > (1 + aλ1)
1

λ1 − λ2.

However, note that in this case, when y → ∞ then z → − 1
λ1

, hence the domain
of Zi is also right bounded, yielding the doubly truncated normal distribution
DTN

(
µZ

i , σ2; a, b
)

with b = −λ−1
1 (note that we can take b < −λ−1

1 as long as a < b).
We therefore write the pdf of Ỹi as

fỸi
(y) =

(y + λ2)
λ1−1

σ
√

2π
(
Φ
(
zb,i
)
−Φ

(
za,i
)) e
− 1

2σ2λ2
1

(
(y+λ2)

λ1−1−λ1µZ
i

)2

, y > (1 + aλ1)
1

λ1 − λ2, a < − 1
λ1

.

In order to write the exponential kernel function corresponding to Zi, φZi (z) = e−γz −
LZi (γ), we note that the Laplace transform of the DTN distribution DTN

(
µZ

i , σ2; a, b
)

is

LZi (γ) = e−γµZ
i +

γ2σ2
2

Φ
(

b−µZ
i +γσ2

σ

)
−Φ

(
a−µZ

i +γσ2

σ

)
Φ(zb,i)−Φ(za,i)

.

Taking b = ∞, we obtain the formula for the LTN distribution.
Therefore, the kernel corresponding to Ỹi becomes

φ̃i(y) =



e−γ
(y+λ2)

λ1−1
λ1 − e−γµZ

i +
γ2σ2

2
Φ̄
(

a−µZ
i +γσ2

σ

)
Φ̄(za,i)

, λ1 > 0

1
(y+λ2)

γ − e−γµZ
i +

γ2σ2
2

Φ̄
(

a−µZ
i +γσ2

σ

)
Φ̄(za,i)

, λ1 = 0

e−γ
(y+λ2)

λ1−1
λ1 − e−γµZ

i +
γ2σ2

2
Φ
(

b−µZ
i +γσ2

σ

)
−Φ

(
a−µZ

i +γσ2

σ

)
Φ(zb,i)−Φ(za,i)

, λ1 < 0

.

As discussed above for the r.v. Ni, the following quantities are needed: EỸi, E
[
Ỹ2

i
]
,

E
[
Ỹiφ̃i

(
Ỹi
)]

, E
[
Ỹ2

i φ̃i
(
Ỹi
)]

, which will be separately calculated for λ1 6= 0 and for λ1 = 0.

Case λ1 6= 0.

We have

EỸi =


1

σ
√

2πΦ̄(za,i)

∫ ∞

(1+aλ1)
1

λ1 −λ2

y(y + λ2)
λ1−1e

− 1
2σ2λ2

1

(
(y+λ2)

λ1−1−λ1µZ
i

)2

dy, λ1 > 0

1
σ
√

2π(Φ(zb,i)−Φ(za,i))

∫ ∞

(1+aλ1)
1

λ1 −λ2

y(y + λ2)
λ1−1e

− 1
2σ2λ2

1

(
(y+λ2)

λ1−1−λ1µZ
i

)2

dy, λ1 < 0

.

We change variable (y+λ2)
λ1−1

λ1
− µZ

i = t⇒ (y + λ2)
λ1−1dy = dt, hence

EỸi =


1

σ
√

2πΦ̄(za,i)

∫ ∞
a−µZ

i

[(
λ1
(
t + µZ

i
)
+ 1
) 1

λ1 − λ2

]
e−

t2

2σ2 dt, λ1 > 0

1
σ
√

2π(Φ(zb,i)−Φ(za,i))

∫ ∞
a−µZ

i

[(
λ1
(
t + µZ

i
)
+ 1
) 1

λ1 − λ2

]
e−

t2

2σ2 dt, λ1 < 0
.

In general, there is no closed type formula for this integral and for similar integrals
associated with E

[
Ỹ2

i
]
, E
[
Ỹiφ̃i

(
Ỹi
)]

, E
[
Ỹ2

i φ̃i
(
Ỹi
)]

and they must be evaluated numerically.
However, in the following particular case some recursive formulas can be used.
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Particular case: λ1 = 1
m , where m is a positive integer. The following notation for k ∈ N,

k > 0 is introduced:

Ai
m,k = E

[(
Zi
m

+ 1
)k
]

,

Bi
m,k = E

[(
Zi
m

+ 1
)k

e−γZi

]
.

Here the upper index i emphasises the connection with individual i. The proof of the
following lemma is very easy and we skip it since it can also be obtained as a particular
case of a result in Burkardt [27].

