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1. Introduction

In this work, we formulate mixed problems with general boundary conditions for the
following dispersive equation:

ut +
l

∑
j=1

(−1)j+1D2j+1
x u + uDxu = 0, x ∈ (0, L); t > 0, (1)

where L is an arbitrary real positive number and l ∈ N. We propose Equation (1) because it
includes classical models such as the Korteweg-de Vries (KdV) equation, when l = 1 [1–4]
and the Kawahara equation, when l = 2 [5–8]. Dispersive equations posed on bounded and
unbounded intervals with the Dirichlet type boundary conditions were studied in [9–19].
It is known that the KdV and Kawahara equations were deduced on the whole real
line, however, approximating the line either by bounded or unbounded intervals, one
needs to consider initial-boundary value problems posed either on finite or semi-finite
intervals [2,4,9–11,13–15,17–22].

Last years, publications on dispersive equations of higher orders appeared [14,16,23–26].
Usually, Dirichlet conditions such as Di

xu(t, 0) = Di
xu(t, L) = Dl

xu(t, L) = 0, i = 0, . . . , l − 1;
t > 0 were imposed for Equation (1), see [25,26]. In [27], general mixed problems for linear
multi-dimensional (2b + 1)-hyperbolic equations were studied by means of functional
analisys methods. In [28], we have studied boundary value problems for the following
linear stationary dispersive equations on bounded intervals subject to general boundary
conditions at the endpoints of intervals:

λu +
l

∑
j=1

(−1)j+1D2j+1
x u = f (x), x ∈ (0, L); l ∈ N, (2)

where λ > 0 and f is a given function. Equation (2) appears while solving Equation (1)
making use of either the semigroup theory or semi-discrete approaches [13]. We formulate
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well posed initial-boundary value problems to Equation (1) imposing the same boundary
conditions as for Equation (2) [28].

Our goal is to prove the existence, uniqueness of local and global regular solutions for
the formulated problems as well as exponential decay for small initial data.

This article has the following structure: Section 2 contains notations and preliminaries.
In Section 3, we formulate the initial-boundary value problems. In Section 4, we prove
local existence and uniqueness of regular solutions as well as a “smoothing effect” of them
similar to one established in [29] for the initial problem of the KdV equation. In Section 5,
the global existence and uniqueness of regular solutions have been established for arbitrary
initial data. In Section 6, the existence and uniqueness of small global regular solutions as
well as their exponential decay have been established. Section 7 is a conclusion.

2. Notations and Auxiliary Facts

For x ∈ (0, L), symbols Di = Di
x = ∂i

∂xi , i ∈ N; D = D1 denote the partial derivatives
of order i. By ‖ · ‖∞ we denote the norm in L∞(0, L). In what follows, we denote by (·, ·)
and ‖ · ‖ as the inner product and the norm in L2(0, L) and ‖ · ‖Hm , m ∈ N stands for the
norm in L2-based Sobolev spaces [30].

Lemma 1 (See [26], Lemma 2.2). Let u belong to H1
0(0, L), then the following inequality holds:

‖u‖∞ ≤
√

2‖Du‖
1
2 ‖u‖

1
2 . (3)

Lemma 2 (See [31], p. 125). Suppose u and Dmu, m ∈ N belong to L2(0, L). Then for the
derivatives Diu, 0 ≤ i < m, the following inequality holds:

‖Diu‖ ≤ C1‖Dmu‖
i
m ‖u‖1− i

m + C2‖u‖, (4)

where C1, C2 are constants depending only on L, m, i.

Lemma 3 (See [32]). Let u belong to H1
0(0, L), then

‖u‖ ≤ L
π
‖Du‖. (5)

3. Formulation of the Problem

Consider the following evolution equation:

ut +
l

∑
j=1

(−1)j+1D2j+1u + uDu = 0, x ∈ (0, L); t > 0 (6)

subject to initial data

u(0, x) = u0(x), x ∈ (0, L), (7)

where u0 is a given function. In [28], formulation of boundary value problems for the
stationary linear equation Equation (2) on the interval (0, L) has been proposed. In the
present work, we will use the same formulation for Equations (6) and (7):
l = 1:

u(t, 0) = u(t, L) = Du(t, L) = 0, t > 0, (8)
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l ≥ 2:

u(t, 0) = u(t, L) = 0, t > 0, (9)

Diu(t, 0) =
l

∑
j=1

aijDju(t, 0), i = l + 1, . . . , 2l − 1; t > 0, (10)

Diu(t, L) =
l−1

∑
j=1

bijDju(t, L), i = l, . . . , 2l − 1; t > 0, (11)

where aij, bij are real constants. Assumptions on the coefficients imply that the L2-norm of
the solutions of Equation (6) is decreasing. Multiplying Equation (6) by u and integrating
over (0, L), we get

1
2

d
dt
‖u‖2(t) +

l

∑
j=1

(−1)j+1(D2j+1u, u)(t) = 0.

A way to obtain d
dt‖u‖

2(t) ≤ 0, t > 0 is to choose aij, bij such that

∑l
j=1(−1)j+1(D2j+1u, u)(t) ≥ 0, t > 0. Making use of integration by parts, finite induc-

tion and Young’s inequality, we prove that the coefficients aij, bij satisfy the following
conditions, see [28]:

For l = 2:

B1 = b31 −
1
2
−

b2
21
2

> 0, A1 = −a31 +
1
2
− a2

32 > 0, A2 =
1
4

. (12)

This implies that b31 > 1
2 , a31 < 1

2 , and |a32|, |b21| should be sufficiently small or zero.
For l = 3:

B1 = b31 − b51 −
1
2
− b2

31 −
1
2
(|b32|+ |b52|+ |b41|) > 0,

B2 = b42 −
1
2
− b2

32 −
1
2
(|b32|+ |b52|+ |b41|) > 0,

A1 = a51 −
1
2
− 1

2
(|a52|+ |a41|+ |a53|) > 0,

A2 = −a42 +
1
2
− 1

2
(|a52|+ |a41|+ |a43|) > 0,

A3 =
1
4
− 1

2
(|a53|+ |a43|) > 0.

(13)

This implies that b51 < − 1
2 , b42 > 1

2 , a51 > 1
2 , a42 < 1

2 and the remaining coefficients
in Inequality (13) should be sufficiently small or zero.

