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Abstract: DP-coloring as a generalization of list coloring was introduced by Dvořák and Postle
recently. In this paper, we prove that every planar graph in which the distance between 6−-cycles is at
least 2 is DP-3-colorable, which extends the result of Yin and Yu [Discret. Math. 2019, 342, 2333–2341].
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1. Introduction

All graphs are finite and simple in this paper. Let G be a plane graph and V, E, and F
be sets of vertices, edges, and faces of G, respectively. Two faces are adjacent if they have
a common edge. For a face f ∈ F, we write f = [v1, v2, · · · , vk] when the vertices on f in
a cyclic order are v1, v2, · · · , vk. A k-vertex (k−-vertex, k+-vertex) is a vertex of degree k
(at most k, at least k). A k-face (k−-face, k+-face) is a face of degree k (at most k, at least k).
The notation will be same for cycles. A triangle is a 3-cycle in G. A vertex or an edge of G
is triangular when it is on a triangle. We say a chord is triangular in a cycle C if it splits
the cycle C into at least one triangle. Let an (l1, l2, · · · , lk)-face be a k-face f = [v1v2 · · · vk]
with d(vi) = li. Let (l1, l2)-edge be an edge e = v1v2 with d(vi) = li. Let |C| be the length
(number of edges) of the cycle C. Let | f | be the number of edges incident with f . Let Ext(C)
and Int(C) denote the sets of vertices lying outside and inside of C, respectively. A cycle
C is called separating if Ext(C) 6= ∅ and Int(C) 6= ∅. The distance d(u, v) between two
vertices u and v in G is the length (number of edges) of the shortest path between them.
The distance d(C, C′) between two cycles C and C′ in G is the minimum of the distances
between vertices u ∈ V(C) and v ∈ V(C′). A matching of G is a set of independent edges
in G.

A proper k-coloring of G is a function f : V(G)→ {1, 2, · · · , k} such that f (u) 6= f (v)
for every edge uv ∈ E(G). Let χ(G), the chromatic number of G, be the smallest k such
that G is k-colorable. A list assignment of G is a mapping L that assigns to each vertex
v ∈ V(G) a list L(v) of colors. An L-coloring of G is a function f : V → ⋃

v∈V L(v) such
that f (v) ∈ L(v) for every v ∈ V and f (u) 6= f (v) for every edge uv ∈ E(G). A graph G is
k-choosable if G has a L-coloring for every assignment L with |L(v)| ≥ k. Let χl(G), the
choice number of G, be the smallest k such that G is k-choosable.

It is well known that 3-COLORING is NP-complete for planar graphs. This provides
motivation for finding some sufficient conditions for 3-coloring of planar graphs. In 1959,
Grötzsch [1] proved that planar graphs with no triangles are 3-colorable. In 1969, Havel [2]
asked whether there exists or not a constant d such that if G is a planar graph with the
distance of triangles at least d, then G is 3-colorable. Borodin and Glebov [3] proved that
every planar graph with no 5-cycles and d = 2 is 3-colorable. Dvor̂ák, Kral, and Thomas [4]
showed that for every planar graph d = 10100 suffices.

List coloring was introduced as a generalization of proper coloring by Vizing [5] and
independently by Erdős, Rubin, and Taylor [6]. Thomassen [7] showed that planar graphs
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with girth at least 5 are 3-choosable. Dvor̂ák [8] proved that planar graphs with the distance
of 4−-cycles from each other at least 26 are 3-choosable.

There are fewer techniques to approach list problems than ordinary coloring. Iden-
tifications of vertices are involved in the reduction configurations for ordinary coloring.
However, in list coloring, because different vertices have different lists, it is not possible to
use identification of vertices. The concept of DP-coloring as a generalization of list coloring,
was introduced by Dvořák and Postle [9].

Definition 1. Let G be a simple graph, and L be a list assignment of V(G). For each vertex
v ∈ V(G), let Lv = {v} × L(v). For each edge uv in G, let Muv be a partial matching between the
sets Lu and Lv and letM = {Muv : uv ∈ E(G)}, called the matching assignment. The matching
assignment is called a k-matching assignment if L(v) = [k] for each v ∈ V(G).

Definition 2. A M-coloring of G is a function φ that assigns each vertex v ∈ V(G) a color
φ(v) ∈ L(v), such that for every uv ∈ E(G), the vertices (u, φ(u)) and (v, φ(v)) are not adjacent
in Muv. We say that G isM-colorable if such aM-coloring exists.

Definition 3. The graph G is DP-k-colorable if, for each k-list assignment L and each matching
assignmentM over L, it has anM-coloring. The minimum k such that G is DP-k-colorable is the
DP-chromatic number of G, denoted by χDP(G).

If every (u, c1)(v, c2) ∈ E(Mu,v) satisfies c1 = c2, then uv ∈ E(G) is straight in a
k-matching assignmentM. Dvořák and Postle [9] proved that planar graphs with no cycles
of length from 4 to 8 are 3-choosable and noted that χDP(G) ≤ 3 if G is a planar graph with
no 4−-cycles. Liu and Li [10] proved that planar graphs without adjacent cycles of length
at most 8 are 3-choosable. Zhao and Miao [11] proved that every planar graph in which
the distance between 5−-cycles is at least 2 is DP-3-colorable. Bernshteyn et al. [12–16]
gave some results on DP-coloring. DP-3-colorable planar graphs can be found in [17,18]
and DP-4-colorable planar graphs can be found in [19–21]. Yin and Yu [22] proved planar
graphs with no {4, 5, 6}-cycles in which the distance between triangles is at least 2 are
DP-3-colorable. We present the following result in this paper.