Lemma 1. Let Lj(α) be the j-th moment of the standard left truncated normal distribution with
left truncation point α, that is,

Lj(α) =
1√

2πΦ̄(α)

∫ ∞

α
zje−

z2
2 dz, j ∈ N.

Then Lj(α) can be recursively evaluated as

L0(α) = 1, L1(α) =
ϕ(α)

Φ̄(α)
,

Lj(α) = αj−1 ϕ(α)

Φ̄(α)
+ (j− 1)Lj−2(α), j ≥ 2.

Lemma 2. With the above notation, for Zi ∼ LTN
(
µZ

i , σ2; a
)

it holds that

E[Zr
i ] =

r

∑
j=0

(
r
j

)
σj
(

µZ
i

)r−j
Lj

(
a− µZ

i
σ

)
, r ∈ N,

Ai
m,k =

k

∑
r=0

(
k
r

)
E
[
Zr

i
]

mr ,

Bi
m,k = e−γµZ

i +
γ2σ2

2

Φ̄
(

a−µZ
i

σ + σγ
)

Φ̄
(

a−µZ
i

σ

) k

∑
j=0

(
k
j

)(
µZ

i − σ2γ

m
+ 1

)k−j( σ

m

)j
Lj

(
a− µZ

i
σ

+ σγ

)
.

The following proposition provides the needed formulas.

Proposition 2. Let Ỹi be the r.v. with pdf (13) and λ1 = 1
m . Then

EỸi = Ai
m,m − λ2,

E
[
Ỹ2

i

]
= Ai

m,2m − 2λ2 Ai
m,m + λ2

2,

E
[
Ỹiφ̃i

(
Ỹi
)]

= Bi
m,m − Ai

m,mLZi (γ),

E
[
Ỹ2

i φ̃i
(
Ỹi
)]

= Bi
m,2m − Ai

m,2mLZi (γ)− 2λ2

(
Bi

m,m −LZi (γ)Ai
m,m

)
.

Case λ1 = 0.

Let now λ1 = 0. As noted before, in this case, Ỹi follows a left truncated Lognormal
distribution LTLN

(
µZ

i , σ2; a
)

and the following result holds without further assumption
on the parameter λ1.
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Proposition 3. For Ỹi ∼ LTLN
(
µZ

i , σ2; a
)

and assuming that γ = 1, it holds that

EỸi = eµZ
i +

σ2
2

Φ̄(za,i − σ)

Φ̄(za,i)
− λ2,

E
[
Ỹ2

i

]
= e2µZ

i +2σ2 Φ̄(za,i − 2σ)

Φ̄(za,i)
− 2λ2eµZ

i +
σ2
2

Φ̄(za,i − σ)

Φ̄i(za,i)
+ λ2

2,

E
[
Ỹiφ̃i

(
Ỹi
)]

= 1− eσ2 Φ̄(za,i + σ)Φ̄(za,i − σ)

Φ̄2(za,i)
,

E
[
Ỹ2

i φ̃i
(
Ỹi
)]

= eµZ
i +

σ2
2

Φ̄(za,i − σ)

Φ̄(za,i)
− eµZ

i +
5σ2

2
Φ̄(za,i + σ)Φ̄(za,i − 2σ)

Φ̄2(za,i)

+2λ2

(
eσ2 Φ̄(za,i + σ)Φ̄(za,i − σ)

Φ̄2(za,i)
− 1
)

,

where, as before, za,i =
a−µZ

i
σ .

2.3. Parameter Estimation

Since the distribution associated with the r.v. Yi is unknown, the parameter estimation
is based on the two parameters Box-Cox transformed variable Tλ1,λ2

(
Ỹi
)
= Zi, whose

distribution is LTN or DTN. Therefore, we can estimate the bivariate Sarmanov with NB
and TN marginal distributions and then the results on the original scale can be deduced as
we have shown in Section 2.2. The bivariate Sarmanov distribution with NB and LTN or
DTN marginals has pdf:

fZi ,Ni (z, n|Xi) =



(
α

α+µN
i

)α
, n = z = 0

Γ(α+n)
n!Γ(α)

(
α

α+µN
i

)α( µN
i

α+µN
i

)n ϕ

(
z−µZ

i
σ

)
σΦ̄(za,i)

(1 + ωψi(n)φZi (z)), n ≥ 1, z > 0, λ1 ≥ 0

Γ(α+n)
n!Γ(α)

(
α

α+µN
i

)α( µN
i

α+µN
i

)n ϕ

(
z−µZ

i
σ

)
σ(Φ(zb,i)−Φ(za,i))

(1 + ωψi(n)φZi (z)), n ≥ 1, z > 0, λ1 < 0

, (14)

where we recall that µN
i = eX′i β

N
and µZ

i = X′iβ
Z. In conclusion, we have to estimate the

transformation parameters λ1 and λ2, the vectors of parameters βN and βZ associated with
the covariate vector, the parameter α of NB marginal distribution, the parameter σ of the
LTN or DTN marginal distribution and the dependence parameter ω.