For l ≥ 4:

Bi =
l−i

∑
k=1

2k+i≥l

(−1)k+1b2k+i,i + (2− l) +
(1− l)

2
b2

li −
1
2

l−1

∑
j=1
j 6=i

( l−i

∑
k=1

2k+i≥l

|b2k+i,j|
)2

> 0, i = 1, . . . , l − 1,

Ai =
l−i

∑
k=1

2k+i≥l+1

(−1)ka2k+i,i + (5− 2l)− 1
2

l−1

∑
j=1
j 6=i

( l−i

∑
k=1

2k+i≥l+1

|a2k+i,j|
)2
− 1

2

l−i

∑
k=1

2k+i≥l+1

|a2k+i,l | > 0, i = 1, . . . , l − 1,

Al =
1
4
− 1

2

l−1

∑
i=1

( l−i

∑
k=1

2k+i≥l+1

|a2k+i,l |
)
> 0.

(14)
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It follows that

bl+1,l−1 > l − 2, bl+j,l−j >
1
2

( j−1
2

∑
m=1
|bl+2m−1,l−2m+1|

)2
+ l − 2, j = 3, . . . , l − 1︸ ︷︷ ︸

(j odd)

,

bl+2,l−2 < 2− l, bl+j,l−j < −
1
2

( j
2−1

∑
m=1
|bl+2m,l−2m|

)2
+ 2− l, j = 4, . . . , l − 1︸ ︷︷ ︸

(j even)

,

al+1,l−1 < 5− 2l, al+j,l−j < −
1
2

( j−1
2

∑
m=1
|al+2m−1,l−2m+1|

)2
+ 5− 2l, j = 3, . . . , l − 1︸ ︷︷ ︸

(j odd)

,

al+2,l−2 > 2l − 5, al+j,l−j >
1
2

( j
2−1

∑
m=1
|al+2m,l−2m|

)2
+ 2l − 5, j = 4, . . . , l − 1︸ ︷︷ ︸

(j even)

(15)

and the remaining coefficients of the Inequality (14) should be sufficiently small or zero.
Assuming these coefficients equal to zero in Inequalities (12)–(14), we get the following

boundary conditions for all l ∈ N, [28]:

u(t, 0) = u(t, L) = Dlu(t, L) = 0, t > 0,

Dl+ju(t, 0) = al+j,l−jDl−ju(t, 0), j = 1, . . . , l − 1; t > 0,

Dl+ju(t, L) = bl+j,l−jDl−ju(t, L), j = 1, . . . , l − 1; t > 0

(16)

with b31 > 1
2 , a31 < 1

2 for l = 2; b51 < − 1
2 , b42 > 1

2 , a51 > 1
2 , a42 < 1

2 for l = 3 and
Inequality (15) for l ≥ 4.

Remark 1 (See [28], Remark 1). We call (10) and (11) general boundary conditions because they
follow from a more general form:

2l−1

∑
i=1

αkiDiu(t, 0) = 0, k = 1, . . . , l − 1; t > 0,

2l−1

∑
i=1

βkiDiu(t, L) = 0, k = 1, . . . , l; t > 0,

where αki, βki are real numbers.

Remark 2. In this work, we will study the case l ≥ 2. For the case l = 1 see [26].

4. Local Regular Solutions

Let T be a real positive number and QT = (0, T)× (0, L). Consider the linear evolution
equation

ut +
l

∑
j=1

(−1)j+1D2j+1u = g(t, x) in QT (17)

subject to initial-boundary conditions Equations (7) and (16), with the coefficients satisfying
b31 > 1

2 , a31 < 1
2 for l = 2; b51 < − 1

2 , b42 > 1
2 , a51 > 1

2 , a42 < 1
2 for l = 3 and Inequality (15)

for l ≥ 4, where g is a given function. Define the linear operator in L2(0, L):

Au ≡
l

∑
j=1

(−1)j+1D2j+1u;
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D(A) ≡ {u ∈ H2l+1(0, L) : u satisfies the boundary conditions Equation (16)}.

Theorem 1 (See [28], Theorem 4.1). Let f ∈ L2(0, L). Then for all λ > 0 a stationary equation:
λu + Au = f (x), x ∈ (0, L) subject to boundary conditions Equation (16) (omitting t) admits a
unique regular solution u = u(x) ∈ H2l+1(0, L) satisfying

‖u‖H2l+1 ≤ C‖ f ‖ (18)

where C is a constant depending on L, l, λ, al+j,l−j, bl+j,l−j, j = 1, . . . , l − 1.

Theorem 2. Let T > 0, u0 ∈ D(A) and g ∈ H1(0, T; L2(0, L)) be given. Then, problem
Equations (7), (16) and (17) has a unique solution u = u(t, x):

u ∈ C([0, T]; D(A)) ∩ C1([0, T]; L2(0, L)).

Proof. Due to Theorem 1, the operator λI + A is surjective for all λ > 0. On the other
hand, by in [28], (33), we obtain

(Au, u) ≥
l−1

∑
i=1

Bi(Diu(L))2 +
l

∑
i=1

Ai(Diu(0))2 ≥ 0 for all u ∈ D(A). (19)

By the semigroup theory, the result is proven. (See [33], Lemma 2.2.3 and
Corollary 2.4.2)

Theorem 3. Let u0 ∈ D(A). Then there exists a real T0 ∈ (0, T) such that Equations (6), (7)
and (16) has a unique regular solution u = u(t, x):

u ∈ L∞(0, T0; H2l+1(0, L)) ∩ L2(0, T0; H(2l+1)+l(0, L));

ut ∈ L∞(0, T0; L2(0, L)) ∩ L2(0, T0; Hl(0, L)).

Proof. Define g = −vDv; v, vt ∈ L∞(0, T; L2(0, L)) ∩ L2(0, T; Hl(0, L)). Making use of
Inequality (3), one can see that g ∈ H1(0, T; L2(0, L)), then by Theorem 2, we can define an
operator P related to Equations (7), (16) and (17) such that v 7→ u = Pv. Define the Banach
space

E = {v(t, x) : v, vt ∈ L∞(0, T; L2(0, L)) ∩ L2(0, T; Hl(0, L)); v(0, ·) ≡ u0}

with the norm

‖v‖2
E = ess sup

t∈(0,T)
{‖v‖2(t) + ‖vt‖2(t)}+

∫ T

0

l

∑
j=1

[
‖Djv‖2(t) + ‖Djvt‖2(t)

]
dt

and consider 1 < R < +∞ such that

(1 + L)(1 + l)
(

2‖u0‖4
Hl + ‖u0‖2

H2l+1

)M2

M1
≤ R2 (20)

and a ball BR = {v ∈ E : ‖v‖2
E ≤ 8R2}. Here, M1 = min

i∈{1,...,l−1}
{Bi, Ai, Al} and M2 is the

maximum among the coefficients of the derivatives (Dlu(t, 0))2, (Diu(t, 0))2, (Diu(t, L))2,
i = 1, . . . , l − 1; t > 0 (see Inequality (19) and [28], p. 389).