Theorem 1. Let G be a planar graph in which the distance between 6−-cycles is at least 2. Let
C0 be a 10−-cycle in G. Then, for every DP-3-coloring φ0 of C0, there exists a DP-3-coloring of G
whose restriction to C0 is φ0.

Corollary 1. Every planar graph in which the distance between 6−-cycles is at least 2 is DP-3-
colorable.

Proof. Let G be a planar graph. By Dvořák and Postle [9], if G is 4−-cycle free then G is
DP-3-colorable. So, we may assume that G contains a 4−-cycle and the 4−-cycle can be
precolored. Then, G has a DP-3-coloring extended from the coloring of the 4−-cycle by
Theorem 1 when the distance between 6−-cycles is at least 2 in G.

2. Proof of Theorem 1

To prove Theorem 1, we use the reductio ad absurdum. Let G be a counterexample
with the least number of vertices to Theorem 1. If G is 10−-cycle free then G is DP-3-
colorable by Dvořák and Postle [9]. So, we may assume that G contains a 10−-cycle C0.

The following Lemma 1 to Lemma 8 are about some crucial properties of the minimal
counterexample G.

Lemma 1. If v ∈ V(G− C0), then d(v) ≥ 3.

Proof. Let v ∈ V(G − C0) and d(v) ≤ 2. Because G is a minimal counterexample, we
can first extend φ0 of C0 to V(G)− {v}. Then we can select a color φ(v) for v such that
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(v, φ(v))(u, φ(u)) 6∈ E(Muv) for each neighbor u of v. Therefore, G has been colored, a
contradiction.

Lemma 2. C0 is the boundary of the outer face.

Proof. First, we show that C0 is not separating. For otherwise, if C0 is separating, G can
be colored by extending the coloring of C0 to both Int(C0) and Ext(C0), a contradiction.
Therefore, either Int(C0) or Ext(C0) is empty. Then we may assume that Ext(C0) is empty
without loss of generality. So C0 is the boundary of the outer face.

Lemma 3. There exist no separating 10−-cycles.

Proof. By Lemma 2, C0 is not a separating 10−-cycle. Let C 6= C0 be a separating 10−-cycle
in G. Because G is a minimal counterexample, we can first extend φ0 of C0 to G− Int(C).
Then the coloring of the cycle C can be extended to Int(C). Therefore, G has been colored,
a contradiction.

Lemma 4. Let C be a cycle in G. If |C| ≤ 7, then C has no chord. If C, 8 ≤ |C| ≤ 10, has a chord
e, then either e is triangular, or e splits C into a 7-cycle and a 4-cycle when |C| = 9, or e splits C
into a 8-cycle and a 4-cycle when |C| = 10, or e splits C into a 7-cycle and a 5-cycle when |C| = 10.

Proof. As the distance between 6− cycles is at least 2 in G, C cannot have a chord if |C| ≤ 7.
If |C| = 8, then C can only have a triangular chord. If |C| = 9, then either e is triangular or
e splits C into a 7-cycle and a 4-cycle. If |C| = 10, then either e is triangular or e splits C
into an 8-cycle and a 4-cycle, or e splits C into a 7-cycle and a 5-cycle.

Lemma 5. C0 has no chord.

Proof. If C0 has a chord e, then e must be one of the cases described in Lemma 4. Because
G has no separating 10−-cycles by Lemma 3, G has no other vertices except the vertices on
C0. Then the coloring of C0 is a coloring of G, a contradiction.

Lemma 6 ([18]). Let k ≥ 3 and H be a subgraph of G. If the vertices of H can be ordered as
v1, v2, · · · , vl such that the following hold

(1) v1vl ∈ E(G), and v1 has no neighbor in G− H,
(2) d(vl) ≤ k and vl has at least one neighbor outside of H,
(3) for each 2 ≤ i ≤ l − 1, vi has at most k− 1 neighbors in G[v1, · · · , vi−1]

⋃
(G− H),

then a DP-k-coloring of G− H can be extended to a DP-k-coloring of G.

A vertex is internal if it is not incident with C0 and a face is internal if it contains no
vertex on C0.

Lemma 7. Let f be an internal 7-face in G. If all vertices on f are vertices with degree 3, then f
cannot be adjacent to an internal 6−-face f1 such that all vertices on f1 are 3-vertices.

Proof. Let f = [v1v2w1w2w3w4w5] and f1 = [v1v2 · · · vi](i ∈ {3, 4, 5, 6}) such that v1v2
is the common edge of f and f1, and all vertices on f and f1 are vertices with degree 3.
Let H = {v1, w5, w4, w3, w2, w1, v2, v3, · · · , vi} (i ∈ {3, 4, 5, 6}). Order the vertices in H as
v1, w5, w4, w3, w2, w1, v2, v3, · · · , vi (i ∈ {3, 4, 5, 6}). Since f and f1 are internal faces, no
vertex in H is on C0. Because G is a minimal counterexample, we can first extend φ0 of C0
to G− H. Then by Lemma 6, the coloring of G− H can be extended to a coloring of G, a
contradiction.

Lemma 8. Let f be an internal 7-face in G. Let f1 be an internal 6−-face which is adjacent to f . If
except one vertex of f , all other vertices on f and f1 are 3-vertices, then each of following holds:
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(a) If f contains a (3, 4)-edge and is adjacent to another internal 6−-face f2 with the common (3,
4)-edge, then f2 has another vertex with degree at least 4.

(b) f cannot be adjacent to another internal 6−-face f2 such that all vertices on f2 are 3-vertices.