Let (ni, yi), i = 1, ..., m, be a sample of observed values of frequency and severity per
policyholder and let zi = Tλ1,λ2(yi), i = 1, ..., m, be the transformed severity. The logarithm
of the likelihood function l(Θ) to be maximised with respect to the vector of parameters
which is defined as Θ =

(
βN , βZ, α, σ, λ1, λ2, ω

)
to be estimated, depends on the value

of λ1 as follows: letting m0 be the number of insured with ni = 0 and m1 the number of
insured with ni ≥ 1, then

• If λ1 6= 0 and λ2 > −min(y1, ..., ym)

l(Θ) = mα ln α− α
m

∑
i=1

ln
(

α + eX′i β
N
)
+

m1

∑
i=1

ln Γ(α + ni)−
m1

∑
i=1

ln(ni!)

− m1 ln Γ(α) +
m1

∑
i=1

niX
′
i β

N −
m1

∑
i=1

ni ln
(

α + eX′i β
N
)

+
m1

∑
i=1

ln

ϕ

 (yi+λ2)
λ1−1

λ1
− X′i β

Z

σ

− m1

∑
i=1

ln

[
Φ

(
b− X′i β

Z

σ

)
−Φ

(
a− X′i β

Z

σ

)]

− m1 ln σ +
m1

∑
i=1

ln

[
1 + ωψi(ni)φZi

(
(yi + λ2)

λ1 − 1
λ1

)]
, (15)

where b = ∞ if λ1 ≥ 0 and b ≤ −λ−1
1 if λ1 < 0.



Mathematics 2021, 9, 73 10 of 18

• If λ1 = 0 and λ2 > −min(y1, ..., ym)

l(Θ) = mα ln α− α
m

∑
i=1

ln
(

α + eX′i β
N
)
+

m1

∑
i=1

ln Γ(α + ni)−
m1

∑
i=1

ln(ni!)

− m1 ln Γ(α) +
m1

∑
i=1

niX
′
i β

N −
m1

∑
i=1

ni ln
(

α + eX′i β
N
)

+
m1

∑
i=1

ln

[
ϕ

(
ln(yi + λ2)− X′i β

Z

σ

)]
−

m1

∑
i=1

ln

[
Φ̄

(
a− X′i β

Z

σ

)]

− m1 ln σ +
m1

∑
i=1

ln[1 + ωψi(ni)φZi (ln(yi + λ2))]. (16)

To maximise the log-likelihood functions defined in (15) and (16), a procedure similar
to the one described and tested in Bolancé and Vernic [7] can be used, which is divided in
two phases: the first phase consists in using the inference from margins (IFM) technique to
estimate the marginal parameters, and the second phase in using these results as starting
values to obtain estimations for all parameters based on the maximization of the full
log-likelihood.

The IFM is a two step estimation method which starts from an initial estimation of the
marginal parameters, estimation obtained by the maximum likelihood (ML) method for
the parameters of the two GLMs—GLM of the frequency variable with NB distribution,
and GLM of the severity variable whose distribution is defined by the transformation pa-
rameters and by the parameters of the truncated normal distribution with given truncation

values a and b. We will take the left truncation value such that Φ
(

a−X′i β
Z

σ

)
is almost zero;

note that since we consider heterogeneity between policyholders, in practice, a good choice
will be a = min(a1, ..., am), where ai = −3σ + X′iβ

Z (another simple choice for a would
be the minimum of the transformed data) (see References [28] for ML estimation of the
univariate model based on Box-Cox transformation). However, note that for (15) we must
check that a ≥ − 1

λ1
when λ1 ≥ 0 and that a < − 1

λ1
if λ1 < 0. In practice, for λ1 < 0,

we used the maximum value for the right truncation point b = −λ−1
1 , which does not affect

the likelihood value because Φ((b−mu)/sigma) ≈ 1.
Therefore, for the Sarmanov distribution defined in (14), each iteration of the IFM

consists of the following two steps:

Step 1 (iteration r) Given the parameters of the marginal distributions obtained at iteration
r − 1, find the estimation ω̂r of the dependence parameter within the interval
defined in (5), estimation that maximises the log-likelihood in (15) or (16).

Step 2 Given ω̂r obtained in Step 1, find new values for the parameters of the marginals
that maximise the log-likelihood function in (15) or (16).

