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Abstract: The fractional generalization of the Ambartsumian delay equation with Caputo’s fractional
derivative is considered. The Ambartsumian delay equation is very difficult to be solved neither in
the case of ordinary derivatives nor in the case of fractional derivatives. In this paper we combine
the Laplace transform with the Adomian decomposition method to solve the studied equation. The
exact solution is obtained as a series which terms are expressed by the Mittag-Leffler functions. The
advantage of the present approach over the known in the literature ones is discussed.
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1. Introduction

One of the successfully applied differential equations as a model is the Ambartsumian
equation. This equation was derived in its original version by Ambartsumian [1] to
describe the absorption of light by the interstellar matter. Later, many authors studied
various properties of the solution of this equation. It is worth to mention the works about
the existence and uniqueness [2] and about the introduced power series solution [3]. Note
that several methods are applied to solve the classical Ambartsumian equation, such as, the
Adomian decomposition method (ADM) combined with the Laplace Transform (LT) [4],
the Homotopy perturbation method (HPM) [5]. Recently, based on the main property
of fractional derivatives, their memory property, the ordinary derivative is replaced by
a fractional one to make the model of the absorption of light by the interstellar matter
more adequate. Besides, the standard Ambartsumian equation has been deducted by
Ambartsumian [1] based on basic concepts in matter physics. However, the formulation
of the current fractional model may requires additional information about the nature of
interstellar constellation. Moreover, the present paper is devoted to obtaining analytical
approximations in closed form which posses many advantages over the existing approaches
in the relevant literature.

Several fractional generalizations of Ambartsumian equation are defined and studied
(for example, the conformable derivative has been applied in [6,7], the Caputo fractional
derivative has been used in [8]). In paper [8], the authors applied the homotopy transform
analysis method (HTAM) to Caputo fractional generalization of Ambartsumian equation
to obtain the solution as a power series in terms of powers of the fractional order.

One of the methods which is well known and successfully applied to different types of
differential equations is the Adomian decomposition method (ADM). The ADM was exten-
sively used to solve various type of problems for ordinary differential equations (see, for
example [9–16], for fractional differential equations (see, for example, [17–21]), for inverting
the Laplace transforms (see, for example [22]).
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In this paper we study the fractional generalization of the Ambartsumian delay
equation with Caputo fractional derivative. We combine both well known the ADM and
LT to solve the studied equation. We obtain a new type of the exact solution for the given
fractional model. This solution is in the form of a series in terms of the Mittag-Leffler
functions. The explicit formulas for all terms of the series solution are provided. It is one of
the advantages of the obtained solution comparatively with the known in the literature (for
example, compare with the recently published paper [23] in which the explicit formulas
only of the first several terms are obtained). The other advantage of the obtained solution
is the proved convergence in the whole domain of the current model. Some numerical
simulations are provided to illustrate the convergence, the influence of both the delay
parameter and the initial value and to compare the obtained series solution with some
known in the literature.

2. Some Preliminary Results from Fractional Calculus

Based on engineering reasoning, we will consider the case when the fractional order
α ∈ (0, 1).

In this section we will provide some well known results from fractional calculus which
will be used in our further study.

In this paper we will use the following definitions for fractional derivatives and
integrals for scalar functions y : [0, T]→ R with T ≤ ∞ (note in the case T = ∞ the interval
will be half open):

- Riemann-Liouville fractional integral of order α ∈ (0, 1) ([24])

0 Iα
t y(t) =

1
Γ(α)

t∫

0

y(s)
(t− s)1−α

ds, t ∈ (0, T],

where Γ is the Gamma function.
- Caputo fractional derivative of order α ∈ (0, 1) ([24]) is

C
0 Dα

t y(t) =
1

Γ(1− α)

t∫

0

(t− s)−α d
ds

y(s)ds, t ∈ (0, T].

Remark 1. In the case α → 1 the Caputo fractional derivative is reduced to ordinary derivative
(for more details, see, for example [24]).