Proof. Let f = [v1v2 · · · v7] and f1 = [v1v2w1 · · ·wi] (i ∈ {1, 2, 3, 4}) with the common
(3, 3)-edge v1v2. Since the 6−-cycles in G are at a distance of at least 2 from each other,
by symmetry we may assume that the edge v4v5 is on f2 and f2 = [v4v5u1 · · · uj] (j ∈
{1, 2, 3, 4}).
(a) Suppose otherwise that all vertices in {u1 · · · uj} (j ∈ {1, 2, 3, 4}) are vertices with de-

gree 3. If d(v4) = 4, then Let H be the set of vertices listed as: v2, v3, v4, uj, · · · , u1, v5,
v6, v7, v1, wi, · · · , w1 (i ∈ {1, 2, 3, 4}) and (j ∈ {1, 2, 3, 4}). If d(v5) = 4, then Let
H be the set of vertices listed as: v1, v7, v6, v5, u1, · · · , uj, v4, v3, v2, w1, · · · , wi (i ∈
{1, 2, 3, 4}) and (j ∈ {1, 2, 3, 4}). Since f , f1 and f2 are internal faces, no vertex in
H is on C0. Because G is a minimal counterexample, we can first extend φ0 of C0 to
G− H. Then by Lemma 6, the coloring of G− H can be extended to a coloring of G, a
contradiction.

(b) Suppose otherwise that f2 is an internal 6−-face and that all vertices on f2 are
3-vertices. Since f has six vertices with degree 3, by symmetry we assume that
d(v6) = 3. Let u be the neighbor of u1 not on f2. We can rename the lists of vertices
in {u1, v5, v4, v6, v7} such that each edge in {uu1, u1v5, v4v5, v5v6, v6v7} is straight.
Consider the graph G′ obtained from G− {v6, v5, v4, u1, · · · , uj} (j ∈ {1, 2, 3, 4}) by
identifying v7 and u. We claim that no new loops, multiple edges or cycles with length
3, 4, 5 or 6 are created. Otherwise, there is a {1, 2, 3, 4, 5, 6}-path from v7 to u in G,
which together with v6, v5, u1 forms a cycle C, 5 ≤ d(C) ≤ 10. Since f2 is a 6−-face, C
cannot be a 6−-cycle.

• If v4 is in Int(C) see Figure 1a, then C is a separating {7, 8, 9, 10}-cycle, it is a
contradiction to Lemma 3.

• If v4 is not in Int(C) see Figure 1b. Since f is a 7-cycle and d(v6) = 3, by Lemma
3 and 4, v6 must be incident with an edge e in Int(C). The other end vertex of e is
either on C or not. If it is on C, then e is a chord of C. By Lemma 4, 8 ≤ d(C) ≤ 10
and e is on a 5−-cycle C′. Then the distance between C′ and f2 is at most 1, a
contradiction. If it is not on C, then it is in Int(C). So C must be a separating
{7, 8, 9, 10}-cycle, it is a contradiction to Lemma 3. Because none of v7 and u is
on a 6−-cycle, the 6−-cycles in G′ are at a distance of at least 2 from each other.
Now, we claim that no new chord in C0 is formed in G′. For otherwise, u is on C0
and v7 is adjacent to a vertex v′7 on C0, then there is a path between v′7 and u on
C0 with length at most five, which forms a {6, 7, 8, 9, 10}-cycle with u1, v5, v6, v7.
Similar to the proof above, it does not occur.
Since C0 is still the boundary of the outer face of the embedding of G′, the
coloring of C0 can be extended to G′ by minimality of G. Now keep the colors of
all vertices in G′ and color v7 and u with the color of the identified vertex. Now
color v6, and then color u1 with the color of v6. We can do this because the edges
in {uu1, u1v5, v4v5, v5v6, v6v7} are straight and the color of v6 is different from
the color of v7 and u. If | f2| = 3, then we color v4, v5 in the order. If | f2| = 4, 5 or
6, then we color u2, · · · , uj, v4, v5 (j ∈ {2, 3, 4}) in the order. Then we obtain a
coloring of G, a contradiction.

Let f0 be the outer face of the embedding of G. We are now ready to present a
discharging procedure. We set the initial charge of every vertex v ∈ V(G) to be µ(v) =
2d(v)− 6, of every face f 6= f0 in our fixed plane drawing of G to be µ( f ) = | f | − 6, and
set µ( f0) = | f0|+ 6. Then ∑x∈V

⋃
F µ(x) = 0 by Euler’s Formula.
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Figure 1. The identification of u and v7.

let Fk = { f : V( f )
⋂

V(C0) 6= ∅ and f be a k-face}. A 7-face f is special when f is in
F7 and adjacent to two internal 6−-faces. We say a vertex v is rich to a 7+-face f when v is
on f and not on a 5−-face which is adjacent to f .

The discharging rules:
(R1): If v is an internal 4-vertex and on a 5−-face f , then v gives 3

2 to f .
(R2): If v is an internal 5+-vertex, then v gives 3

2 to its incident 5−-face if any and 1
2 to

its incident 7-face if any.
(R3): Each 7+-face f ( f 6= f0) gives 1

2 to its adjacent internal (3, 3, 4+)-face if any, 1
8 to

its adjacent internal (3, 3, 3, 4+)-face if any, 1 to its adjacent internal (3, 3, 3)-face if any, 1
2

to its adjacent internal (3, 3, 3, 3)-face if any and 1
5 to its adjacent internal (3, 3, 3, 3, 3)-face

if any.
(R4): Each internal 7-face receives 1

2 from its incident rich 4-vertex.
(R5): After (R3) and (R4), each 7+-face gives all its remaining charge to f0.
(R6): The outer face f0 receives µ(v) from each v ∈ C0, gives 1 to each special 7-face if

any, 3 to each face in F3 if any, 2 to each face in F4 if any and 1 to each face in F5 if any.
Let µ∗(x) denote the final charge of x ∈ V

⋃
F. To lead to a contradiction, we will

prove that µ∗(x) ≥ 0 for all x ∈ V
⋃

F \ { f0} and µ∗( f0) > 0.