Remark 3. Note that by Inequalities (12)–(14), Al =
1
4 for all l ≥ 2, therefore M1 ≤ 1

4 . On the
other hand, 1 ≤ M2 < +∞ for all l ≥ 2. This provides that M1

M2
≤ 1

4 for all l ≥ 2.

Lemma 4. There is a real T∗ > 0 such that P(BR) ⊂ BR.
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Proof. Let v ∈ BR, then due to Inequality (20), we get

‖Dv‖2(t) ≤ ‖Du0‖2 +
∫ T

0

[
‖Dv‖2(s) + ‖Dvs‖2(s)

]
ds ≤

(M1
M2

+ 8
)

R2 ≤ 9R2, t ∈ (0, T). (21)

Making use of Inequalities (3) and (21), we find

‖v‖2
∞(t) ≤ (34)R2, ‖vt‖2

∞(t) ≤ 2[8R2 + ‖Dvt‖2(t)], t ∈ (0, T). (22)

Estimate 1. Multiplying Equation (17) by 2u, integrating over (0, L) and making use of
Inequalities (21) and (22), we obtain

d
dt
‖u‖2(t) + 2M1U(t, 0, L) ≤ −2(vDv, u)(t) ≤ ‖vDv‖2(t) + ‖u‖2(t)

≤ ‖v‖2
∞(t)‖Dv‖2(t) + ‖u‖2(t) ≤ C1 + ‖u‖2(t), t ∈ (0, T), (23)

where U(t, 0, L) ≡ ∑l−1
i=1

[
(Diu(t, L))2 + (Diu(t, 0))2

]
+ (Dlu(t, 0))2 and C1 = 9(34)R4. By

the Gronwall Lemma and Inequality (20),

‖u‖2(t) ≤ eT
(R2

2
+ C1T

)
, t ∈ (0, T).

For T1 = min
{

ln 2, 2M1R2

C1 M2
, 2M1R2

C1 M2L

}
, we find

‖u‖2(t) ≤ 2R2, t ∈ (0, T1). (24)

Substituting Inequality (24) into Inequality (23), integrating the result over (0, T1) and
making use of Inequality (20), we get

∫ T1

0
U(t, 0, L)dt ≤ 1

2M1

[
3

M1

M2
R2 +

M1

M2
R2
]
=

2R2

M2
. (25)

Estimate 2. Multiplying Equation (17) by 2xu and making use of Inequalities (21), (22) (24),
we obtain

d
dt
(x, u2)(t) + 2L

l−1

∑
i=1

Bi(Diu(t, L))2 − 2M2U(t, 0, L) +
l

∑
j=1

(2j + 1)‖Dju‖2(t)

≤ L
[
‖vDv‖2(t) + ‖u‖2(t)

]
≤ L(C1 + 2R2), t ∈ (0, T1). (26)

Integrating Inequality (26) over (0, T1) and making use of Inequalities (20) and (25),
we conclude ∫ T1

0

l

∑
j=1
‖Dju‖2(t)dt ≤ 2R2. (27)

Estimate 3. Differentiating Equation (17) with respect to t, multiplying the result by 2ut
and making use of Inequalities (21) and (22), one gets for an arbitrary ε > 0

d
dt
‖ut‖2(t) + 2M1Ut(t, 0, L) ≤ ε

(
‖vtDv‖2(t) + ‖vDvt‖2(t)

)
+

2
ε
‖ut‖2(t)

≤ εC2

(
1 + ‖Dvt‖2(t)

)
+

2
ε
‖ut‖2(t), t ∈ (0, T),
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where Ut(t, 0, L) ≡ ∑l−1
i=1

[
(Diut(t, L))2 + (Diut(t, 0))2

]
+ (Dlut(t, 0))2 and C2 = C2(R) is

a fixed positive constant. Taking ε = M1
(16)M2C2

, we reduce it to the inequality

d
dt
‖ut‖2(t) + 2M1Ut(t, 0, L) ≤ (32)M2C2

M1
‖ut‖2(t) +

M1
(16)M2

(
1 + ‖Dvt‖2(t)

)
, t ∈ (0, T). (28)

By the Gronwall Lemma,

‖ut‖2(t) ≤ e
(32)M2C2

M1
T
[
‖ut‖2(0) +

M1

(16)M2

∫ T

0

(
1 + ‖Dvt‖2(t)

)
dt
]
.

Due to Inequalities (3) and (20),

‖ut‖2(0) ≤ (1 + l)
(
‖u0Du0‖2 + ‖u0‖2

H2l+1

)
≤ (1 + l)

(
2‖u0‖4

Hl + ‖u0‖2
H2l+1

)
≤ M1

(1 + L)M2
R2 ≤ R2

4
.

Choosing T2 = min
{

M1 ln 2
(32)M2C2

, M2
1

(64)M2
2C2

, 3M1
8(16)M2C2L2

}
, we find

‖ut‖2(t) ≤ 2R2, t ∈ (0, T2). (29)

Substituting Inequality (29) into Inequality (28), integrating the result over (0, T2) and
making use of Inequality (20), we get

∫ T2

0
Ut(t, 0, L)dt ≤ 1

2M1

[M1

M2
R2 + 2

M1

M2
R2 +

M1

M2
R2
]
=

2R2

M2
. (30)

Estimate 4. Differentiating Equation (17) with respect to t, multiplying the result by 2xut
and making use of Inequalities (21), (22) and (29), we obtain

d
dt
(x, u2

t )(t) + 2L
l−1

∑
i=1

Bi(Diut(t, L))2 − 2M2Ut(t, 0, L) +
l

∑
j=1

(2j + 1)‖Djut‖2(t)

≤ εL
(
‖vtDv‖2(t) + ‖vDvt‖2(t)

)
+

2L
ε
‖ut‖2(t) ≤ εLC2

(
1 + ‖Dvt‖2(t)

)
+

4L
ε

R2, t ∈ (0, T2).

Taking ε = M1
(16)M2C2L , integrating over (0, T2), and making use of Inequalities (20) and (30),

we find ∫ T2

0

l

∑
j=1
‖Djut‖2(t)dt ≤ 2R2. (31)

For T∗ = min{T1, T2}, it follows from Inequalities (24), (27), (29) and (31) that Pv =
u ∈ BR. This completes the proof of Lemma 4.

Lemma 5. There is a real T? > 0 such that the mapping P is a contraction in BR.

Proof. For v1, v2 ∈ BR, denote ui = Pvi, i = 1, 2, w = v1 − v2, z = u1 − u2 and
Z(t, 0, L) ≡ ∑l−1

i=1[(Diz(t, L))2 + (Diz(t, 0))2] + (Dlz(t, 0))2. Then z satisfies the equation

zt +
l

∑
j=1

(−1)j+1D2j+1z = −v1Dw− wDv2 in QT , (32)

boundary conditions Equation (16) and initial data z(0, ·) ≡ 0.
Similar arguments used in the proof of Lemma 4 show that ‖z‖E ≤ 1

2‖w‖E. Therefore,
P is a contraction in BR.