In practice, in the numerical analysis that will be presented in Section 3, two assump-
tions on the Box-Cox transformation parameters are used. On the one hand, as we have
described before, we can include the transformation parameters in the optimization proce-
dure. On the other hand, we a-priori select the values of the transformation parameters,
which can be calculated by maximizing the log-likelihood of the normal distribution as-
sociated with the transformed variable. The results obtained in both cases are practically
the same.

3. Numerical Analysis

In this section, a database corresponding to a car insurance portfolio is analyzed,
in which some of the variables have been measured via a telematic system. It is interesting
to check if, in the collective risk model context, the telematic variables can replace or
complement classical a-priori ratemaking variables, as the age, the driving license age,
the power of the car, and so forth. The dependent variables are the frequency and mean
severity of claims per policyholder. Information on 25,014 policyholders with a car in-
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surance is available, who have contracted a policy that incorporates a GPS device in the
vehicle. The data were provided by a Spanish insurer. The information corresponds to
all the drivers in the insurer’s database who had a telematics insurance product in 2010.
In general, this type of insurance is mainly chosen by young drivers who value the fact
that their car can be located in case of an accident. So, the group of drivers is generally
composed of new drivers. Our dataset contains all the available drivers; most of them did
not report any claim during 2010, but a few reported at least one accident. Only accidents at
fault are considered, and the cost of the accident was also collected. The cost of the accident
is generally known once damages, medical expenses and bodily injury compensations are
paid. The sum of all these costs was included in the dataset in a variable measuring the
cost of claim.

Traditionally, the variables used to model the a-priori premium in auto insurance
have been classified in policyholder and auto characteristics; furthermore, if there is some
experience with the insureds, that is, they are not new in the company, some tariff variables
also could be considered (see Reference [11], for some examples, [chapters 12 and 13]).
In practice, these variables are those available for the insurance company. In our case,
we have a portfolio with new policyholders in the company and for whom we know their
age, their driving license age, and if night parking is used; we also know the gender, but this
variable is not included in the analysis because official regulations prevent differentiating
premiums based on the gender of the insured. About the auto of the policyholder, it is
know that all are cars of private use and the available variables are the age of the car and
its power. More recently, thanks to GPS devices, telematic variables are available for the
insurance company; in general, the variables that are used in the premium calculation are
the total of kilometers (km) driven and three percentages: in urban area, at night and over
the speed limit (see Reference [22] for an example with similar portfolio).

Table 1 shows the main descriptive statistics of the dependent variables and of the
covariates used in the bivariate Sarmanov model defined in (14). It can be noticed that
the dependent variables have right skewness. Considering this shape and comparing
with alternative count data models like the Poisson or Zero Inflated Poisson, the NB GLM
defined in (7) proved to be the best option for our data. Focusing on the mean severity,
the distributions that have been classically used are the Gamma or the Lognormal (see
Reference [7] for an example). However, in our case, the shape of the severity distribution
is unknown and has a heavier tail than the Gamma and the Lognormal; in this case, the
Box-Cox transformation allows us to work with the normal distribution for the transformed
variable. Regarding the explanatory variables, it can be checked that the portfolio is made
up of young policyholders with a symmetric age distribution. The variables with the
largest skewness, which in our case is positive, are the % of km driven over the speed limit
(X8) and the % of km driven at night (X9); these variables are those directly related with
the risk exposure and, therefore, with the frequency and the severity of claims.

At the bottom of Table 1, the linear Pearson correlation coefficient and its confidence
interval are shown. The value of this coefficient is low, but significant. Given the right
skewness shape of both dependent variables, the linear correlation is not the best depen-
dence measure. Alternatively, Reference [25] proposed fitting copula models with GLM
marginals, and, using Gaussian copula, they obtain a dependence parameter equal to 0.13,
that is, the dependence between frequency and severity is not very strong, but it affects the
insurance premium considerably. The Sarmanov model with GLM marginals proposed in
this work is an alternative way to copula for modelling dependence; furthermore, it allows
heterogeneity dependence between policyholders with different covariate values.
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Table 1. Definition of variables and descriptive statistics: mean, median, standard deviation (STD), minimum (Min),
maximum (Max), skewness (Skew) and kurtosis (Kur). The last row shows the linear correlation between the dependent
variables and a confidence interval (CI) at a 95% level.