Lemma 9. For all v ∈ V, µ∗(v) ≥ 0.

Proof. Since f0 receives µ(v) from each v ∈ C0 by (R6) whether µ(v) is positive or not,
µ∗(v) = 0 when v is on C0. Let v be an internal vertex in G, then by Lemma 1 d(v) ≥ 3. If
d(v) = 3, then µ∗(v) = 2d(v)− 6 = 0.

Because the 6−-cycles in G are at a distance of at least 2 from each other, each vertex
can be incident with at most one 6−-face. Let d(v) = 4. If v is on a 5−-face f , then v
gives 3

2 to f and 1
2 to its incident 7-face when v is rich to the 7-face by (R1) and (R4). If

v is not on a 5−-face, then by (R4) v gives at most 1
2 to each incident face. Thus, µ∗(v) ≥

2d(v)− 6−max{ 3
2 + 1

2 , 1
2 × 4} = 0.

Let d(v) ≥ 5. By (R2), v gives 3
2 to its incident 5−-face if any and at most 1

2 to each
other incident face. Thus, µ∗(v) ≥ 2d(v)− 6− 3

2 −
1
2 × (d(v)− 1) > 0.

Lemma 10. For all f ∈ F− { f0}, µ∗( f ) ≥ 0.

Proof. Let | f | = 3. If V( f )
⋂

V(C0) 6= ∅, then by (R6) f receives 3 from f0, so µ∗( f ) =
| f | − 6 + 3 = 0. Now let V( f )

⋂
V(C0) = ∅. If V( f ) contains at least two 4+-vertices, then

by (R1) and (R2) f receives 3
2 from each of the 4+-vertices. So µ∗( f ) ≥ | f | − 6 + 3

2 × 2 = 0.
If V( f ) contains exactly one 4+-vertex, then f receives 3

2 from the 4+-vertex and receives 1
2

from each of its adjacent 7+-faces by (R1), (R2) and (R3). So µ∗( f ) ≥ | f | − 6+ 3
2 +

1
2 × 3 = 0.

If f is an internal (3, 3, 3)-face, then f receives 1 from each of the adjacent 7+-faces by (R3).
So µ∗( f ) ≥ | f | − 6 + 1× 3 = 0.
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Let | f | = 4. If V( f )
⋂

V(C0) 6= ∅, then by (R6) f receives 2 from f0, so µ∗( f ) =
| f | − 6 + 2 = 0. Now let V( f )

⋂
V(C0) = ∅. If V( f ) contains at least two 4+-vertices, then

f receives 3
2 from each of the 4+-vertices by (R1) and (R2). So µ∗( f ) ≥ | f | − 6 + 3

2 × 2 > 0.
If V( f ) contains exactly one 4+-vertex, then f receives 3

2 from the 4+-vertex and receives 1
8

from each adjacent 7+-face by (R1), (R2) and (R3). So µ∗( f ) ≥ | f | − 6 + 3
2 + 1

8 × 4 = 0. If
f is an internal (3, 3, 3, 3)-face, then f receives 1

2 from each adjacent 7+-face by (R3). So
µ∗( f ) ≥ | f | − 6 + 1

2 × 4 = 0.
Let | f | = 5. If V( f )

⋂
V(C0) 6= ∅, then by (R6) f receives 1 from f0, so µ∗( f ) =

| f | − 6 + 1 = 0. Now let V( f )
⋂

V(C0) = ∅. If V( f ) contains a 4+-vertex, then f receives 3
2

from the 4+-vertex by (R1) and (R2). So µ∗( f ) ≥ | f | − 6+ 3
2 > 0. If f is an internal (3, 3, 3, 3,

3)-face, then f receives 1
5 from each adjacent 7+-face by (R3). So µ∗( f ) ≥ | f | − 6+ 1

5 × 5 = 0.
Let | f | = 6, by our rules f sends out nothing, so µ∗( f ) = | f | − 6 = 0.
Let | f | ≥ 7. By (R3) f needs to give 1

2 to its adjacent internal (3, 3, 4+)-faces if any,
1
8 to its adjacent internal (3, 3, 3, 4+)-faces if any, 1 to its adjacent internal (3, 3, 3)-faces
if any, 1

2 to its adjacent internal (3, 3, 3, 3)-faces if any and 1
5 to its adjacent internal

(3, 3, 3, 3, 3)-faces if any. Since the distance between 6−-cycles is at least 2, f is adjacent to
at most b | f |3 c internal 6−-faces. If | f | ≥ 8, then µ∗( f ) ≥ | f | − 6− 1× b | f |3 c ≥ 0.

Let | f | = 7. Since the distance between 6−-cycles is at least 2, f is adjacent to at most
2 internal 6−-faces. Let V( f )

⋂
V(C0) 6= ∅. If f is adjacent to at most one internal 6−-face,

then by R(3) f gives at most 1 to the adjacent 6−-face if any. So µ∗( f ) ≥ | f | − 6− 1 = 0.
If f is special, then f gives at most 1 to the adjacent 6−-faces and receives 1 from f0, so
µ∗( f ) = | f | − 6 − 2 + 1 = 0. Now let V( f )

⋂
V(C0) = ∅. If f is adjacent to at most

one internal 6−-face, then by R(3) f gives at most 1 to the adjacent 6−-face if any. So
µ∗( f ) ≥ | f | − 6− 1 = 0. Let f be adjacent to two internal 6−-faces. If none of the 6−-faces is
a (3, 3, 3)-face, then by R(3) f gives at most 1

2 × 2 to the 6−-faces, so µ∗( f ) ≥ | f | − 6− 1 = 0.
If one of the 6−-faces has at least two 4+-vertices, then the 6−-face receives nothing from f
by (R3), so µ∗( f ) ≥ | f | − 6− 1 = 0. So, we assume that f is adjacent to a (3, 3, 3)-face f1
and another 6−-face f2 that f2 has at most one 4+-vertex. By Lemma 7, f has at least one
4+-vertex.