Mathematics 2021, 9, 165 8 of 17

According to Lemmas 4 and 5 and the Banach Fixed Point Theorem with
T0 = min{T∗, T?}, problem Equations (6), (7) and (16) has a unique generalized solution
u = u(t, x):

u ∈ L∞(0, T0; Hl(0, L)); (33)

ut ∈ L∞(0, T0; L2(0, L)) ∩ L2(0, T0; Hl(0, L)). (34)

Rewrite Equation (6) in the form

u +
l

∑
j=1

(−1)j+1D2j+1u = u− ut − uDu := F(t, x). (35)

Due to Relations (33) and (34), it follows that uDu ∈ H1(0, T0; L2(0, L)), hence
F ∈ L∞(0, T0; L2(0, L)). Making use of Inequality (18), we get

u ∈ L∞(0, T0; H2l+1(0, L)). (36)

Acting as in [26], Lemma 4.3, we find

u ∈ L2(0, T0; H(2l+1)+l(0, L)). (37)

Combining Relations (34), (36) and (37), we complete the proof of Theorem 3.

Remark 4. The local result presented in Theorem 3 can be obtained under the following boundary
conditions:

Diu(t, 0) =
l

∑
j=0

aijDju(t, 0), i = l + 1, . . . , 2l; t > 0, (38)

Diu(t, L) =
l−1

∑
j=0

bijDju(t, L), i = l, . . . , 2l; t > 0 (39)

instead of Equations (8)–(11) (see [28], Remark 3). We also call Equations (38) and (39) general
boundary conditions because they follow from a more general form:

2l

∑
i=0

αkiDiu(t, 0) = 0, k = 1, . . . , l; t > 0

2l

∑
i=0

βkiDiu(t, L) = 0, k = 1, . . . , l + 1; t > 0,

where αki, βki are real numbers (see Remark 1).

5. Global Regular Solutions

Theorem 4. Let u0 ∈ H2l+1(0, L) satisfying Equation (16). Then for all T > 0, problem
Equations (6), (7) and (16) has a unique regular solution u = u(t, x):

u ∈ L∞(0, T; H2l+1(0, L)) ∩ L2(0, T; H(2l+1)+l(0, L));

ut ∈ L∞(0, T; L2(0, L)) ∩ L2(0, T; Hl(0, L)).

Proof. We will obtain a priori estimates independent of t ∈ (0, T).
Estimate 1. Multiplying Equation (6) by 2u , we obtain

2(ut, u)(t) + 2M1U(t, 0, L) ≤ 0, (40)
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where U(t, 0, L) ≡ ∑l−1
i=1

[
(Diu(t, L))2 + (Diu(t, 0))2

]
+ (Dlu(t, 0))2 and

M1 = min
i∈{1,...,l−1}

{Bi, Ai, Al}.

Consequently,
‖u‖(t) ≤ ‖u0‖, t ∈ (0, T). (41)

Estimate 2. Multiplying Equation (6) by 2xu, we get

2(ut, xu)(t) + 2L
l−1

∑
i=1

Bi(Diu(t, L))2 − 2M2U(t, 0, L) +
l

∑
j=1

(2j + 1)‖Dju‖2(t) + 2(uDu, xu)(t) ≤ 0, (42)

where M2 is calculated in [28], p. 389. Making use of Inequalities (3) and (41), we estimate

2(uDu, xu)(t) = −2
3
(u, u2)(t) ≥ −2

√
2

3
‖Du‖

1
2 (t)‖u‖

1
2 (t)‖u‖2(t)

≥ −2
√

2
3
‖Du‖

1
2 (t)‖u0‖

5
2 ≥ −‖Du‖2(t)− C‖u0‖

10
3 , (43)

where C is a positive constant. On the other hand, due to Inequality (40) and the fact that
M2
M1
≥ 1 for all l ≥ 2, we get

−2M2U(t, 0, L) ≥ 2M2

M1
(ut, u)(t) ≥ 2(ut, u)(t). (44)

Substituting Inequalities (43) and (44) into Inequality (42), we find

d
dt
(1 + x, u2)(t) + 2‖Du‖2(t) +

l−1

∑
j=2

(2j + 1)‖Dju‖2(t) ≤ C‖u0‖
10
3 . (45)

After integration of Inequality (45) over (0, T), we conclude

∫ T

0

l

∑
j=1
‖Dju‖2(t)dt ≤ C‖u0‖2 (46)

where C = C(T, L, l, ‖u0‖) is a positive constant.
Estimate 3. Differentiate Equation (6) with respect to t, multiply the result by 2ut to obtain

2(utt, ut)(t) + 2M1Ut(t, 0, L) + 2(D[uut], ut)(t) ≤ 0, (47)

where Ut(t, 0, L) ≡ ∑l−1
i=1

[
(Diut(t, L))2 + (Diut(t, 0))2

]
+ (Dlut(t, 0))2. Making use of

Inequalities (3) and (41), we estimate for an arbitrary ε > 0

2(D[uut], ut)(t) = −2(uut, Dut)(t) ≥ −
1
ε
(|u|2, |ut|2)(t)− ε‖Dut‖2(t)

≥ − 2
ε
‖Du‖(t)‖u‖(t)‖ut‖2(t)− ε‖Dut‖2(t) ≥ −

( 1
ε2 ‖u0‖2 + ‖Du‖2(t)

)
‖ut‖2(t)− ε‖Dut‖2(t). (48)

Substituting Inequality (48) into Inequality (47), we find

Ut(t, 0, L) ≤ − 1
M1

(utt, ut)(t) +
1

2M1

( 1
ε2 ‖u0‖2 + ‖Du‖2(t)

)
‖ut‖2(t) +

ε

2M1
‖Dut‖2(t). (49)
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Estimate 4. Differentiate Equation (6) with respect to t, multiply the result by 2xut and
integrate over (0, L). The result reads

2(utt, xut)(t) + 2L
l−1

∑
i=1

Bi(Diut(t, L))2 − 2M2Ut(t, 0, L)

+
l

∑
j=1

(2j + 1)‖Djut‖2(t) + 2(D[uut], xut)(t) ≤ 0. (50)

Making use of Inequalities (3) and (41), we estimate

2(D[uut], xut)(t) = −2(uut, ut + xDut)(t) ≥ −2(|u|, u2
t )(t)− L2(u2, u2

t )(t)− ‖Dut‖2(t)

≥ −2
√

2‖Du‖
1
2 (t)‖u0‖

1
2 ‖ut‖2(t)− 2L2‖Du‖(t)‖u0‖‖ut‖2(t)− ‖Dut‖2(t)

