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ABSTRACT 
 

In this paper, we study the �(�, �)-gravitation theory under the assumption that the standard 
matter-energy content of the universe is a perfect fluid with linear barotropic equation of state within 
the framework of Bianchi-Type III model from the class of homogeneous and anisotropic universe 
models. However, whether such a restriction lead to any contradictions or inconsistencies in the 
field equations will create an issue that needs to be examined. Under the effective fluid approach, 
we will be concerned mainly the field equations in an orthonormal tetrad framework with an 
equimolar and examined the situation of establishing the functional form of �(�, �) together with the 
scale factors, which are their solutions. Unlike similar studies, which are very few in the literature, 
instead of assuming preliminary solutions, we determined the consistency conditions of the field 
equations by assuming the matter energy content of the universe as an isotropic perfect fluid for 
Bianchi-Type III. 
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1. INTRODUCTION 
 
Immediately after 1905, when Einstein's Special 
Theory of Relativity was proposed, many 
attempts to put Newton's Gravitation Theory 
within the framework of this theory failed in the 
light of some criteria such as internal 
inconsistency, incompatibility with observations, 
and inaccuracy in predictions. 
 
For this reason, the General Theory of Relativity 
(GRT), proposed by Einstein in 1916, describes 
gravitation in the language of the curvature of a 
4-dimensional space-time manifold. 
 
This theory both explained the centuries-old 
observational progression of the perihelian point 
of Mercury and predicted that the light passing 
around the Sun would be deflected due to the 
gravitation field of the Sun, and gave the correct 
amount of deflection. When compared with 
alternative theories such as the Brans-Dicke 
scalar-tensor theory and membrane-universe 
theories that emerged in the following years, it is 
seen that the GRT is still the most successful 
gravitation theory in events related to our solar 
system, that is, at the local scale. On the other 
hand; the application of the GRT field equations 
in the field of astrophysics and cosmology, that 
is, to much larger scales such as galaxies and 
intergalactic environments and the universe as a 
whole, has also contributed to obtaining results 
that are largely compatible with observations. For 
example: Big Bang, 2.7 K Cosmic microwave 
background (CMB) radiation, expansion of the 
universe, formation of large scale structures 
(galaxies), existence of black holes, etc. 
However, there are situations where the GRT or 
Relativist Cosmology based on it is insufficient. 
Based on observations, it is not yet sufficient to 
explain the problems such as the isotropisation 
of the universe, the flatness of the space, the 
horizon problem.  
 
Let us now consider the astrophysical and 
cosmological observational developments that 
have made the validity of GRT at large scales 
questionable. The first of these is the issue called 
“Dark Matter” (DM). Observations on our Galaxy, 
initiated with Zwickki in the early 30’s, have 
raised some doubts that there is a missing mass 
in our Galaxy. Based on these observations, the 
ratio of DM, which should be in the universe, to 
the total matter is approximately %27. 
 
The second issue is the surprising result 
obtained in 1998 from the observations of 

Supernova Type-Ia with high red-shift; because 
until then, it was believed that the universe has 
decelerating expansion, but these observations 
show that this was not the case; on the contrary, 
they have given results that the expansion 
occurs by accelerating. The amount of matter-
energy measured for the universe cannot explain 
such an acceleration if it remains within the 
GRT's Relativist Cosmology. Because this 
"luminous matter", which we will call normal 
matter, is at most about %5 of the matter energy 
content of the universe, and this is almost one-
fifteenth of the %73 required for acceleration. 
 
Here, the remaining %68 of matter-energy is 
called "Dark Energy" (DE), and in order for this to 
cause the acceleration observed today, unlike 
the standard types of matter, it must be 
extremely negative pressure. 
 
In fact, it is possible to explain the acceleration in 
question without assuming such an over 
pressurized exotic matter-energy when staying in 
GRT. The simplest candidate for this DE is the 
cosmological constant Λ, which corresponds to 
an effective fluid with a state parameter equal to -
1, and therefore it was thought that  Λ should be 
contained in the field equations. A second 
candidate for DE is various scalar fields imported 
into the Lagrangian of matter in the Einstein-
Hilbert (EH) action. Such models are referred to 
as “quintessence” (=fifth element, scalar field). 
However, this creates a situation like explaining 
an unknown with another unknown that has 
never been observed until now. Moreover, the 
importation of such fields into the Einstein Field 
Equations (EFE) also creates improprieties in 
tests related to the solar system. 
 
Both of the above approaches are aimed at 
changing the content of the energy-momentum 
tensor that forms the right-hand side of the EFE’s 
to create a matter-energy corresponding to DE. 
In Lagrangian formulation language, that means 
making appropriate changes to the matter 
Lagrangian.  
 