Description Mean Median STD Min Max Skew Kur

N Number of claims per policyholder 0.106 0.000 0.370 0.000 5.000 4.005 21.598
Y Cost of claims per policyholder * 1444.175 696.720 4141.511 17.750 130870.360 23.365 678.291
X1 Age of the driver 27.565 27.491 3.094 19.849 36.903 −0.059 2.077
X2 Age of driver License 7.174 6.616 3.053 1.810 15.910 1.402 9.959
X3 Age of the vehicle 8.749 7.775 4.174 1.938 20.468 0.770 2.996
X4 Power of the vehicle 97.225 97.000 27.773 12.000 500.000 −1.309 2.713
X5 Night parking (1 = yes, 0 = no) 0.774 1.000 0.418 0.000 1.000 −1.467 9.955
X6 Total of km. driven in logarithm 8.681 8.774 0.698 0.466 10.820 1.049 4.126
X7 % of km. driven at urban area 25.875 22.922 14.357 0.000 100.000 2.382 10.764
X8 % of km. driven over the speed limit 6.332 3.999 6.827 0.000 70.433 1.830 9.512
X9 % of km. driven at night 6.908 5.148 6.351 0.000 100.000 0.497 2.393
ρ Correlation between N and Y (CI) 0.094 (0.052, 0.135)

* Given N > 0 equal to 2177 policyholders.

Focusing on the marginal distributions for the frequency and severity variables, the NB
and Gamma GLM models (see Reference [2] for example), respectively, are the most used
to model the variables number and cost of claims in auto insurance. Alternatively, in some
cases, the Zero Inflated Poisson (ZIP) and Lognormal distributions could improve the fit
of NB and Gamma, respectively (see References [7,29], for example). In Table 2 the AIC
(Akaike Information Criterion) and BIC (Bayesian Information Criterion) are compared
for alternative univariate GLM models considered for marginals, including the Poisson,
the ZIP and the NB for frequency, and the Gamma, Lognormal and Box-Cox transformation
based model for severity. These results show that ZIP is better than NB if AIC is used, but,
if BIC is used, the best model is the NB. For the severity variable, the best model is the one
based on the Box-Cox transformation.

Table 2. AIC and BIC for Generalized Linear Models (GLMs) for frequency (N) and severity (Y)
variables.

N Y

Poisson ZIP NB Gamma Lognormal Box-Cox

AIC 17,372 16,861 16,906 36,009 35,312 25,835
BIC 17,454 17,024 16,996 36,071 35,374 25,898

Table 3 presents the results of the estimated bivariate Sarmanov model used to fit
the joint distribution of the frequency and of the Box-Cox transformation of the mean
severity of claims for a given insured with the characteristics represented in a given vector
of covariates. The transformation parameters are calculated a-priori by maximizing the
normal log-likelihood function of the transformed variable; alternatively, the transforma-
tion parameters are included in step 2 of the estimation procedure described in Section 2.3,
and it is observed that the results do not improve. A negative value for λ1 is obtained, indi-
cating that the distribution of the mean cost per policyholder has a longer and heavier tail
than the Lognormal distribution. The estimated model with all the explanatory variables
that are shown in Table 3 is compared with alternative proposals that can be found in the
literature (see References [2,7,25]), to estimate collective risk model distributions (results
are shown in Appendix B); for the data used in this paper, these models do not improve
our proposed model.

Three Sarmanov GLM models are estimated—Model I incorporates all the explanatory
variables, Model II only includes classical a-priori characteristics of the policyholder and
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car, and, finally, Model III only includes telematic variables. Furthermore, Models I and II
are estimated without the variable X1 (Age of the driver) given its high correlation with
X2 (Age of driver license), and noticed that the signs and p-values of the parameters of
the remaining variables change only slightly. The dependence parameter ω is positive
and indicates a significant dependence between frequency and severity that need to be
considered in this collective model in order to calculate insurance premiums.

Comparing the three models, we can see that the best one is Model I, this model
incorporating non telematic and telematic variables. The effect of the driving experience on
the frequency and severity is negative; on the contrary, the effects of the car characteristics
are positive in the sense that older car and higher power increase the accident rates. The
coefficients associated with the telematic variables are positive, their p-values indicating
significant effects on the frequency. For the severity, the significant effects are associated to
X8 (Percentage of kilometers driven over the speed limit) and X9 (Percentage of kilometers
driven at night).

Focusing on Models II and III, we note that the best fit is obtained with the telematic
variables; although, as we have seen in Model I, these variables are complemented by non
telematic variables improving the goodness of fit in the full model. In short, the effects
of the covariates hardly change if we compare models I, II and III, which implies that
multicollinearity hardly affects the results, and that telematic and non-telematic variables
complement each other and take into account different characteristics of the insured.
The telematic variables are taking into account the exposure to risk that the non-telematic
variables do not detect by themselves.

Table 3. Parameter estimates (p-values) and goodness of fit statistics for the bivariate Sarmanov models with GLM marginals
for number (N) and mean cost (Y) per policyholder.