≥ −C
(

1 + ‖Du‖2(t)
)
‖ut‖2(t)− ‖Dut‖2(t) (51)

for some positive constant C = C(L, ‖u0‖). On the other hand, taking into account
Inequality (49) with ε = M1

M2
and exploiting the relation M2

M1
≥ 1 for all l ≥ 2, we obtain

− 2M2Ut(t, 0, L) ≥ 2(utt, ut)(t)− C
(

1 + ‖Du‖2(t)
)
‖ut‖2(t)− ‖Dut‖2(t) (52)

for some positive constant C = C(M1, M2, ‖u0‖). Substituting Inequalities (51) and (52)
into Inequality (50), we get

d
dt
(1 + x, u2

t )(t) + ‖Dut‖2(t) +
l

∑
j=2

(2j + 1)‖Djut‖2(t) ≤ C
(

1 + ‖Du‖2(t)
)
(1 + x, u2

t )(t). (53)

Due to Inequality (46), 1 + ‖Du‖2(t) ∈ L1(0, T), whence by the Gronwall Lemma,

‖ut‖2(t) ≤ (1 + x, u2
t )(t) ≤ C

(
‖u0‖4

Hl + ‖u0‖2
H2l+1

)
. (54)

Substituting Inequality (54) into Inequality (53) and integrating over (0, T), we find

∫ T

0

l

∑
j=1
‖Djut‖2(t)dt ≤ C

(
‖u0‖4

Hl + ‖u0‖2
H2l+1

)
(55)

with a positive constant C = C(T, L, l, al+j,l−j, bl+j,l−j, ‖u0‖), j = 1, . . . , l − 1.
Estimates Inequalities (41), (46), (54) and (55) allow us to extend the local solution

ensured by Theorem 3 to all T > 0 and to prove the existence of a generalized solution
u = u(t, x):

u ∈ L∞(0, T; Hl(0, L)); ut ∈ L∞(0, T; L2(0, L)) ∩ L2(0, T; Hl(0, L)). (56)

Acting as by the proof of Theorem 3 and making use of Relation (56), we get

u ∈ L∞(0, T; H2l+1(0, L)) ∩ L2(0, T; H(2l+1)+l(0, L)).

The existence part of Theorem 4 is proved.

Lemma 6. A regular solution of Equations (6), (7) and (16) is uniquelly defined.
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Proof. Let u1 and u2 be two distinct regular solutions of Equations (6), (7) and (16), then
the difference w = u1 − u2 satisfies the equation

wt +
l

∑
j=1

(−1)j+1D2j+1w +
1
2

D[u2
1 − u2

2] = 0, (57)

boundary conditions Equation (16) and initial data w(0, ·) ≡ 0.
Estimate 5. Multiplying Equation (57) by 2w, we find

2(wt, w)(t) + 2M1W(t, 0, L) + (D[u2
1 − u2

2], w)(t) ≤ 0, (58)

where W(t, 0, L) ≡ ∑l−1
i=1

[
(Diw(t, L))2 + (Diw(t, 0))2

]
+ (Dlw(t, 0))2. Since u1, u2 are reg-

ular solutions of Equations (6), (7) and (16), then

‖ui‖Hl (t) ≤ C < +∞, i = 1, 2 for a.e. t ∈ (0, T), (59)

where C = C(L, l, al+j,l−j, bl+j,l−j), j = 1, . . . , 1− 1. Making use of Inequalities (3) and (59),
we estimate for an arbitrary ε > 0

(D[u2
1 − u2

2], w)(t) ≥ −(|u1 + u2||w|, |Dw|)(t) ≥ −‖u1 + u2‖∞(t)
( 1

2ε
‖w‖2(t) +

ε

2
‖Dw‖2(t)

)
≥ −2

√
2C
( 1

2ε
‖w‖2(t) +

ε

2
‖Dw‖2(t)

)
. (60)

Substituting Inequality (60) into Inequality (58), we obtain

W(t, 0, L) ≤ − 1
M1

(wt, w)(t) +
√

2C
M1

( 1
2ε
‖w‖2(t) +

ε

2
‖Dw‖2(t)

)
. (61)

Estimate 6. Multiplying Equation (57) by 2xw, we get

2(wt, xwt)(t) + 2L
l−1

∑
i=1

Bi(Diw(t, L))2 − 2M2W(t, 0, L)

+
l

∑
j=1

(2j + 1)‖Djw‖2(t) + 2(D[u2
1 − u2

2], xw)(t) ≤ 0. (62)

Making use of Inequalities (3) and (59), we estimate for an arbitrary ε > 0

2(D[u2
1 − u2

2], xw)(t) ≥ −(|u1 + u2||w|, |w|+ x|Dw|)(t)

≥ −‖u1 + u2‖∞(t)
(
‖w‖2(t) +

1
2ε
(x, w2)(t) +

εL
2
‖Dw‖2(t)

)
≥ −2

√
2C
[(

1 +
1
2ε

)
(1 + x, w2)(t) +

εL
2
‖Dw‖2(t)

]
. (63)

Substituting Inequalities (61) and (63) into Inequality (62), we reduce it to the inequal-
ity

d
dt
(1 + x, w2)(t) +

[
3− ε

(√2CM2

M1
+
√

2CL
)]
‖Dw‖2(t) +

l

∑
j=2

(2j + 1)‖Djw‖2(t)

≤
[√2CM2

M1ε
+ 2
√

2C
(

1 +
1
2ε

)]
(1 + x, w2)(t).

Taking ε > 0 such that 3− ε
(√

2CM2
M1

+
√

2CL
)
> 0 and applying the Gronwall Lemma,

we obtain ‖w‖(t) ≡ 0, t ∈ (0, T). This completes the proof of Lemma 6.
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Uniqueness part of Theorem 4 is thereby proved.

6. Exponential Decay of Small Regular Solutions

Theorem 5. Let u0 ∈ H2l+1(0, L) satisfy Equation (16) and

‖u0‖ < min{m1, m2}, (64)

where

m1 =
( π2

C0L2

)3/4
, m2 =

[π2

L2

(
2
√

2K0(1 + C1K0)
)−1]2

,

K0 =
(
(1 + L)(1 + l)

(
2‖u0‖4

Hl + ‖u0‖2
H2l+1

)
+ (2 + L + C0‖u0‖4/3)‖u0‖2

)1/3
,

C0 = 2−2/3 · 3−1/3, C1 =
(2L2
√

2
+

2M2
2√

2M2
1

)
‖u0‖1/2.