The alternative to this approach is to modify the 
left side of the EFE, that is, to replace the 
geometric Lagrange, which is linear with respect 
to �  in the EH-action, by an arbitrary function 
�(�, �, ������, . . . )  of the curvature invariants. 
The modified Einstein theory created in this way 
is called as �(�, �, ������, . . . ) -gravity [1,2,3]. 
Here �  is called as Gauss-Bonnet curvature 
invariant which is defined by a combination 
formed from the Riemann curvature tensor ����� 
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which are contractions of the ��� = ��
���  Ricci 

curvature tensor and the � = ��
�  Ricci curvature 

scalar as � = �����
���� − 4������ + �� 

[4,5,6,7,8]. In the literature; in order to simplify 
the equations of �(�, �) , Locally Rotationally 
Symmetric (LRS) Bianchi-Type models based on 
the assumption � = � (or � = � or � = �)  are 
often considered to reduce the number of 
unknowns [9,10,11]. Apart from this 
simplification, which is often made in GRT for 
scale factors, one of the purposeful assumptions 
to obtain equations reduced to a single unknown 
is “to take the shear scalar proportional to the 
expansion scalar” [9,12,11]. Another assumption 
is to suggest some relations between the �  
function and a scale factor, such as the power-
law [13,9,14,1,12]. Besides these, there are also 
purposeful assumptions about some 
cosmological parameters such as the 
deceleration parameter �  and the Hubble 
parameter �  [13,14,12]. FLRW models are very 
special models based on very high symmetry, 
such as being spatially homogeneous and 
isotropic. If the isotropic assumption is relaxed, 
then there are less symmetrical models that are 
spatially homogeneous but isotropic. These 
models are called Bianchi-type models. 
Mathematically, a Bianchi-type spacetime is a 
family of space-typed hypersurfaces that remain 
invariant under a 3 -parameter �� (� = 3) 
isometric group. The examination of the structure 
of the Lie algebra, which is connected to the �� 
isometric group, which acts on space-type 
hypersurfaces as a simple transition, was first 
discussed by Bianchi and classified as 9 different 
types called I,II,…,IX, which are not isomorphic 
to each other. These types have been used 
extensively since 1960, especially in order to 
reveal the effect of isomorphism[15]. 
 
In this study, the consistency conditions 
Eq.(2.19), Eq.(2.20) and Eq.(2.21) in the 
existence of the unified framework in which the 
total effective energy-momentum tensor is 
essentially supplied by an ideal fluid. It seems 
like a pretty strong assumption since not all 
sources in the field equation of a theory of gravity 
can be considered an ideal fluid. For example, in 

General Relativity we know that the source of the 
Kerr metrics not an ideal fluid [16]. 
 
The paper is organized as follows. We will 
present information about the mathematical 
material of calculating Einstein Field Equations 
and modified field equations for �(�, �)  in an 
orthonormal tetrad framework in the framework 
of Bianchi-Type III metric. After all, we will 
determine the conditions for consistency of the 
field equations with this constraint under the 
assumption of the matter energy content of the 
universe as an isometric perfect fluid, unlike the 
very few similar purposeful studies for Bianchi-
Type III, rather than assuming preliminary 
solutions for the purpose taken as accepted in 
various articles in the literature. 
 

2. METHODS OF CALCULATING �(�, �)-
GRAVITY FIELD EQUATIONS 

 
The diagonal form of the Bianchi-Type III space-
time is considered in the form 
 
 ��� = −��� + ��(�)��� + ��(�)�������� + ��(�)���  
 
where �, is a real parameter with � ≠ 0 and �(�), 
�(�) and �(�) are functions of cosmic time t. 
 
Selection of EH action as 
 

  � =
�

��� ∫ ����−��(�, �)
�

+ ��                 (2.1) 

 
and theories with field equations obtained 
derived from here by taking variation according 
to the metric are called �(�, �) -gravity. Here, 

−� > 0  and ��� = �−�  are the determinant of 

the metric with signature +2  and invariant 
volume element of 4-dimensional space-time, 
and respectively respectively �� is the action of 
the Lagrange density �� of the matter-energy in 

the form of �� = ∫ ��
�

��−���. Taking variation 

of (1.1) with respect to the metric, that is, the field 
equations of �(�, �) -gravity is obtained in the 
following form: 

 

����� −
1

2
���� +

1

2
������ − ������ + ���□�� − 4������������ − 4���□�� − 2������� + 4��

������� + 4��
�������

− 4��
��

������� = �����
�                                                                                                                  (2.2) 

 

In this variation, we define: ��(�, �) = ��(�, �) ��⁄  and ��(�, �) = ��(�, �) ��⁄ ,  respectively [2]. 
 