λ1 =−0.0745, λ2 =13.2501

Model I Model II Model III

N Y N Y N Y

Int. −8.073 (<0.001) 4.990 (<0.001) −1.794 (<0.001) 5.171 (<0.001) −8.277 (<0.001) 5.016 (<0.001)
X1 0.006 ( 0.259) −0.004 ( 0.260) −0.007 ( 0.227) −0.005 ( 0.194)
X2 −0.083 (<0.001) −0.001 ( 0.480) −0.081 (<0.001) 0.002 ( 0.488)
X3 0.012 ( 0.013) 0.007 ( 0.021) 0.008 ( 0.082) 0.008 ( 0.015)
X4 0.002 ( 0.037) 0.001 ( 0.071) 0.003 ( 0.001) 0.001 ( 0.019)
X5 −0.025 ( 0.321) −0.009 ( 0.396) −0.022 ( 0.339 −0.005 ( 0.446)
X6 0.603 (<0.001) 0.012 ( 0.323) 0.603 (<0.001) 0.010 ( 0.344)
X7 0.022 (<0.001) 0.001 ( 0.200) 0.024 (<0.001) 0.001 ( 0.153)
X8 0.007 ( 0.024) 0.004 ( 0.041) 0.006 ( 0.046) 0.005 ( 0.018)
X9 0.007 ( 0.026) 0.004 ( 0.051) 0.009 ( 0.007) 0.004 ( 0.031)

α 0.407 (<0.001) 0.339 (<0.001) 0.381 (<0.001)
σ 0.650 (<0.001) 0.652 (<0.001) 0.652 (<0.001)

ω 110.236 ( 0.036) 91.508 ( 0.065) 129.375 ( 0.019)

l̂(Θ) −10,555.071 −10,706.315 −10,605.962
AIC 21,156.143 21,442.630 21,237.923
BIC 242,786.895 246,265.501 243,957.371

In Table 4, we show the mean of Si, that is, the pure premium, for four different
insured profiles, using the full sample (with extremes) and with the positive dependence
parameter ω estimated in Model I; this mean E(Si), is compared with the one obtained
without dependence (i.e., dependence parameter equal to zero); we also calculate the
differences between these two pure premiums, with and without frequency and severity
dependence. The first and second profiles correspond to policyholders with high risk—they
are 25 years old, with 6 years old driver license, with a car with 150 horsepower, 8100 yearly
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kilometers driven, 50% on urban area, 40% over the speed limit and 20% at night; the
difference between these two profiles is that the first one does not use night parking, while
the second does. The profiles 3 and 4 are policyholders with lower risk, having the same
personal and car characteristics, same total km driven as the profiles 1 and 2, but with only
5% over the speed limit and 10% at night. We observe how the Sarmanov dependence
parameter affects the pure premium. The difference between premiums calculated with
and without dependence increases with risk, from 5.69 Euros for the lower risk profile
(Profile 4) to 12.51 Euros for the higher risk profile (Profile 1).

Table 4. Pure premium in collective model using parameters of Model I.

Profile 1 Profile 2 Profile 3 Profile 4

E(Si), ω = 110.2364 687.7501 659.5172 359.0895 344.4958
E(Si), ω = 0 675.2375 647.6507 353.0899 338.8105

Difference 12.51264 11.86648 5.999624 5.685362

4. Conclusions

In this paper, dependence between the claim frequency and the average severity of
a policyholder was introduced, using a bivariate Sarmanov distribution with Negative
Binomial GLM and Normal GLM marginals. The Normal GLM distribution was obtained
by applying a Box-Cox transformation with two parameters on the original distribution,
motivated by the fact that, in the collective risk model context, the claim cost distribution
may not coincide with the traditionally used distributions (Exponential, Gamma, Lognor-
mal, etc.). For some specific values of the transformation parameters, some useful closed
type expressions for calculating the moments of the aggregate claims were obtained.

The proposed model was fitted on a sample of policyholders from an auto insurance
portfolio. The peculiarity of these data is that they are associated with an insurance which
involved the installation of a GPS/inertial device in the vehicle, device that allows the
collection of telematic information related to the total kilometers and to the way which they
are traveled. We have shown how these variables complement and do not substitute the
variables that have traditionally been used in car insurance pricing. Furthermore, we have
analyzed the importance of incorporating the dependence between frequency and severity
in the collective model for calculating the premium, and how our Sarmanov model allows
this dependence to be incorporated in a simple way.