Then Equations (6), (7) and (16) has a unique global regular solution u = u(t, x):

u ∈ L∞((0,+∞); H2l+1(0, L)) ∩ L2((0,+∞); H(2l+1)+l(0, L));

ut ∈ L∞((0,+∞); L2(0, L)) ∩ L2((0,+∞); Hl(0, L))

satisfying the inequalities:

‖u‖2(t) ≤ Ce−θt, ‖ut‖2(t) ≤ Ce−θt, ‖u‖2
H2l+1(t) ≤ Ce−θt,

where θ = π2/(1 + L)L2.

Proof. We need global in t a priori estimates of local solutions in order to prolong them for
all t > 0.
Estimate 1. Estimates Inequalities (40) and (41) are valid in our case:

U(t, 0, L) ≤ − (ut, u)
M1

(t), ‖u‖(t) ≤ ‖u0‖ t > 0, (65)

where U(t, 0, L) ≡ ∑l−1
i=1

[
(Diu(t, L))2 + (Diu(t, 0))2

]
+ (Dlu(t, 0))2 and

M1 = min
i∈{1,...,l−1}

{Bi, Ai, Al}.

Estimate 2. Multiply Equation (6) by 2xu and integrate over (0, L) to obtain

2(ut, xu)(t) + 2L
l−1

∑
i=1

Bi(Diu(t, L))2 − 2M2U(t, 0, L) +
l

∑
j=1

(2j + 1)‖Dju‖2(t) + 2(uDu, xu)(t) ≤ 0, (66)

where M2 is calculated in [28], p. 389. Making use of Inequalities (3) and (65), we estimate

2(uDu, xu)(t) = −2
3
(u, u2)(t) ≥ −2

√
2

3
‖Du‖

1
2 (t)‖u‖

1
2 (t)‖u‖2(t)

≥ −‖Du‖2(t)− C0‖u0‖
4
3 ‖u‖2(t), (67)

where C0 = 2−2/3 · 3−1/3. Substituting Inequalities (65) and (67) into Inequality (66) and
using Equation (5), we get

d
dt
(1 + x, u2)(t) + ‖Du‖2(t) +

l

∑
j=2

(2j + 1)‖Dju‖2(t) +
1

1 + L

(π2

L2 − C0‖u0‖
4
3

)
(1 + x, u2)(t) ≤ 0.
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Due to Inequalities (5) and (64),

d
dt
(1 + x, u2)(t) + θ(1 + x, u2)(t) ≤ 0,

where θ = π2/(1 + L)L2. Consequently

‖u‖2(t) ≤ Ce−θt. (68)

Estimate 3. By Inequalities (3) and (65), Inequality (66) becomes

2L
l−1

∑
i=1

Bi(Diu(t, L))2 +
l

∑
j=1

(2j + 1)‖Dju‖2(t) ≤ −2(ut, (1 + x)u)(t)− 2(uDu, xu)(t)

≤ 2(1 + L)‖ut‖(t)‖u‖(t) +
2
√

2
3
‖Du‖

1
2 (t)‖u‖

1
2 (t)‖u‖2(t)

≤ ‖Du‖2(t) + (1 + L)‖ut‖2(t) + (1 + L + C0‖u0‖
4
3 )‖u‖2(t).

Thus
‖u‖2

Hl (t) ≤ (1 + L)‖ut‖2(t) + (2 + L + C0‖u0‖
4
3 )‖u‖2(t). (69)

Estimate 4. Differentiate Equation (6) with respect to t, multiply the result by 2ut and
integrate over (0, L) to obtain

2(utt, ut)(t) + 2M1Ut(t, 0, L) + 2(D[uut], ut)(t) ≤ 0, (70)

where Ut(t, 0, L) ≡ ∑l−1
i=1

[
(Diut(t, L))2 + (Diut(t, 0))2

]
+ (Dlut(t, 0))2. Repeating argu-

ments used to prove Inequality (48), we estimate for an arbitrary ε > 0

2(D[uut], ut)(t) ≥ −
2
ε
‖Du‖(t)‖u‖(t)‖ut‖2(t)− ε‖Dut‖2(t). (71)

Substituting Inequality (71) into Inequality (70) and using Inequality (65), we find

Ut(t, 0, L) ≤ − 1
M1

(utt, ut)(t) +
1

εM1
‖u0‖‖Du‖(t)‖ut‖2(t) +

ε

2M1
‖Dut‖2(t). (72)

Estimate 5. Differentiate Equation (6) with respect to t, multiply the result by 2xut to obtain

2(utt, xut)(t) + 2L
l−1

∑
i=1

Bi(Diut(t, L))2 − 2M2Ut(t, 0, L)︸ ︷︷ ︸
I1

+
l

∑
j=1

(2j + 1)‖Djut‖2(t) + 2(D[uut], xut)(t)︸ ︷︷ ︸
I2

≤ 0. (73)

Taking into account Inequality (72) with ε = M1
2M2

and exploiting the relation M2
M1
≥ 1

for all l ≥ 2, we obtain

I1 ≥ 2(utt, ut)(t)−
4M2

2
M2

1
‖u0‖‖Du‖(t)‖ut‖2(t)− 1

2
‖Dut‖2(t).

On the other hand, repeating arguments used to prove Inequality (51), we estimate

I2 ≥ −2
√

2‖u0‖
1
2 ‖Du‖

1
2 (t)

[
1 +

2L2
√

2
‖u0‖

1
2 ‖Du‖

1
2 (t)

]
‖ut‖2(t)− 1

2
‖Dut‖2(t).
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Making use of Inequalities (65) and (69), we find

I1 + I2 ≥ 2(utt, ut)(t)− 2
√

2‖u0‖
1
2 ‖Du‖ 1

2 (t)
[
1 +

( 2L2
√

2
+

2M2
2√

2M2
1

)
‖u0‖

1
2 ‖Du‖ 1

2 (t)
]
‖ut‖2(t)− ‖Dut‖2(t)

≥ 2(utt, ut)(t)− 2
√

2‖u0‖
1
2

(
(1 + L)‖ut‖2(t) + (2 + L + C0‖u0‖

4
3 )‖u0‖2

) 1
4
[
1 +

( 2L2
√

2
+

2M2
2√

2M2
1

)
‖u0‖

1
2

×
(
(1 + L)‖ut‖2(t) + (2 + L + C0‖u0‖

4
3 )‖u0‖2

) 1
4
]
‖ut‖2(t)− ‖Dut‖2(t).

Substituting I1 + I2 into Inequality (73), we get

d
dt
(1 + x, u2

t )(t) + ‖Dut‖2(t) +
l

∑
j=2

(2j + 1)‖Djut‖2(t)

+ ‖Dut‖2(t)− 2
√

2‖u0‖
1
2 K(t)

(
1 + C1K(t)

)
‖ut‖2(t) ≤ 0. (74)

Here

K(t) =
(
(1 + L)‖ut‖2(t) + (2 + L + C0‖u0‖4/3)‖u0‖2

)1/3
, C1 =

(2L2
√

2
+

2M2
2√

2M2
1

)
‖u0‖

1
2 .