The Laplace transform (LT) of the Caputo fractional derivative is

L
[

C
0 Dα

t y(t)
]
(s) = sαY(s)− sα−1y(0), (1)

where Y(s) is the LT of y(t). In our study we will use Mittag-Leffler functions of two
parameter defined by

Eα,β(z) =
∞

∑
m=0

zm

Γ(αm + β)
, (α > 0, β > 0),

in particular Eα,1(z) = Eα(z). It follows from the definition that

E1,1(z) = ez. (2)

The LT of the expression of Mittag-Leffler function is ([24]):

L
(

tβ−1Eα,β(λtα)
)
(s) =

sα−β

sα − λ
, Re(s) > |λ| 1α . (3)
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As partial cases of (3) we obtain the following equalities which will be used later (for
more details see [24]):

L
(

Eα(−tα)
)
(s) =

sα−1

sα + 1
, (4)

L
(

tα−1Eα,α(−λtα)
)
(s) =

1
sα + λ

, Re(s) > |λ| 1α , (5)

L
(

tαEα,α+1(−λtα)
)
(s) =

s−1

sα + λ
, Re(s) > |λ| 1α . (6)

Some useful properties of Mittag-Leffler function are given by ([24])

Eα,β(z) = zEα,α+β(z) +
1

Γ(β)
, (7)

Eα(z) = zEα,α+1(z) + 1, (8)

E1,2(z) = (ez − 1)/(z), (9)

and∫ t

0
τγ−1Eα,γ(aτα)(t− τ)β−1Eα,β

[
b(t− τ)α]dτ =

tβ+γ−1

a− b
[
aEα,β+γ(atα)− bEα,β+γ(btα)

]
. (10)

3. Algorithm for Obtaining Series Solution of Caputo Fractional Ambartsumian
Equationation by Combined LT-ADM
3.1. Statement of the Problem

In this paper we will study the following Caputo fractional Ambartsumian equation

C
0 Dα

t y(t) = −y(t) +
1
q

y
(

t
q

)
, t > 0, (11)

where y ∈ R, C
0 Dα

t y(t) is the Caputo fractional derivative of y(t), and q > 1 is a constant.
The model is subjected to the initial condition:

y(0) = λ, (12)

where λ is a constant.
We will provide a procedure for obtaining a series solution of the Caputo fractional

Ambartsumian Equationations (11) and (12). We will combine both methods LT and ADM
(we will call this procedure combined LT-ADM).

3.2. General Slgorithm of Combined LT-ADM

Apply the LT to Equationations (11) and (12), apply equality (1) and obtain

sαY(s)− λsα−1 = −Y(s) + Y(qs), (13)

where Y(s) is the LT of y(t) and Y(qs) is the LT of
(

1
q y
(

t
q

))
(see [25] for details of the LT).

In order to apply the ADM, we rewrite Equation (13) in the canonical form:

Y(s) =
λsα−1

sα + 1
+

Y(qs)
sα + 1

. (14)

It is well known that the ADM assumes the solution Y(s) as a series in the form

Y(s) =
∞

∑
i=0

Yi(s), (15)
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where Yi(s), i = 1, 2, . . . are unknown functions. Now, we will use LT to obtain these
functions.

Substitute the series (15) in (13) and obtain

∞

∑
i=0

Yi(s) =
λsα−1

sα + 1
+

1
sα + 1

∞

∑
i=0

Yi(qs). (16)

Following the ideas of [1] we get

Y0(s) =
λsα−1

sα + 1
, and Yi(s) =

Yi−1(qs)
sα + 1

, i ≥ 1. (17)

From the recurrence scheme (17) step by step we could obtain all terms Yi(s), i =
1, 2, . . . in the series (15).