• If f2 shares a (3, 4+)-edge with f , then f contains another 4+-vertex v′. For otherwise,
f2 has at least two 4+-vertices by Lemma 8(1), a contradiction. Since | f | = 7 and the
distance between 6−-cycles is at least 2, f can be adjacent to at most two 6−-faces. So,
if d(v′) = 4, then v′ must be rich and gives 1

2 to f by (R4). If d(v′) ≥ 5, then v′ gives 1
2

to f by (R2). So µ∗( f ) ≥ | f | − 6− 1− 1
2 + 1

2 = 0.
• If f2 shares a (3, 3)-edge with f . If all vertices on f2 are 3-vertices, then f contains

at least two 4+-vertices. For otherwise, f2 cannot be a 6−-face that all vertices on f2
are 3-vertices by Lemma 8(2). Since | f | = 7 and the distance between 6−-cycles is at
least 2, f can be adjacent to at most two 6−-faces. So, if one of the 4+-vertices is a
4-vertex, then it must be rich and gives 1

2 to f by (R4). If one of the 4+-vertices is a
5+-vertex, then it gives 1

2 to f by (R2). So µ∗( f ) ≥ | f | − 6− 1× 2 + 1
2 × 2 = 0. If f2

contains a 4+-vertex, then f has a 4+-vertex v′′ because f1 is a (3, 3, 3)-face by Lemma
7. Since | f | = 7 and the distance between 6−-cycles is at least 2, f can be adjacent to at
most two 6−-faces. So, if d(v′′) = 4, then v′′ must be rich and gives 1

2 to f by (R4). If
d(v′′) ≥ 5, then v′′ gives 1

2 to f by (R2). So µ∗( f ) ≥ | f | − 6− 1× 2 + 1
2 × 2 = 0.

Lemma 11. µ∗( f0) > 0.

Proof. Suppose otherwise that µ∗( f0) ≤ 0. Let E(G − C0, C0) denote the set of edges
between G− C0 and C0. Let E′ be the set of edges which are in E(G− C0, C0) but not on
6−-faces. Let e′ be the number of edges in E′. Let x be the charges that f0 receives by (R5),
so x ≥ 0. Let `i be the number of faces in Fi (i ∈ {3, 4, 5, 6}). Since C0 has no chord by
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Lemma 5, each face in F3, F4, F5 and F6 has at least two edges in E(G− C0, C0). Let `7 be
the number of special 7-faces. By (R5) and (R6),

µ∗( f0) = | f0|+ 6 + ∑
v∈C0

(2d(v)− 6)− 3`3 − 2`4 − `5 − `7 + x

= | f0|+ 6 + ∑
v∈C0

2(d(v)− 2)− 2d(C0)− 3`3 − 2`4 − `5 − `7 + x

= 6− | f0|+ 2|E(G− C0, C0)| − 3`3 − 2`4 − `5 − `7 + x

≥ 6− | f0|+ 4`3 + 4`4 + 4`5 + 4`6 + 2e′ − 3`3 − 2`4 − `5 − `7 + x

= 6− | f0|+ `3 + 2`4 + 3`5 + 4`6 + 2e′ − `7 + x

(1)

Equality holds when each 6−-face in F3, F4, F5 and F6 contains two edges in E(G− C0, C0).
We consider the cases.
Case 1. If G has a special 7-face f , then `7 > 0 and E(G − C0, C0)

⋂
E( f ) 6= ∅.

Because f is adjacent to two internal 6−-faces and the distance between 6−-cycles is at least
2, so each edge in E(G− C0, C0)

⋂
E( f ) is in E′ and f shares exactly one vertex or one edge

with C0. So e′ ≥ `7.

• Let e′ = `7 > 0 . If f is a special 7-face, then each edge in E(G − C0, C0)
⋂

E( f ) is
in E′ and |E(G − C0, C0)

⋂
E( f )| = 2. So `3 = `4 = `5 = `6 = 0. For otherwise

if f ′ is a 6−-face in Fi (i ∈ {3, 4, 5, 6}), then there must be two 8+-faces adjacent to
f ′ and containing vertices of C0, then e′ > `7, a contradiction. Since each special
7-face shares exactly one vertex or one edge with C0, `7 ≥ | f0|. By (1), µ∗( f0) ≥
6− | f0|+ 2e′ − `7 + x = 6− | f0|+ `7 + x > 0, a contradiction.

• Let e′ > `7 > 0 . By (1), µ∗( f0) ≥ 6− | f0|+ `3 + 2`4 + 3`5 + 4`6 + 2e′ − `7 + x ≥
6− | f0|+ `3 + 2`4 + 3`5 + 4`6 + 2(`7 + 1)− `7 + x = 8− | f0|+ `3 + 2`4 + 3`5 + 4`6 +
`7 + x. If | f0| ≤ 8, then µ∗( f0) ≥ 8− | f0| + `3 + 2`4 + 3`5 + 4`6 + `7 + x > 0, a
contradiction. If | f0| = 9, then µ∗( f0) ≥ 8− | f0|+ `3 + 2`4 + 3`5 + 4`6 + `7 + x =
−1 + `3 + 2`4 + 3`5 + 4`6 + `7 + x. Since µ∗( f0) ≤ 0, `7 ≤ 1. Recall `7 > 0, so `7 = 1.
Because e′ > `7 = 1 and 0 ≥ µ∗( f0) ≥ 6− | f0|+ `3 + 2`4 + 3`5 + 4`6 + 2e′ − `7 + x =
6− 9 + `3 + 2`4 + 3`5 + 4`6 + 2e′ − 1 + x, so e′ = 2 and `3 = `4 = `5 = `6 = x = 0. It
follows that C0 is adjacent to a 9+-face f which has at least 7 consecutive 2-vertices.
So x ≥ | f | − 6− d | f |−9