Here, ���
�  is the energy-momentum tensor of the standard matter-energy fluid filling the universe. In 

order to be able to incorporate a variety of source terms in the Einstein Field Equations (EFE) [15], we 
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use the standard decomposition of the stress-energy tensor ��� with respect to a timelike vector field 
u (���� = −1), we can write standard matter-energy tensor ���, using the the superscript "�" as  
���

� = ������ + ��ℎ�� + ��
��� + ��

���

+ ���
�                                                                                                               (2.3) 

 
where �� :  energy density of standard matter, �� : isotropic pressure, ��

� : momentum density 
(energy flux), ���

�: anisotropic pressure,     ���� = 0,        ���
��� = 0,     ��

�� = 0,    ���
� = ���

�. 
Let's arrange the equation (2.2) to reveal the Einstein tensor. If we can write this equation in the form 
of 
 

��� = �� �
���

�

��

� +
1

����
�
1

2
���(� − ��� − ���) + ������ − ���□�� + 4������������ + 4���□��

+ 2�������
� ��−4��

������� − 4��
������� + 4��

��
���������                                                    (2.4) 

 
and define the following two effective energy-momentum tensors  
 

���
�.��

≡
���

�

��
                                                                                                                                                                     (2.5) 

 
and  
 

���
�� ≡

1

����
�
1

2
���(� − ��� − ���) + ������ − ���□�� + 4������������ + 4���□�� + 2�������

� �−4��
�������

− 4��
������� + 4��

��
��������                                                                                         (2.6) 

 
and also if we show their sum as 
 
���

�.�� ≡ ���
�.�� + ���

��                                                                                                                                          (2.7) 

 
then we obtain 
 

��� = �����
�.��                                                                                                                                         (2.8) 

 

���
�.��, which is defined by (2.5), is called effective matter-energy-momentum tensor. ���

��, which is 
made up of all geometric terms, corresponds to the energy-momentum tensor of an effective fluid. 

���
�.��, which is the total effective energy-momentum tansor, is the sum of these two, reflecting the 

expression of some kind of interaction between standard matter and geometry. On the other hand, it 
can also be shown that these 4-type energy-momentum tensors satisfy the following conservation 
laws [15,17,18]. 
 
����� ≡ 0 ⇒  �����

�.�� = 0,   �����
�.�� = 0,    �����

�� = 0,    �����
� = 0                                                    (2.9)             

                       
The above way of handling field equations is called the effective fluid approach 
 

2.1 Applying 1+3 Covariant Decomposition 
 

It is to do 1+3 decomposition of field equations in comoving orthonormal tetrad frame. This method; 
defines an comoving orthonormal tetrad frame of �� and ℎ�� , a unit timelike vector field � determines 
a projection tensor ℎ�� according to ℎ�� = ��� + ����, which at each point projects into the 3-space 

orthogonal to �. It follows that ℎ�
�ℎ�

� = ℎ�
�,  ℎ�

��� = 0, ℎ�
� = 3.  

 

For example, 
 

������� = ���������
�.��     ⇒     ������� = ���������

�.��    ⇒    ��� = ����.��                                   (2.10) 

 
is obtained. 
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 Here: ��.�� is the effective total matter-energy density and it is easily understood that it is given in 
terms of components of energy momentum tensors as 
��.�� = ���

�.�� = ���
�.�� + ���

��

=
��

��

+
1

����
�−

1

2
(� − ��� − ���) + ������ + □�� −  4���������

� �+4���□�� + 2������� − 8��
�������

+ 4��
��

�
�������

=
��

��

+ ���                                                                                                                                                            (2.11) 
 

Similarly, the multiplication of both sides of the field equation by  
�

�
ℎ��   gives 

  
1

3
ℎ����� = ��

1

3
ℎ�����

�.��  ⇒  
1

3
(ℎ����� + ℎ����� + ℎ�����) = ����.�� 

                                                      ⇒  
1

3
(��� + ��� + ���) = ����.��                                                                                        (2.12) 

 
where ��.�� is the effective total pressure and it is easily understood that it is given as 
  

��.�� =
1

3
����

�.�� + ���
�.�� + ���

�.��� =
1

3
����

�.�� + ���
�.�� + ���

�.��� +
1

3
����

�� + ���
�� + ���

���

=
��

��

+
1

����

�
1

2
(� − ��� − ���) +

1

3
(������ + ������ + ������) − □�� + 4���������

�

+
4

3
(��� + ��� + ���)□�� +

2

3
�(������ + ������ + ������) −

8

3
(��

������� + ��
�������

+ ��
�������) + 4��

��
�

������) �+
4

3
�4��

��
�

������ + ��
��

�
������ + ��

��
�

��������

=
��

��
+ ���                                                                                                                                   (2.13) 

 

(Here, the property of ��� + ��� + ��� = 0 is used.) 
 