Let i = 1. From (17) we get

Y1(s) =
Y0(qs)
sα + 1

=
λqα−1sα−1

(sα + 1)
1

(qαsα + 1)
, (18)

or

Y1(s) =
λqα−1

s
sα

(sα + 1)(qαsα + 1)
. (19)

Using partial fractions, we have

sα

(sα + 1)(qαsα + 1)
=

A1

sα + 1
+

A2

qαsα + 1
,

where A1 and A2 are given by

A1 = lim
sα→−1

sα

(qαsα + 1)
=
−1

1− qα
,

A2 = lim
sα→−q−α

sα

(sα + 1)
=

q−α

q−α − 1
=

1
1− qα

= −A1.
(20)

Substitute (20) in (19), we obtain the first term in the series (15)

Y1(s) = λqα−1
[ −s−1

(sα + 1)(1− qα)
+

q−αs−1

(sα + q−α)(1− qα)

]
,

or

Y1(s) = λqα−1
[

A1
s−1

(sα + 1)
+ q−α A2

s−1

(sα + q−α)

]
=

λqα−1

1− qα

[
− s−1

(sα + 1)
+ q−α s−1

(sα + q−α)

]
. (21)

Let i = 2. From recurrence equality (17) and Equation (18) we have

Y2(s) =
Y1(qs)
sα + 1

=
1

sα + 1
λqα−1(qs)α−1

((qs)α + 1)
1

(qα(qs)α + 1)

=
λq2(α−1)sα−1

(sα + 1)
1

(q2αsα + 1)(qαsα + 1)
.

(22)

Also,
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Y2(s) =
λqα−1

(sα + 1)(1− qα)

[ −q−1s−1

(qαsα + 1)
+

q−αq−1s−1

(qαsα + q−α)

]

=
λqα−2s−1

(sα + 1)(1− qα)

[ −1
(qαsα + 1)

+
1

(q2αsα + 1)

]

=
λqα−2s−1

(sα + 1)(1− qα)

[−q2αsα − 1 + qαsα + 1
(qαsα + 1)(q2αsα + 1)

]

=
λq2(α−1)sα−1

(sα + 1)(qαsα + 1)(q2αsα + 1)
=

λq2(α−1)

s
sα

(sα + 1)(qαsα + 1)(q2αsα + 1)
.

(23)

Similarly to the case of i = 1, by partial fractions, we can write

sα

(sα + 1)(qαsα + 1)(q2αsα + 1)
=

B1

sα + 1
+

B2

qαsα + 1
+

B3

q2αsα + 1
, (24)

where the unknown coefficient are given by

B1 = lim
sα→−1

sα

(qαsα + 1)(q2αsα + 1)
=

−1
(1− qα)(1− q2α)

=
−1

(1− qα)2(1 + qα)
,

B2 = lim
sα→−q−α

sα

(sα + 1)(q2αsα + 1)
=

−q−α

(1− q−α)(1− qα)
=

1

(1− qα)2 ,

B3 = lim
sα→−q−2α

sα

(sα + 1)(qαsα + 1)
=

−qα

(1− qα)(1− q2α)
=

−qα

(1− qα)2(1 + qα)
.

(25)

Substitute the coefficients Bi, i = 1, 2, 3, defined by (25), in equalities (24) and (23)
and obtain the second term in the series (15)

Y2(s) =
λq2(α−1)

s

( B1

sα + 1
+

B2

qαsα + 1
+

B3

q2αsα + 1

)

= λq2(α−1)
(

B1
s−1

sα + 1
+ B2q−α s−1

sα + q−α
+ B3q−2α s−1

sα + q−2α

)

= λ
q2(α−1)

(1− qα)2

[ −s−1

(sα + 1)(1 + qα)
+

q−αs−1

(sα + q−α)
+

−q−αs−1

(sα + q−2α)(1 + qα)

]
,

(26)

Let i = 3. From equalities (17), and (22) we get

Y3(s) =
Y2(qs)
sα + 1

=
λq3(α−1)sα−1

(sα + 1)
1

(q3αsα + 1)(q2αsα + 1)(qαsα + 1)
, (27)

and applying (26) and some simplifications we obtain

Y3(s) =
Y2(qs)
sα + 1

=
λq3(α−1)sα−1

(sα + 1)(qαsα + 1)(q2αsα + 1)(q3αsα + 1)

=
λq3(α−1)

s
× sα

(sα + 1)(qαsα + 1)(q2αsα + 1)(q3αsα + 1)