In general, the bivariate Sarmanov distribution shows how the effect of dependency
between frequency and severity is different depending on the risk profiles. For our dataset,
the results show that riskier profiles have a greater effect of dependency. Furthermore,
the Box-Cox transformation improves the distribution fit of the cost of claims variable,
given that it allows a longer and heavier right tail than classical models like Gamma and
Lognormal.
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Appendix A

Proof of Proposition 1. The expected value results easily from

ESi = E[NiYi] = ∑
n≥1

∫ ∞

0
nypi(n) fi(y)(1 + ωψi(n)φi(y))dy

= ENiEỸi + ω ∑
n≥1

npi(n)ψi(n)
∫ ∞

0
y fi(y)φi(y)dy.

For the variance, we start with

E
[
S2

i

]
= E

[
N2

i Y2
i

]
= ∑

n≥1

∫ ∞

0
n2y2 pi(n) fi(y)(1 + ωψi(n)φi(y))dy

= E
[

N2
i

]
E
[
Ỹ2

i

]
+ ω ∑

n≥1
n2 pi(n)ψi(n)

∫ ∞

0
y2 fi(y)φi(y)dy

= E
[

N2
i

]
E
[
Ỹ2

i

]
+ ωE

[
N2

i ψi(Ni)
]
E
[
Ỹ2

i φi
(
Ỹi
)]

.

Therefore, the variance follows from

VarSi = E
[
S2

i

]
−E2[Si] = E

[
N2

i

]
E
[
Ỹ2

i

]
+ ωE

[
N2

i ψi(Ni)
]
E
[
Ỹ2

i φi
(
Ỹi
)]

−
(
E2[Ni] E2[Ỹi

]
+ 2ωENiEỸiE[Niψi(Ni)]E

[
Ỹiφi

(
Ỹi
)]

+ ω2E2[Niψi(Ni)]E2[Ỹiφi
(
Ỹi
)])

=
(
E
[

N2
i

]
−E2[Ni]

)
E
[
Ỹ2

i

]
+E2[Ni]

(
E
[
Ỹ2

i

]
−E2[Ỹi

])
−ω2E2[Niψi(Ni)]E2[Ỹiφi

(
Ỹi
)]

+ω
(
E
[

N2
i ψi(Ni)

]
E
[
Ỹ2

i φi
(
Ỹi
)]
− 2ENiEỸiE[Niψi(Ni)]E

[
Ỹiφi

(
Ỹi
)])

.

This completes the proof.

Proof of Lemma 2. Since Zi ∼ LTN
(
µZ

i , σ2; a
)
, we can write Zi = µZ

i + σZ′i , where Z′i ∼

LTN
(

0, 1; a−µZ
i

σ

)
and the first formula is immediate with α = za,i =

a−µZ
i

σ . The formula of

Ai
m,k is also immediate. To prove the formula of Bi

m,k we write

Bi
m,k =

1
σ
√

2πΦ̄(za,i)

∫ ∞

a

( z
m

+ 1
)k

e−γz− (
z−µZ

i )
2

2σ2 dz

=
1

σ
√

2πΦ̄(za,i)

∫ ∞

a

( z
m

+ 1
)k

e−
1

2σ2 (z−µZ
i +σ2γ)

2
+ 1

2 (σ2γ2−2µZ
i γ)dz.

Changing variable x =
z−µZ

i +σ2γ
σ results in

Bi
m,k =

e−γµZ
i +

γ2σ2
2

√
2πΦ̄

(
za,i
) ∫ ∞

a−µZ
i +σ2γ

σ

(
σ

m
x +

µZ
i − σ2γ

m
+ 1

)k

e−
x2
2 dx

= e−γµZ
i +

γ2σ2
2

k

∑
j=0

(
k
j

)(
µZ

i − σ2γ

m
+ 1

)k−j( σ

m

)j 1
√

2πΦ̄
(

a−µZ
i

σ

) ∫ ∞

a−µZ
i +σ2γ

σ

xje−
x2
2 dx,

and, by considering the definition of Lj, we obtain the stated result.
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Proof of Proposition 2. Since

Ỹi = (1 + λ1Zi)
1

λ1 − λ2 =

(
Zi
m

+ 1
)m
− λ2,

we easily obtain that EỸi = Ai
m,m − λ2. Also,

Ỹ2
i =

(
Zi
m

+ 1
)2m
− 2λ2

(
Zi
m

+ 1
)m

+ λ2
2,

which yields the formula of E
[
Ỹ2

i
]
.

For the formula of E
[
Ỹiφ̃i

(
Ỹi
)]

, we write

E
[
Ỹiφ̃i

(
Ỹi
)]

= E
[((

Zi
m

+ 1
)m
− λ2

)(
e−γZi −LZi (γ)

)]
= E

[(
Zi
m

+ 1
)m

e−γZi

]
−LZi (γ)E

[(
Zi
m

+ 1
)m]

− λ2

(
E
(

e−γZi
)
−LZi (γ)

)
= Bi

m,m −LZi (γ)Ai
m,m.