Similarly, as a result of multiplying with the remaining two operators, similar relations can be obtained 

for the total effective heat flux  ��
�.��

 and the total effective anisotropic pressure tensor ��
�.��

: 
 

��.��:        
�̇�̇

��
+

�̇�̇

��
+

�̇�̇

��
−

��

��      

= ��
��

��
+

1

��
�−

1

2
(� − ��� − ���)� − �

�̇

�
+

�̇

�
+

�̇

�
� ��̇   

+ ��−
12�̇�̇�̇

���
+

4��

��

�̇

�
� ��̇�                                                                                                                              (2.14) 

 

��.�� :        −
2

3
�

�̈

�
+

�̈

�
+

�̈

�
� −

1

3
�

�̇�̇

��
+

�̇�̇

��
+

�̇�̇

��
� +

1

3

��

��

= ��
��

��

+
1

��

�
1

2
(� − ��� − ���)� +

2

3
�

�̇

�
+

�̇

�
+

�̇

�
� �̇�      

+  ��̈+
4

3
�
�̇

�
�

�̈

�
+

�̈

�
� +

�̇

�
�

�̈

�
+

�̈

�
� +

�̇

�
�

�̈

�
+

�̈

�
�� ��̇

+ �4

3
��

�̇�̇

��
+

�̇�̇

��
+

�̇�̇

��
�

−
��

��
� ��̈�                                                                                                                                           (2.15) 

 

��
�.��

:         0 = 0                                                                                                                                                                2.16. a)     
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��
�.��

:         0
= 0                                                                                                                                                               (2.16. �) 
 

��
�.�� :        

�

�
�

�̇

�
−

�̇

�
� = −4

�

�
�

�̇

�
−

�̇

�
�

�̇

�

��̇

��

  ⇒  
�

�
�

�̇

�
−

�̇

�
� �1 +

4�̇

�

�̇�

��

�

= 0                                                                                                                                  (2.16. �) 
 

���
�.��

:       
1

3
�

2�̈

�
−

�̈

�
−

�̈

�
� +

1

3
�

�̇�̇

��
−

2�̇�̇

��
+

�̇�̇

��
� +

2

3

��

��

=
1

��

�
1

3
�−

2�̇

�
+

�̇

�
+

�̇

�
� ��̇

� −
4

3
�
�̇

�
�

�̈

�
+

�̈

�
� +   

�̇

�
�−

2�̈

�
+

�̈

�
� +

�̇

�
�

�̈

�
−

2�̈

�
�� �̇�

− �4

3
�

�̇�̇

��
−

2�̇�̇

��
+

�̇�̇

��

+
2��

��
� �̈��                                                                                   (2.17.a) 

 

���
�.��

:       
1

3
�−

�̈

�
+

2�̈

�
−

�̈

�
� +

1

3
�

�̇�̇

��
+

�̇�̇

��
−

2�̇�̇

��
� −

1

3

��

��

=
1

��

�
1

3
�

�̇

�
−

2�̇

�
+

�̇

�
� �̇�

� −
4

3
�
�̇

�
�

�̈

�
−

2�̈

�
� +

�̇

�
�

�̈

�
+

�̈

�
� +

�̇

�
�−

2�̈

�
+

�̈

�
�� �̇�

− �4

3
�

�̇�̇

��
+

�̇�̇

��
−

2�̇�̇

��

−
��

��
� �̈��                                                                                   (2.17.b) 

 

���
�.��:       

1

3
�−

�̈

�
−

�̈

�
+

2�̈

�
� +

1

3
�−

2�̇�̇

��
+

�̇�̇

��
+

�̇�̇

��
� −

1

3

��

��

=
1

��

�
1

3
�

�̇

�
+

�̇

�
−

2�̇

�
� �̇�

� −
4

3
�
�̇

�
�−

2�̈

�
+

�̈

�
� +

�̇

�
�

�̈

�
−

2�̈

�
� +

�̇

�
�

�̈

�
+

�̈

�
�� �̇�

− �4

3
�−

2�̇�̇

��
+

�̇�̇

��
+

�̇�̇

��

−
��

��
� �̈��                                                                                           (2.17.c) 

 

���
�.��:       0 =

0                                                                                                                                                                 (2.17. �)       
 

���
�.��:       0 =

0                                                                                                                                                                 (2.17. �) 
 

���
�.��

:       0
= 0                                                                                                                                                                 (2.17. �) 
 
Now, starting from the three equations in (2.17), let’s create the following organized three auxiliary 
equation with side by side subtractions and label arranged forms with "�" symbols: 
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��� − ���:   
�̈

�
−

�̈

�
+

�̇

�
�

�̇

�
−

�̇

�
� + �

�̇

�
−

�̇

�
�

��̇

��

+ 4 �
�̇

�
�

�̈

�
−

�̈

�
� +

�̈

�
�

�̇

�
−

�̇

�
��

�̇�

��

+ 4
�̇

�
�

�̇

�
−

�̇

�
�

��̈

��

+
��

��
�1 +

4�̈�

��
�

= 0                                                                                                                                          (2.18. a) 
 