3 e > 0 by (R3), a contradiction. If | f0| = 10, then µ∗( f0) ≥
8− | f0|+ `3 + 2`4 + 3`5 + 4`6 + `7 + x = −2 + `3 + 2`4 + 3`5 + 4`6 + `7 + x. Since
µ∗( f0) ≤ 0, `7 ≤ 2. If `7 = 1, because e′ > `7 = 1 and 0 ≥ µ∗( f0) ≥ 6− | f0| +
`3 + 2`4 + 3`5 + 4`6 + 2e′ − `7 + x = 6− 10 + `3 + 2`4 + 3`5 + 4`6 + 2e′ − 1 + x, then
e′ = 2 and `3 + 2`4 + 3`5 + 4`6 + x ≤ 1. If `3 = 1, then `4 = `5 = `6 = x = 0 and C0
is adjacent to a 7+-face f which has at least 3 consecutive 2-vertices and is adjacent
to the 3-face in F3. So x ≥ | f | − 6− b | f |−5

3 c > 0 by (R3), a contradiction. If `3 = 0,
then `4 = `5 = `6 = 0, x ≤ 1 and C0 is adjacent to a 10+-face f which has at least
8 consecutive 2-vertices. So x ≥ | f | − 6− d | f |−10

3 e > 2 by (R3), a contradiction. If
`7 = 2, because e′ > `7 and e′ > `7 = 2 and 0 ≥ µ∗( f0) ≥ 6− | f0| + `3 + 2`4 +
3`5 + 4`6 + 2e′ − `7 + x = 6− 10 + `3 + 2`4 + 3`5 + 4`6 + 2e′ − 2 + x, then e′ = 3
and `3 = `4 = `5 = `6 = x = 0. Thus, the two 7-faces in F7 must share an edge in
E(G − C0, C0). Then C0 is adjacent to a 8+-face f which has at least 7 consecutive
2-vertices. So x ≥ | f | − 6− d | f |−8

3 e > 0 by (R3), a contradiction.

Case 2. If G has no special 7-faces, then `7 = 0. Recall that e′ ≥ 0

• Let e′ = 0 . By (1), 0 ≥ µ∗( f0) ≥ 6− | f0|+ `3 + 2`4 + 3`5 + 4`6 + x, `3 + 2`4 + 3`5 +
4`6 + x ≤ | f0| − 6. Since | f0| ≤ 10 and the distance between 6−-cycles is at least 2,
`3 ≤ 3.

Let `3 = 3. By (1), µ∗( f0) ≥ 6− | f0|+ 3+ 2`4 + 3`5 + 4`6 + x = 9− | f0|+ 2`4 + 3`5 +
4`6 + x. If | f0| ≤ 8, then µ∗( f0) ≥ 9− | f0|+ 2`4 + 3`5 + 4`6 + x > 0, a contradiction. If
| f0| = 9, then `4 = `5 = `6 = x = 0 and C0 is adjacent to a 7+-face f which has at least
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one 2-vertex and is adjacent to two 3-faces in F3. So x ≥ | f | − 6− b | f |−5
3 c > 0 by (R3), a

contradiction. If | f0| = 10, then `4 = `5 = `6 = 0 and x ≤ 1. It follows that C0 is adjacent
to three 7+-faces and each 7+-face f contains at least one 2-vertex and is adjacent to two
3-faces in F3. So x ≥ 3× [| f | − 6− b | f |−5

3 c] ≥ 3 by (R3), a contradiction.
Let `3 = 2. By (1), µ∗( f0) ≥ 6− | f0|+ 2+ 2`4 + 3`5 + 4`6 + x = 8− | f0|+ 2`4 + 3`5 +

4`6 + x. If | f0| ≤ 7, then µ∗( f0) ≥ 8− | f0|+ 2`4 + 3`5 + 4`6 + x > 0, a contradiction. If
| f0| = 8, then `4 = `5 = `6 = x = 0 and C0 is adjacent to a 7+-face f which has at least
2 consecutive 2-vertices and is adjacent to two 3-faces in F3. So x ≥ | f | − 6− b | f |−6

3 c > 0
by (R3), a contradiction. If | f0| = 9, then `4 = `5 = `6 = 0 and x ≤ 1. It follows that
C0 is adjacent to two 7+-faces that each 7+-face f contains at least one 2-vertex and is
adjacent to two 3-faces in F3. So x ≥ 2× [| f | − 6− b | f |−5

3 c] ≥ 2 by (R3), a contradiction.
If | f0| = 10, then `5 = `6 = 0 and `4 ≤ 1. If `4 = 1, then x = 0 and C0 is adjacent
to a 7+-face f which has at least one 2-vertex and is adjacent to two 3-faces in F3. So
x ≥ | f | − 6− b | f |−5

3 c > 0 by (R3), a contradiction. If `4 = 0, then x ≤ 2. It follows that C0
is adjacent to a 7+-face f1 which has at least one 2-vertex and is adjacent to two 3-faces in
F3, and a 8+-face f2 which has at least three 2-vertices and is adjacent to two 3-faces in F3.
So x ≥ | f1| − 6− b | f1|−5

3 c+ | f2| − 6− b | f1|−7
3 c ≥ 3 by (R3), a contradiction.