=
λq3(α−1)

s

[
C1

(sα + 1)
+

C2

(qαsα + 1)
+

C3

(q2αsα + 1)
+

C4

(q3αsα + 1)

]
,

(28)

where the coefficients C1, C2, C3, and C4 are given by
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C1 = lim
sα→−1

sα

(qαsα + 1)(q2αsα + 1)(q3αsα + 1)
=

−1
(1− qα)(1− q2α)(1− q3α)

,

C2 = lim
sα→−q−α

sα

(sα + 1)(q2αsα + 1)(q3αsα + 1)
=

1

(1− qα)2(1− q2α)
=

1

(1− qα)3(1 + qα)
,

C3 = lim
sα→−q−2α

sα

(sα + 1)(qαsα + 1)(q3αsα + 1)
=

−qα

(1− qα)3(1 + qα)
= −qαC2,

C4 = lim
sα→−q−3α

sα

(sα + 1)(qαsα + 1)(q2αsα + 1)
=

q3α

(1− qα)(1− q2α)(1− q3α)
= −q3αC1.

(29)

Hence, from (29) and (28) we obtain the third term in the series (16)

Y3(s)

= λq3(α−1)
[

C1
s−1

(sα + 1)
+ q−αC2

s−1

(sα + q−α)
+ q−2αC3

s−1

(sα + q−2α)
+ q−3αC4

s−1

(sα + q−3α)

]
,

(30)

where coefficients Ci, i = 1, 2, 3, 4 are given by (29).
By induction from recurrence equalities (17) we get

Yi(s) =
Yi−1(qs)

sα + 1
=

λqi(α−1)sα−1

(sα + 1)
1

∏i
k=1
(
qkαsα + 1

)

= λqi(1−i)α/2−i sα−1

(sα + 1)
1

∏i
k=1
(
sα + q−kα

) , i ≥ 1.

(31)

Proceeding as above, one can obtain higher-order components of Yi(s) in the form

Yi(s) = λqi(α−1)

[
K(i)

1
s−1

(sα + 1)
+

i

∑
j=1

q−jαK(i)
j+1

s−1

(sα + q−jα)

]
, (32)

where coefficients K(i)
j , j = 1, 2, . . . , i + 1 depend on q and α. Note the explicit expressions

for the coefficients K(i)
j are very complicated and we will ignore them at this stage. Later

we will use only the first three components which obtained above.
Now, using the terms Yi(s), i = 1, 2, . . . , of the series (15) we will obtain the series

solution of the initial value problem (11), (12). Apply the inverse LT to the series (15) to
obtain the solution y(t) of (11) and apply (6) on Y(s). We obtain

y(t) = L−1[Y(s)] =
∞

∑
i=0
L−1[Yi(s)] =

∞

∑
i=0

yi(t) = y0(t) + y1(t) + y2(t) + . . . , (33)

where from (17), (21), (4) and (6) we get

y0(t) = L−1[Y0(s)] = L−1
[

λsα−1

sα + 1

]
= λEα[−tα],

y1(t) = L−1[Y1(s)] = λqα−1L−1
[

A1s−1

(sα + 1)
+

q−α A2s−1

(sα + q−α)

]

= λqα−1(A1tαEα,α+1[−tα] + q−α A2tαEα,α+1
[
−q−αtα

])
,

= λqα−1tα
(

A1Eα,α+1[−tα] + q−α A2Eα,α+1
[
−q−αtα

])
.

(34)

Similarly, y2(t) and y3(t) can be obtained as

y2(t) = λq2(α−1)tα
(

B1Eα,α+1[−tα] + q−αB2Eα,α+1
[
−q−αtα

]
+ q−2αB3Eα,α+1

[
−q−2αtα

])
, (35)

and
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y3(t) = λq3(α−1)tα(C1Eα,α+1[−tα] + q−αC2Eα,α+1
[
−q−αtα

]
+ q−2αC3Eα,α+1

[
−q−2αtα

]

+ q−3αC4Eα,α+1

[
−q−3αtα

]
).