��� − ���:   
�̈

�
−

�̈

�
+

�̇

�
�

�̇

�
−

�̇

�
� + �

�̇

�
−

�̇

�
�

�̇�

��
+ 4 �

�̇

�
�

�̈

�
−

�̈

�
� +

�̈

�
�

�̇

�
−

�̇

�
��

�̇�

��
+ 4

�̇

�
�

�̇

�
−

�̇

�
�

�̈�

��
= 0  

                                                                                                                                                     (2.18. b) 
 

��� − ���:   
�̈

�
−

�̈

�
+

�̇

�
�

�̇

�
−

�̇

�
� + �

�̇

�
−

�̇

�
�

�̇�

��

+ 4 �
�̇

�
�

�̈

�
−

�̈

�
� +

�̈

�
�

�̇

�
−

�̇

�
��

��̇

��

+ 4
�̇

�
�

�̇

�
−

�̇

�
�

�̈�

��

−
��

��
�1 +

4�̈�

��

�

= 0                                                                                                                                                 (1.18. c) 
 

2.2 Consistency Conditions 
 
Describing the ordinary matter-energy content of the universe with a perfect fluid with only 
��(�) matter-energy density and ��(�) pressure, or in other words, the assumption of ��

� ≡ 0 and   
���

� ≡ 0  (�, �, . . . = 1,2,3) as the equation of state in the energy-momentum tensor of the fluid raises 

the question of whether the ��� and  ���  components of the field equations will be consistent with this 

assumption. In the following, this problem will be examined in terms of consistency with the perfect 
fluid assumption. 
 
Now, firstly let's consider the equation (2.16.c). For � ≠ 0, the cases where the consistency of this 
equation will be ensured are: 
 

(�)       1 + 4
�̇

�

�̇�

��
≠ 0 ���  

�̇

�
−

�̇

�
= 0   ⇔    � =

���  , (�� = �������� > 0)                                      (2.19)  
 

(�)       � ≠ ���  ���  1 + 4
�̇

�

�̇�

��
=

0                                                                                                                   (2.20)  
 

(�)       1 + 4
�̇

�

�̇�

��

= 0 ���  
�̇

�
−

�̇

�
= 0   ⇔    �

= ���                                                                                  (2.21) 
 

Before discussing the reflection of these conditions, which we will call "primary conditions", to the 
equations (2.18), let's arrange these equations as follows. Writing Eq. (2.18.a) by taking common 
factors as 
 

�
�̈

�
−

�̈

�
� �1 +

4�̇

�

�̇�

��

� + �
�̇

�
−

�̇

�
� �

�̇

�
+

�̇�

��

+
4�̈

�

��̇

��

+
4�̇

�

��̈

��

� +
��

��
�1 +

4�̈�

��

� = 0 

 
and also paying attention to that  
 

�̇

�
+

�̇�

��

+
4�̈

�

��̇

��

+
4�̇

�

��̈

��

=
1

���

��̇�� + ��̇� + 4�̈��̇ + 4�̇��̈� =
1

���

�

��
���� + 4�̇�̇�� 

 

we obtain, for (2.18. a)       
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�
�̈

�
−

�̈

�
�

1

���

���� + 4�̇�̇�� + �
�̇

�
−

�̇

�
�

1

���

�

��
���� + 4�̇�̇�� +

��

��
�1 +

4�̈�

��

� = 0 

 
or, multiplying by ���, we get 
 

�
�̈

�
−

�̈

�
� ���� + 4�̇��̇� + �

�̇

�
−

�̇

�
�

�

��
���� + 4�̇��̇� +

��

�
��� + 4��̈� = 0                                                    (2.22. a) 

Similarly, the equations (2.18.b) and (2.18.c) can be written as, respectively, 
  

�
�̈

�
−

�̈

�
� ���� + 4�̇��̇� + �

�̇

�
−

�̇

�
�

�

��
���� + 4�̇��̇� = 0                                                                                   (2.22. b) 

 

�
�̈

�
−

�̈

�
� ���� + 4�̇�̇�� + �

�̇

�
−

�̇

�
�

�

��
���� + 4�̇��̇� −

���

�� ��� + 4��̈� = 0                                                 (2.22. c) 

 
In this context, it would be appropriate to draw 
attention to these features: These three 
equations above are the revised ��� − ��� , 
��� − ���  and ��� − ���  equations, respectively. 
If one of them is identically zero, the remaining 
two equations become opposite signs of each 
other. Indeed, for example when  ��� − ��� ≡ 0, 
then here; ��� = ���  and therefore  ��� − ��� =
��� − ��� = −(��� − ���) . From this it follows 
that it would be sufficient for consistency to show 
that at least two of the equations (2.18) or (2.22) 
are satisifed identically. On the other hand, the 
equation satisfied identically, for example         
��� − ��� ≡ 0  equation, will in no way result in  
��� ≡ 0 or ��� ≡ 0 if additional information is not 
available. If other ��� − ��� ≡ 0 and ��� − ��� ≡
0  are provided, it gives ��� = ��� = ��� = 0 . 
However, if the property of  ��(���) ≡ ��� +

��� + ��� ≡ 0  is taken into consideration, it is 
necessary to conclude that ��� = ��� = ��� ≡ 0. 
In that case; The consistency of equations (2.18) 
is also equivalent to the consistency of equations 
(2.17. a,b,c). 
 