Let `3 = 1. By (1), µ∗( f0) ≥ 6− | f0|+ 1+ 2`4 + 3`5 + 4`6 + x = 7− | f0|+ 2`4 + 3`5 +
4`6 + x. If | f0| ≤ 6, then µ∗( f0) ≥ 7− | f0|+ 2`4 + 3`5 + 4`6 + x > 0, a contradiction. If
| f0| = 7, then `4 = `5 = `6 = x = 0 and C0 is adjacent to a 8+-face f which has at least
5 consecutive 2-vertices and is adjacent to the 3-face in F3. So x ≥ | f | − 6− b | f |−8

3 c > 0
by (R3), a contradiction. If | f0| = 8, then `4 = `5 = `6 = 0 and x ≤ 1. It follows that C0
is adjacent to a 9+-face which has at least 6 consecutive 2-vertices and is adjacent to the
3-face in F3. So x ≥ | f | − 6− b | f |−9

3 c ≥ 3 by (R3), a contradiction. If | f0| = 9, then `4 ≤ 1.
If `4 = 1, then then `5 = `6 = x = 0. It follows that C0 is adjacent to a 7+-face f which has
at least 2 consecutive 2-vertices and is adjacent to the 3-face in F3 and the 4-face in F4. So
x ≥ | f | − 6− b | f |−6

3 c > 0 by (R3), a contradiction. If `4 = 0, then `5 = `6 = 0 and x ≤ 2.
It follows that C0 is adjacent to a 10+-face which has at least 7 consecutive 2-vertices and
is adjacent to the 3-face in F3. So x ≥ | f | − 6− b | f |−10

3 c ≥ 4 by (R3), a contradiction. If
| f0| = 10, then `6 = 0 and `5 ≤ 1. If `5 = 1, then `4 = x = 0. It follows that C0 is adjacent
to a 7+-face f which has at least 2 consecutive 2-vertices and is adjacent to the 3-face in F3

and the 5-face in F5. So x ≥ | f | − 6− b | f |−6
3 c > 0 by (R3), a contradiction. If `5 = 0, then

`4 ≤ 1. If `4 = 1, then x ≤ 1. It follows that C0 is adjacent to two 7+-faces and each 7+-face
f contains at least one 2-vertex and is adjacent to the 3-face in F3 and the 4-face in F4. So
x ≥ 2× [| f | − 6− b | f |−5

3 c] ≥ 2 by (R3), a contradiction. If `4 = 0, then x ≤ 3 and C0 is
adjacent to a 11+-face f which has at least 8 consecutive 2-vertices and is adjacent to the
3-face in F3. So x ≥ | f | − 6− b | f |−11

3 c > 5 by (R3), a contradiction.
Let `3 = 0, then `4 + `5 + `6 > 0. For otherwise that G = C0. Since d(C0) ≤ 10 and

0 ≥ µ∗( f0) ≥ 6− | f0|+ 2`4 + 3`5 + 4`6 + x, `4 ≤ 2.
Let `4 = 2. By (1), µ∗( f0) ≥ 6− | f0|+ 4 + 3`5 + 4`6 + x = 10− | f0|+ 3`5 + 4`6 + x.

If | f0| ≤ 9, then µ∗( f0) ≥ 10− | f0|+ 3`5 + 4`6 + x > 0, a contradiction. If | f0| = 10, then
`5 = `6 = x = 0 and C0 is adjacent to a 7+-face f which has at least 2 consecutive 2-vertices
and is adjacent to the 4-faces in F4. Thus, x ≥ | f | − 6− b | f |−6

3 c > 0 by (R3), a contradiction.
Let `4 = 1. By (1), µ∗( f0) ≥ 6− | f0|+ 2 + 3`5 + 4`6 + x = 8− | f0|+ 3`5 + 4`6 + x.

If | f0| ≤ 7, then µ∗( f0) ≥ 8− | f0|+ 3`5 + 4`6 + x > 0, a contradiction. If | f0| = 8, then
`5 = `6 = x = 0 and C0 is adjacent to a 8+-face f which has at least 5 consecutive 2-vertices
and is adjacent to the 4-face in F4. So x ≥ | f | − 6− b | f |−8

3 c > 0 by (R3), a contradiction.
If | f0| = 9, then `5 = `6 = 0, x ≤ 1 and C0 is adjacent to a 9+-face f which has at least
6 consecutive 2-vertices and is adjacent to the 4-face in F4. So x ≥ | f | − 6− b | f |−9

3 c > 1
by (R3), a contradiction. If | f0| = 10, then `5 = `6 = 0, x ≤ 2 and C0 is adjacent to a
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10+-face f which has at least 7 consecutive 2-vertices and is adjacent to the 4-face in F4. So
x ≥ | f | − 6− b | f |−10

3 c > 2 by (R3), a contradiction.
Let `4 = 0, then `5 + `6 > 0. For otherwise that G = C0. Since d(C0) ≤ 10 and

0 ≥ µ∗( f0) ≥ 6− | f0|+ 3`5 + 4`6 + x, `5 ≤ 1.
Let `5 = 1. By (1), µ∗( f0) ≥ 6− | f0|+ 3 + 4`6 + x = 9− | f0|+ 4`6 + x. If | f0| ≤ 8,

then µ∗( f0) ≥ 9− | f0|+ 4`6 + x > 0, a contradiction. If | f0| = 9, then `6 = x = 0 and C0
is adjacent to a 8+-face f which has at least 5 consecutive 2-vertices and is adjacent to the
5-face in F5. So x ≥ | f | − 6− b | f |−8