Also, for E
[
Ỹ2

i φ̃i
(
Ỹi
)]

we have

E
[
Ỹ2

i φ̃i
(
Ỹi
)]

= E
[((

Zi
m

+ 1
)m
− λ2

)2(
e−γZi −LZi (γ)

)]

= E
[((

Zi
m

+ 1
)2m
− 2λ2

(
Zi
m

+ 1
)m

+ λ2
2

)(
e−γZi −LZi (γ)

)]

= E
[(

Zi
m

+ 1
)2m

e−γZi

]
−LZi (γ)E

[(
Zi
m

+ 1
)2m

]
+ λ2

2

(
E
(

e−γZi
)
−LZi (γ)

)
−2λ2E

[(
Zi
m

+ 1
)m

e−γZi

]
+ 2λ2LZi (γ)E

[(
Zi
m

+ 1
)m]

,

which easily yields the result.

Proof of Proposition 3. Since Zi = ln
(
Ỹi + λ2

)
⇔ Ỹi = eZi − λ2, we have that

EỸi = E
[
eZi − λ2

]
= LZi (−1)− λ2 = e−(−1)µZ

i +
(−1)2σ2

2

Φ̄
(

a−µZ
i −σ2

σ

)
Φ̄
(

a−µZ
i

σ

) − λ2,

E
[
Ỹ2

i

]
= E

[(
eZi − λ2

)2
]
= E

[
e2Zi − 2λ2eZi + λ2

2

]
= LZi (−2)− 2λ2LZi (−1) + λ2

2

= e2µZ
i +

4σ2
2

Φ̄
(

a−µZ
i −2σ2

σ

)
Φ̄
(

a−µZ
i

σ

) − 2λ2eµZ
i +

σ2
2

Φ̄(za,i − σ)

Φ̄(za,i)
+ λ2

2,
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yielding the first two formulas. The other two formulas result from

E
[
Ỹiφ̃i

(
Ỹi
)]

= E
[(

eZi − λ2

)(
e−Zi −LZi (1)

)]
= 1−LZi (1)E

[
eZi
]
− λ2E

[
e−Zi −LZi (1)

]
= 1−LZi (1)LZi (−1) = 1− e−µZ

i +
σ2
2

Φ̄
(

a−µZ
i +σ2

σ

)
Φ̄
(

a−µZ
i

σ

) eµZ
i +

σ2
2

Φ̄
(

a−µZ
i −σ2

σ

)
Φ̄
(

a−µZ
i

σ

) ,

E
[
Ỹ2

i φ̃i
(
Ỹi
)]

= E
[(

eZi − λ2

)2(
e−Zi −LZi (1)

)]
= E

[(
e2Zi − 2λ2eZi + λ2

2

)(
e−Zi −LZi (1)

)]
= E

[
eZi
]
−LZi (1)E

[
e2Zi

]
− 2λ2 + 2λ2LZi (1)E

[
eZi
]
+ λ2

2E
[
e−Zi −LZi (1)

]
= LZi (−1)−LZi (1)LZi (−2) + 2λ2LZi (1)LZi (−1)− 2λ2

= eµZ
i +

σ2
2

Φ̄
(

a−µZ
i −σ2

σ

)
Φ̄
(
za,i
) − e−µZ

i +
σ2
2

Φ̄
(

a−µZ
i +σ2

σ

)
Φ̄
(
za,i
) e2µZ

i +
4σ2

2

Φ̄
(

a−µZ
i −2σ2

σ

)
Φ̄
(
za,i
)

+2λ2eσ2 Φ̄
(
za,i + σ

)
Φ̄
(
za,i − σ

)
Φ̄2
(
za,i
) − 2λ2,

which completes the proof.

Appendix B

Table A1. Log-likelihood, AIC and BIC for alternative multivariate models with a NB GLM marginal for frequency variable
(N).

GLM Marginal for Severity (Y) Lognormal Distribution Box-Cox Based Distribution

Sarmanov Gaussian Conditional Sarmanov Gaussian Conditional
Distribution Copula * Distribution ** Distribution Copula * Distribution **

log−lik −11,636 −11,723 −11,525 −10,555 −10,574 −10,567
AIC 23,318 23,493 23,096 21,156 21,194 21,181
BIC 267,652 269,656 265,093 242,787 243,224 243,070

* Czado et al. [25] and ** Garrido et al. [2].
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