Now, consider the primary condition (�). Under 
this condition (2.22.b) is satisfied identically; It 
can be easily seen that (2.22.c) is equal to 
(2.22.a) with opposite sign. So the only 
independent equation that should be examined 
under the primary condition (�) is (2.22.a). This 
equation containing four unknowns 
�, �, � and  � − function , using the primary 
condition (�), reduced to the following equation 
as the equation with three unknowns: 
 

�
�̈

�
−

�̈

�
� ���� + 4�̇�̇�� + �

�̇

�
−

�̇

�
�

�

��
���� + 4�̇�̇��

+
��

���
��� + 4��̈�

= 0                                                    (2.23) 

 
At first glance, the situations in which this 
equation will be satisfied are as follows: 
 
(��)   �

= ���        (�� = �������� > 0)     and    �� + 4��̈

= 0                                                                       (2.24) 
(��)   ��� + 4�̇��̇ = 0       and       �� + 4�̈� =
0                                                                       (2.25)    
                                                             
Henceforth, these will be called the "secondary 
condition". It is worth to point out here that the 
condition (��) and (��) are fulfilled together, that 
is, a condition such as "� = ���    and   ��� +

4�̇�̇� = 0   and   �� + 4�̈� = 0"  cannot be written 
because it would contradict the primary condition 
(�). Now, the condition (��) considering together 
with (�), is reduces to condition 
 
� = ���
= ���        (�� = ����

> 0)                                                          (2.26) 
 
Therefore the Bianchi-type III model reduces to a 
model with a single scale factor, such as the RW 
model. The condition  (��)  consists of two 
relations that are formed in a way that does not 
require a condition such as � ∝ �  to be put 
forward. In this system of equations, by 
eliminating �� ,  the following equation can be 
obtained 
 

−��̈� + �̇��̇ = 0             ⇒              −
�̈�

�̇�

+
�̇

�
= 0 

 
Considering the relation � = ���  in the 

fundamental condition (�) , ��  and �� ≡
��

��
 being 

constants that can be positive or negative, 
integration of this last equation gives 
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�̇� = ���
= ���                                                               (2.27. a) 
 
From this equation, both from the system of 
equations and by derivation the following 
relations are obtained  
 

�̈� = ���̇
= ���̇                                                         (2.27. b) 
 
�� = −4���̇
= −4���̇                                                   (2.27. c) 
 

�̇� = −4���̈ =
−4���̈                                          (2.27. d)    
                                                                                                

�̈� = −4���� =
−4����                                             (2.27. e)    
                                                       
Now, although its effect is not seen in advance, it 
may be thought to put forward another condition 
different from (��)  and (��)  for the fulfillment of 
equation (2.23) as 
 

(��) � ≠ ��� ��� ��� + 4�̇�̇�

≠ 0 ��� �� + 4��̈

= 0                                                                           (2.28) 
 
In this case (1.23) equation, provided that 

� ≠ ���  and ��� + 4�̇�̇� ≠ 0 , can be written in 
the form of 
 

�̈� − ��̈

�̇� − ��̇
+

�
��

���� + 4�̇�̇��

��� + 4�̇�̇�

= 0                                                                   (2.29) 
 
The integration of this equation yields 
 

�
�̇

�
−

�̇

�
� ��� + 4

�̇

�
�̇��

=
�

���
                                      (2.30) 

 

where � is a constant of integration which can 

be positive or negative. A similar of this equation 

can be obtained by inserting � → � , if desired, 

using the relation � = ���  in the fundamental 

condition (�). 

Now, let us consider the primary condition (�), 
provided that � ≠ ��� . It can be expressed by 
the following equations which are equivalent to 
each other 
 
� ≠ ���; 

1 + 4
�̇

�

�̇�

��

= 0    ⇔     ��� + 4�̇�̇� = 0   ⇔    ��

= −4
�̇

�
�̇�   ⇔    ��̇

= −
1

4

�

�̇
��                                      (2.31) 

 
Under this condition, it is immediately seen that 
(2.22.b) is satisfied. In order to satisfy (2.22.a), at 
first glance, it seems that one of the following 
conditions will be sufficient. 
 