3 c > 0 by (R3), a contradiction. If | f0| = 10, then `6 = 0,
x ≤ 1 and C0 is adjacent to a 9+-face f which has at least 6 consecutive 2-vertices and is
adjacent to the 5-face in F5. So x ≥ | f | − 6− b | f |−9

3 c > 1 by (R3), a contradiction.
Let `5 = 0, then `6 > 0. For otherwise that G = C0. Since d(C0) ≤ 10 and 0 ≥

µ∗( f0) ≥ 6 − | f0| + 4`6 + x, `6 = 1. If | f0| ≤ 9, then µ∗( f0) ≥ 10 − | f0| + x > 0, a
contradiction. If | f0| = 10, then x = 0 and C0 is adjacent to a 8+-face f which has at least 5
consecutive 2-vertices and is adjacent to the 6-face in F6. So x ≥ | f | − 6− b | f |−8

3 c > 0 by
(R3), a contradiction.

• Let e′ > 0 . By (1), 0 ≥ µ∗( f0) ≥ 6− | f0|+ `3 + 2`4 + 3`5 + 4`6 + 2e′ + x, `3 + 2`4 +
3`5 + 4`6 + 2e′ + x ≤ | f0| − 6. Since | f0| ≤ 10, e′ ≤ 2.

Let e′ = 2. By (1), µ∗( f0) ≥ 6− | f0|+ `3 + 2`4 + 3`5 + 4`6 + 4 + x = 10− | f0|+ `3 +
2`4 + 3`5 + 4`6 + x. If | f0| ≤ 9, then µ∗( f0) ≥ 10− | f0|+ `3 + 2`4 + 3`5 + 4`6 + x > 0, a
contradiction. If | f0| = 10, then `3 = `4 = `5 = `6 = x = 0. It follows that C0 is adjacent
to a 7+-face f which has at least 4 consecutive 2-vertices. So x ≥ | f | − 6− d | f |−7

3 e > 0 by
(R3), a contradiction.

Let e′ = 1. By (1), µ∗( f0) ≥ 6− | f0|+ `3 + 2`4 + 3`5 + 4`6 + 2 + x = 8− | f0|+ `3 +
2`4 + 3`5 + 4`6 + x. If | f0| ≤ 7, then µ∗( f0) ≥ 8− | f0|+ `3 + 2`4 + 3`5 + 4`6 + x > 0, a
contradiction. If | f0| = 8, then `3 = `4 = `5 = `6 = x = 0. It follows that C0 is adjacent to
a 9+-face f which has at least 7 consecutive 2-vertices. So x ≥ | f | − 6− d | f |−9

3 e > 0 by (R3),
a contradiction. If | f0| = 9, then `3 + 2`4 + 3`5 + 4`6 + x ≤ 1. So `3 ≤ 1. If `3 = 1, then
`4 = `5 = `6 = x = 0 and C0 is adjacent to a 7+-face f which has at least 3 consecutive
2-vertices and is adjacent to the 3-face in F3. So x ≥ | f | − 6 − b | f |−5

3 c > 0 by (R3), a
contradiction. If `3 = 0, then `4 = `5 = `6 = 0 and x ≤ 1. It follows that C0 is adjacent
to a 10+-face f which has at least 8 consecutive 2-vertices. So x ≥ | f | − 6− d | f |−10

3 e > 1
by (R3), a contradiction. If | f0| = 10, then `3 + 2`4 + 3`5 + 4`6 + x ≤ 2. So `3 ≤ 2.
If `3 = 2, then `4 = `5 = `6 = x = 0 and C0 is adjacent to a 7+-face f which has at
least one 2-vertex and is adjacent to the 3-faces in F3. So x ≥ | f | − 6− b | f |−5

3 c > 0 by
(R3), a contradiction. If `3 = 1, then `4 = `5 = `6 = 0 and x ≤ 1. It follows that C0
is adjacent to two 7+-faces. If one of the 7+-faces f is a 8+-face and contains at least
5 consecutive 2-vertices, then x ≥ | f | − 6− b | f |−7

3 c ≥ 2 by (R3), a contradiction. For
otherwise that all of 7+-faces contain at least 3 consecutive 2-vertices and are adjacent to
the 3-face in F3, then x ≥ 2× [| f | − 6− b | f |−5

3 c] ≥ 2 by (R3), a contradiction. If `3 = 0,
then 2`4 + 3`5 + 4`6 + x ≤ 2. So `4 ≤ 1. If `4 = 1, then `5 = `6 = x = 0 and C0 is adjacent
to a 7+-face f which has at least 3 consecutive 2-vertices and is adjacent to the 4-face in
F4. So x ≥ | f | − 6− b | f |−5

3 c > 0 by (R3), a contradiction. If `4 = 0, then `5 = `6 = 0,
x ≤ 2 and C0 is adjacent to a 11+-face f which has at least 9 consecutive 2-vertices. So
x ≥ | f | − 6− d | f |−11

3 e > 2 by (R3), a contradiction.

Proof of Theorem 1. From Lemmas 9–11, ∑x∈V
⋃

F µ∗(x) > 0, a contradiction to Euler’s
Formula. Thus, the counterexample G cannot exist. So, Theorem 1 is true.

3. Conclusions

The coloring theory of graphs is useful in many fields, such as discrete mathematics,
allocation of wireless communication channels, combinatorial optimization, computer
theory.
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It is well known that 3-COLORING is NP-complete for planar graphs. This provides
motivation for finding some sufficient conditions for 3-coloring of planar graphs. DP-
coloring is a stronger version of list coloring. Proving a planar graph to be DP-3-colorable
is harder than proving a planar graph to be 3-colorable.

It is unknown if there exists a planar graph in which the distance between 6−-cycles
at least 1 is not DP-3-colorable.
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