Using Inequality (5), this inequality can be rewritten as

d
dt
(1 + x, u2

t )(t) + ‖Dut‖2(t) +
l

∑
j=2

(2j + 1)‖Djut‖2(t)

+
1

1 + L

[π2

L2 − 2
√

2‖u0‖
1
2 K(t)

(
1 + C1K(t)

)]
(1 + x, u2

t )(t) ≤ 0. (75)

Taking into account Inequality (64), the fact that K(0) ≤ K0 and standard arguments,
see [14], we reduce it to the form

d
dt
(1 + x, u2

t )(t) + θ(1 + x, u2
t )(t) ≤ 0,

where θ = π2/(1 + L)L2. This implies

‖ut‖2(t) ≤ (1 + x, u2
t )(t) ≤ Ce−θt. (76)

Returning to Inequality (74) with Inequality (76) and integrating over (0,+∞), we
obtain

ut ∈ L2((0,+∞); Hl(0, L)).

Finally, substituting Inequalities (68) and (76) into Inequality (69), we find

‖u‖2
Hl (t) ≤ Ce−θt. (77)

Estimate 6. (Regularity) Rewrite Equation (6) in the form

(−1)l+1D2l+1u = −ut −
l−1

∑
j=1

(−1)j+1D2j+1u− uDu.

We estimate

‖D2l+1u‖(t) ≤ ‖ut‖(t) + ∑
2j≤l−1

‖D2j+1u‖(t) + ∑
l−1<2j<2l

‖D2j+1u‖(t) + ‖uDu‖(t). (78)
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For l = 2, we have ∑2j≤l−1 ‖D2j+1u‖(t) = 0 and for l ≥ 3, due to Inequality (77),

∑
2j≤l−1

‖D2j+1u‖(t) ≤ l‖u‖Hl (t) ≤ Ce−
θ
2 t. (79)

Making use of Inequalities (3) and (77), we obtain

‖uDu‖(t) ≤
√

2‖u‖2
Hl (t) ≤ Ce−θt. (80)

On the other hand, Inequality (4) implies

‖D2j+1u‖(t) ≤ Cj
1‖D

2l+1u‖αj
(t)‖u‖1−αj

(t) + Cj
2‖u‖(t) (l − 1 < 2j < 2l),

where αj = 2j+1
2l+1 and Cj

1, Cj
2 are constants depending on L, l. Making use of the Young

inequality with an arbitrary ε > 0, we get

‖D2j+1u‖(t) ≤ ε‖D2l+1u‖(t) + (Cj(ε) + Cj
2)‖u‖(t).

Summing over l − 1 < 2j < 2l and taking into account Inequality (68), we find

∑
l−1<2j<2l

‖D2j+1u‖(t) ≤ lε‖D2l+1u‖(t) + C(ε)e−
θ
2 t. (81)

Substituting Inequalities (76), (79), (80) and (81) into Inequality (78) and taking ε = 1
2l ,

we obtain
‖D2l+1u‖(t) ≤ C

(
3e−

θ
2 t + e−θt

)
≤ Ce−

θ
2 t. (82)

Again by Inequality (4), for all i = l + 1, . . . , 2l, there are constants Ci
1, Ci

2 depending
only on L, l such that

‖Diu‖(t) ≤ Ci
1‖D2l+1u‖αi

(t)‖u‖1−αi
(t) + Ci

2‖u‖(t) with αi =
i

2l + 1
.

By the Young inequality and Inequalities (68) and (82), we get

‖Diu‖(t) ≤ Ce−
θ
2 t, i = l + 1, . . . , 2l. (83)

According to Inequalities (77), (82) and (83), we conclude that

‖u‖2
H2l+1(t) ≤ Ce−θt (84)

with θ = π2/(1 + L)L2. Repeating the arguments that appears in the proof of Lemma 4.3
in [26], and taking into account Inequality (84), we establish a “smoothing effect”:

u ∈ L2((0,+∞); H(2l+1)+l(0, L)).

Similar arguments used in the proof of Lemma 6 with Inequality (77) instead of In-
equality (59), show the uniqueness of the solution. The proof of Theorem 5 is complete.

7. Conclusions

Making use of the formulation of a linear stationary version of Equation (1) in [28],
we prove in Theorem 3 local existence and uniqueness of regular solutions. In Theorem 4,
we prove global in t ∈ (0, T) existence and uniqueness of regular solution for arbitrary
smooth initial data and arbitrary T > 0. In Theorem 5, we prove global in t ∈ (0,+∞)
existence and uniqueness of regular solutions as well as their exponential decay of ‖u‖(t),
‖ut‖(t) and ‖u‖H2l+1(t) for small initial data. A smoothing effect has been established:
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if u0 ∈ H2l+1(0, L), then u ∈ L2((0,+∞); H(2l+1)+l(0, L)). Our results can be used for
constructing of numerical schemes while studying various models of initial-boundary
value problems for higher-order dispersive equations.

Author Contributions: N.A.L. and J.L. contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: Nikolai A. Larkin has been supported by Fundação Araucária, Paraná, Brazil.: Convênio
Nº 307/2015, Protocolo No 45.703.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors appreciate useful comments of reviewers.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Benia, Y.; Scapellato, A. Existence of solution to Korteweg-de Vries equation in a non-parabolic domain. Nonlinear Anal. 2020, 195,

111758. [CrossRef]
2. Bona, J.L.; Sun, S.-M.; Zhang, B.-Y. A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a

finite domain. Commun. Part. Differ. Equ. 2003, 28, 1391–1436. [CrossRef]
3. Jeffrey, A.; Kakutani, T. Weak nonlinear dispersive waves: A discussion centered around the Korteweg-de Vries equation. SIAM

Rev. 1972, 14, 582–643. [CrossRef]
4. Larkin, N.A.; Tronco, E. Nonlinear quarter-plane problem for the Korteweg-de Vries equation. Electron. J. Differ. Equ. 2011, 2011,

1–22.
5. Biagioni, H.A.; Linares, F. On the Benney–Lin and Kawahara equations. J. Math. Anal. Appl. 1997, 211, 131–152. [CrossRef]
6. Faminskii, A.V.; Martynov, E.V. On initial-boundary value problems on semiaxis for generalized Kawahara equation. Contemp.

Math. Fundam. Dir. 2019, 65, 683–699. (In Russian) [CrossRef]
7. Kawahara, T. Oscillatory solitary waves in dispersive media. J. Phys. Soc. Jpn. 1972, 33, 260–264. [CrossRef]
8. Kuvshinov, R.V.; Faminskii, A.V. Mixed Problem for the Kawahara Equation in a Half-Strip. Differ. Equ. 2009, 45, 404–415.