(��)       �

= ���        (�� = �������� > 0)     and    �� + 4��̈

= 0                                                                  (2.32) 
 
(��)       ��� + 4�̇��̇ = 0      and     �� + 4�̈�

= 0                                                                        (2.33) 
These will also called as “secondary condition”. 
Here again, let us note that a third secondary 

condition such as � = ���   and   ��� + 4�̇�̇� =

0   and   �� + 4�̈� = 0, which corresponds to the 
situation in which the conditions (��) and (��) are 
met together cannot be put forward; because 
combining it with (�)  leads to a result such as 
� ∝ � ,  � ∝ � ⇒  � ∝ � , which contradicts the 
primary condition (�) . Now, combining the 
secondary condition (��)  with the primary 
condition (�) can be expressed by the system of 
equations 
 

��� + 4�̇��̇

= 0                                                                     (2.34. a) 
 

�� + 4�̈�

= 0                                                                      (2.34. b) 
 
By first eliminating ��  between these two 
equations, it can be found 
 

−��̈� + �̇��̇ = 0 
 
Integrating this equation and again using the 

secondary condition (��) ,  give ��̇  and ��  and 
their derivatives with respect to time as follows 
 

�̇� = ���
= ���                                                             (2.35. a) 
 

�̈� = ���̇
= ���̇                                                            (2.35. b) 
 
�� = −4���̇
= −4���̇                                                         (2.35. c) 
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�̇� = −4���̈
= −4���̈                                                               (2.35. d) 
 

�̈� = −4����

= −4����                                                      (2.35. e) 
 
Here, �� is an arbitrary integration constant and 
�� is a new constant defined as �� = ����. Now, 
it is immediately seen that the remaining 
equation (2.22.c) is identically satisfied under the 
secondary condition (��), so that it does not have 
to be � ∝ �. 
 
Now, let's consider the secondary condition (��). 
Comparing the first relation in (��) with (2.31), it 
is understood that � = ���  and this relation 
causes equation (2.22.c) to be satisfied 
identically, without requiring any relation between 
� and �. The equations (2.32) correspond to the 
condition (��) . To summarize the result of the 
examinations so far regarding the condition (�); 
with � ≠ ��� , equations (2.35) are sufficient to 
satisfy equations (2.17.c) and (2.18) identically. 

 
On the other hand, although it is not clear 
whether (2.22) equations will be satisfied 
together, let’s impose the condition  

 
(��)        �� + 4�̈� =
0                                                                     (2.36)  

 
which is less restrictive than (��) and (��) under 
the primary condition (�). 

 
In this case, from (�) and (��) it is obtained less 
restrictive relations than (2.35) and (2.36) as 

 
�̇� = ���                                                   (2.37. a) 

 
�̈� = ���̇                                                     (2.37. b) 
  
�� = −4���̇                                                  (2.37. c) 
 

�̇� = −4���̈                                                  (2.37. d) 

 
�̈� = −4����                                                 (2.37. e) 

 
Putting these relations in equations (2.22.a), 
(2.22.b) and (2.22.c); (2.22.a) reduces to   

 

�
�̈

�
−

�̈

�
� �

�̇

�
−

�̇

�
� + �

�̇

�
−

�̇

�
� �

�̈

�
−

�̈

�
�

= 0                        (2.38) 
 

(2.22.b) is identically zero; and (2.22.c) gives the 
opposite sign of the above equation. If we can 
write Eq. (2.38) in the form of  

 
�̈� − ��̈

�̇� − ��̇
+

�̈� − ��̈

�̇� − ��̇
= 0 

 
its integration gives 

 
��̇� − ��̇���̇� − ��̇�

= �                                       (2.39. a) 

 
Or 

 

�
�̇

�
−

�̇

�
� �

�̇

�
−

�̇

�
�

=
�

����
                                                       (2.39. b) 

 
Here, �  is an integration constant that can be 
positive or negative. As will be noted, this set of 
conditions does not create a condition for scale 
factors as � ∝ � ∝ �. 
 
Now, finally, let's consider the primary condition 
(�). Under this condition, it can be easily seen 
that (2.22.b) is satisfied identically and (2.22.a) 
can be written as 
 

�
�̈

�
−

�̈

�
� ���� + 4�̇��̇� + �

�̇

�
−

�̇

�
�

�

��
���� + 4�̇�̇��

+
��

���
��� + 4�̈��

= 0                                                                             (2.40) 
 
This is satisfied in the following cases: 
 
(��)        � ∝ �  ��� �� + 4�̈�

= 0                                                                (2.41) 
 
(��)       ��� + 4�̇�̇� = 0  ��� �� + 4��̈

= 0                                                                 (2.42) 
 
(��)       � ∝ � ��� ��� + 4�̇�̇�

= 0  ��� �� + 4�̈�

= 0                                                                (2.43) 
 
When each of these secondary conditions is 
evaluated together with the primary condition 
(�), it can easily be found that they all lead to a 
single set of relations as follows: 
 
� ∝ � ∝ �                                                           (2.44. �) 
 



 
 
 
 

Güler and Güdekli; AJR2P, 4(3): 29-41, 2021; Article no.AJR2P.70383 
 
 

 
39 

 

 

Table 1. Consistency Conditions [18] 
 

(�)  
�̇

�
−

�̇

�
= 0 (⇔ � = ���)   ��    1 + 4

�̇

�

�̇�

��
≠ 0  

(��) � = ��� ��� �� + 4��̈ = 0   (��) ��� + 4�̇��̇ = 0 ��� �� + 4��̈ = 0          (��) �� + 4��̈ = 0  
         � = ��� = ���                          (� ∝ �  ��� ���������)                                 (� ∝ �  ��� ���������) 

                                                     ��̇ = ��� = ���                                           � ≠ �� ��� ��� + 4�̇��̇ ≠ 0   

                                                     ��̈ = ���̇ = ���̇                                               �
�̇

�
−

�̇

�
� ��� + 4

�̇

�
��̇� =

�

��� 

                                                     �� = −4���̇ = −4���̇                                             or 

                                                     ��̇ = −4���̈ = −4���̈                                   �
�̇

�
−

�̇

�
� ��� + 4

�̇

�
��̇� =

���
�

���                                                                     ��̈ = −4���� = −4����  

 

(�)  
�̇

�
−

�̇

�
≠ 0 (⇔ � ≠ ���)    ��   1 + 4

�̇

�

�̇�

��
= 0  

(��) � = ��� ��� �� + 4��̈ = 0       (��) ��� + 4�̇��̇ = 0 ��� �� + 4��̈ = 0               (��) �� + 4��̈ = 0 
 (� ∝ �  ��� ���������)                � = ��� (� ∝ �  ��� ���������)             (� ∝ � ∝ �  ��� ���������) 

     ��̇ = ��� = ���                                   ��̇ = ��� = ���                                             ��̇ = ���           

     ��̈ = ���̇ = ���̇                                  ��̈ = ���̇ = ���̇                                             ��̈ = ���̇ 
     �� = −4���̇ = −4���̇                        �� = −4���̇ = −4���̇                                    �� = −4���̇ 

     ��̇ = −4���̈ = −4���̈                        ��̇ = −4���̈ = −4���̈                                   ��̇ = −4���̈  

     ��̈ = −4���� = −4����                       ��̈ = −4���� = −4����                                   ��̈ = −4����          

                                                                                                                               �
�̇

�
−

�̇

�
� �

�̇

�
−

�̇

�
� =

�

����
   

(�)  
�̇

�
−

�̇

�
= 0(⇔ � = ���)    ���     1 + 4

�̇

�

��̇

��
= 0 

(��) � ∝ � ��� �� + 4��̈ = 0            (��) ��� + 4�̇��̇ = 0                               (��) � ∝ � ��� ��� + 4�̇��̇ = 0 

                                                                   ��� �� + 4��̈ = 0                                      ��� �� + 4��̈ = 0 
��� ��� 

(� ∝ � ∝ �) 

                                                                                  ��̇ = ��� = ��� = ��� 

                                                                                 ��̈ = ���̇ = ���̇ = ���̇ 
              �� = −4���̇ = −4���̇ = −4���̇ 

             ��̇ = −4���̈ = −4���̈ = −4���̈ 

            ��̈ = −4���� = −4���� = −4���� 
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�̇� = ��� = ���
= ���                                                                 (2.44. b) 
 

�̈� = ���̇ = ���̇
= ���̇                                                              (2.44. c) 
 
�� = −4���̇ = −4���̇
= −4���̇                                                          (2.44. d) 
 

�̇� = −4���̈ = −4���̈
= −4���̈                                                           (2.44. e) 
 

�̈� = −4���� = −4���� =
−4����                                                               (2.44. f)  
 

3. CONCLUSION 
 

Studies in the literature include: 
 

 The energy-momentum tensor is taken 
as a perfect fluid, and the work is carried 
out by resetting the anisotropic pressure 
and heat flux. However, the consistency 
conditions given by the reset are not 
addressed. 
 

 In the studied metrics, local rotational 
symmetries and A(t)=B(t) ... are 
assumed and solutions are proposed. 

 

 Solutions have been proposed by taking 
special cases in the f(R,G)-gravity 
function. 

 

In this study, we obtained all the                    
consistency conditions of the Bianchi-III model in 
detail, without taking the above specific 
assumptions and putting forward any   
restrictions. We discussed the �(�, �) -gravity 
theory under the assumption that the normal 
(standard) matter-energy content of the universe 
is a perfect fluid with the linear barotropic state 
equation, in the framework of the Bianchi Type-III 
model, which is the class of homogeneous               
and anisotropic universe models in space. We 
have handled this study differently from the very 
few similar-purpose studies in the literature. 
Instead of assuming pre-solutions for the 
purpose in advance, as is done in similar studies, 
assuming the matter-energy content of the 
universe as an isometric perfect fluid, we 
determined the conditions for the consistency of 
the field equations in case. In our next                
studies, we will consider the reflection of the 
consistency conditions we found for the Bianchi 
Type-III model with the remaining equations. We 
show all the above conditions in                        
Table 1. 
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