[CrossRef]
9. Boutet de Monvel, A.; Shepelsky, D. Initial boundary value problem for the mKdV equation on a finite interval. Annales de

l’institut Fourier 2004, 54, 1477–1495. [CrossRef]
10. Bubnov, B.A. General boundary-value problems for the Korteweg-de Vries equation in a bounded domain. Differ. Uravn. 1979, 15,

26–31.
11. Bubnov, B.A. Solvability in the large of nonlinear boundary-value problems for the Korteweg-de Vries equation in a bounded

domain. Differ. Uravn. 1980, 16, 34–41.
12. Ceballos, J.; Sepulveda, M.; Villagran, O. The Korteweg-de Vries- Kawahara equation in a bounded domain and some numerical

results. Appl. Math. Comput. 2007, 190, 912–936. [CrossRef]
13. Doronin, G.G.; Larkin, N.A. Kawahara equation in a bounded domain. Discret. Contin. Dyn. Syst. B 2008, 10, 783–799. [CrossRef]
14. Faminskii, A.V.; Larkin, N.A. Initial-boundary value problems for quasilinear dispersive equations posed on a bounded interval.

Electron. J. Differ. Equ. 2010, 2010, 1–20.
15. Kramer, E.F. Nonhomogeneous Boundary Value Problems for the Korteweg-de Vries Equations on a Bounded Domain.

Ph.D. Thesis, University of Cincinatti, Cincinnati, OH, USA, 2009.
16. Larkin, N.A. Correct initial boundary value problems for dispersive equations. J. Math. Anal. Appl. 2008, 344, 1079–1092.

[CrossRef]
17. Larkin, N.A. Korteweg-de Vries and Kuramoto-Sivashinsky Equations in Bounded Domains. J. Math. Anal. Appl. 2004, 297,

169–185. [CrossRef]
18. Larkin, N.A.; Luchesi, J. General Mixed Problems for the KdV Equations on Bounded Intervals. Electron. J. Differ. Equ. 2010, 2010,

1–17.
19. Larkin, N.A.; Simões, M.H. The Kawahara equation on bounded intervals and on a half-line. Nonlinear Anal. 2015, 127, 397–412.

[CrossRef]
20. Capistrano-Filho, R.A.; Sun, S.-M.; Zhang, B.-Y. General Boundary Value Problems of the Korteweg-de Vries Equation on a

Bounded Domain. Math. Control Relat. Fields 2018, 8, 583–605. [CrossRef]
21. Coclite, G.M.; di Ruvo, L. On the initial-boundary value problem for a Kuramoto-Sinelshchikov type equation. Math. Eng. 2020,

3, 1–43. [CrossRef]
22. Larkin, N.A.; Simões, M.H. General Boundary Conditions for the Kawahara Equations on Bounded Intervals. Electron. J. Differ.

Equ. 2013, 2013, 1–21.

http://doi.org/10.1016/j.na.2020.111758
http://dx.doi.org/10.1081/PDE-120024373
http://dx.doi.org/10.1137/1014101
http://dx.doi.org/10.1006/jmaa.1997.5438
http://dx.doi.org/10.22363/2413-3639-2019-65-4-683-699
http://dx.doi.org/10.1143/JPSJ.33.260
http://dx.doi.org/10.1134/S0012266109030100
http://dx.doi.org/10.5802/aif.2056
http://dx.doi.org/10.1016/j.amc.2007.01.107
http://dx.doi.org/10.3934/dcdsb.2008.10.783
http://dx.doi.org/10.1016/j.jmaa.2008.03.055
http://dx.doi.org/10.1016/j.jmaa.2004.04.053
http://dx.doi.org/10.1016/j.na.2015.07.008
http://dx.doi.org/10.3934/mcrf.2018024
http://dx.doi.org/10.3934/mine.2021036


Mathematics 2021, 9, 165 17 of 17

23. Isaza, P.; Linares, F.; Ponce, G. Decay properties for solutions of fifth order nonlinear dispersive equations. J. Differ. Equ. 2015, 258,
764–795. [CrossRef]

24. Kenig, C.E.; Ponce, G.; Vega, L. Higher -order nonlinear dispersive equations. Proc. Am. Math. Soc. 1994, 122, 157–166. [CrossRef]
25. Larkin, N.A.; Luchesi, J. Higher-Order Stationary Dispersive Equations on Bounded Intervals. Adv. Math. Phys. 2018, 2018,

7874305. [CrossRef]
26. Larkin, N.A.; Luchesi, J. Initial-boundary value problems for generalized dispersive equations of higher orders posed on bounded

intervals. Appl. Math. Optim. 2019. [CrossRef]
27. Volevich, L.R.; Gindikin, S.C. A mixed problem for (2b + 1)-hyperbolic equations. Tr. Mosk. Mat. Obs. 1981, 43, 197–259.

(In Russian)
28. Larkin, N.A.; Luchesi, J. Formulation of problems for stationary dispersive equations of higher orders on bounded intervals with

general boundary conditions. Contemp. Math. 2020, 1. [CrossRef]
29. Kato, T. On the Cauchy problem for the (generalized) Korteweg-de Vries equations. Adv. Math. Supl. Stud. Stud. Appl. Math. 1983,

8, 93–128.
30. Adams, R.; Fournier, J. Sobolev Spaces, 2nd ed.; Elsevier Science Ltd.: Amsterdam, The Netherlands, 2003.
31. Nirenberg, L. On elliptic partial differential equations. In Annali della Scuola Nomale Superiore di Pisa, Classe di Scienze 3ª série; tome

13, nº 2; Springer: Berlin/Heidelberg, Germany, 1959; pp. 115–162.
32. Nazarov, A.I.; Kuznetsov, N.G.; Poborchi, S.V.V.A. Steklov and Problem of Sharp (Exact) Constants in Inequalities of Mathematical

Physics. arXiv 2013, arXiv:1307.8025v1.
33. Zheng, S. Nonlinear Evolution Equations; Chapman Hill/CRC: Boca Raton, FL, USA, 2004.

http://dx.doi.org/10.1016/j.jde.2014.10.004
http://dx.doi.org/10.1090/S0002-9939-1994-1195480-8
http://dx.doi.org/10.1155/2018/7874305
http://dx.doi.org/10.1007/s00245-019-09579-w
http://dx.doi.org/10.37256/cm.152020542

	Introduction
	Notations and Auxiliary Facts 
	Formulation of the Problem
	Local Regular Solutions
	Global Regular Solutions
	Exponential Decay of Small Regular Solutions
	Conclusions
	References