(36)

Similarly, from (32), the equalities (4)–(6) for LT, we can obtain yi, i ≥ 4, in the form:

yi(t) = λqi(α−1)tα
{

K(i)
1 Eα,α+1[−tα] +

i

∑
j=1

q−jαK(i)
j+1Eα,α+1[−q−jαtα]

}
, i = 1, 2, 3, . . . . (37)

where coefficients K(i)
j , j = 1, 2, 3, . . . , i− 1, depend on q and α. Unfortunately, we could

obtain their explicit formulas only for i = 1, 2, 3. Therefore, the series solution given by (33)
with terms yi(t) defined by (37) practically is not applicable. We could use it only for the
third partial sum since only these terms are given explicitly by (34)–(36).

3.3. Series Solution with One-Parameter Mittag-Leffler Functions

This section applying the ideas for obtaining the series solution (37) with coefficients
(33) and some obtained formulas, we will get general explicit formulas for the terms yi,
i = 1, 2, 3, . . . .

We will use the presentation (31). Define

F(s) =
sα−1

(sα + 1)
, Gi(s) =

1

∏i
k=1
(
sα + q−kα

) , i = 1, 2, 3, . . . . (38)

Then from (31) for any i ≥ 1 we get

Yi(s) = λqi(1−i)α/2−iF(s)Gi(s). (39)

Now, apply the inverse LT to (39) and obtain the general term yi(t) of the series
solution in the form

yi(t) = λqi(1−i)α/2−iL−1[F(s)] ∗ L−1[Gi(s)],

or

yi(t) = λqi(1−i)α/2−i f (t) ∗ g(t) = λqi(1−i)α/2−i
∫ t

0
f (t− τ)g(τ)dτ, (40)

where (∗) refers to the convolution of f (t) and g(t) with

f (t) = L−1[F(s)] = Eα[−tα],

g(t) = L−1[Gi(s)] = L−1

[
1

∏i
k=1
(
sα + q−kα

)
]
=

i

∑
k=1

1
W ′i (−q−kα)

L−1

[
1(

sα + q−kα
)
]

,

=
i

∑
k=1

1
W ′i (−q−kα)

tα−1Eα,α

[
−q−kαtα

]
,

(41)

where Wi(s) = ∏i
k=1

(
s + q−kα

)
and W ′i (s) is its derivative. Substitute (41) in (40) and

obtain

yi(t) = λqi(1−i)α/2−i
∫ t

0

i

∑
k=1

1
W ′i (−q−kα)

Eα

[
−(t− τ)α]τα−1Eα,α

[
−q−kατα

]
dτ,

= λqi(1−i)α/2−i
i

∑
k=1

1
W ′i (−q−kα)

∫ t

0
Eα

[
−(t− τ)α]τα−1Eα,α

[
−q−kατα

]
dτ.

(42)
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From integral formula (10) with β = 1, γ = α, a = −q−kα, and b = −1 we obtain
∫ t

0
Eα

[
−(t− τ)α]τα−1Eα,α

[
−q−kατα

]
dτ =

tα
(

Eα,α+1[−tα]− q−kαEα,α+1

[
−q−kαtα

])

(
1− q−kα

) . (43)

From (42) and (43) we obtain

yi(t) = λqi(1−i)α/2−itα
i

∑
k=1

(
Eα,α+1[−tα]− q−kαEα,α+1

[
−q−kαtα

])

(
1− q−kα

)
W ′i (−q−kα)

, i ≥ 1. (44)

From (33) and (44) we obtain the general form of the series solution of (11) in the form

y(t) = λEα[−tα] + λ
∞

∑
i=1

qi(1−i)α/2−itα
i

∑
k=1

(
Eα,α+1[−tα]− q−kαEα,α+1

[
−q−kαtα

])

(
1− q−kα

)
W ′i (−q−kα)

. (45)

It is easy to verify that in formula (45) the components y1(t), y2(t), and y3(t) are the
same as the ones obtained in Section 3.2 and explicitly given by (34)–(36).

Although, all terms of the series solution (45) are given explicitly, we will continue to
simplify further.

From formula (8) with z = −tα and z = −q−kαtα, respectively, we have

tαEα,α+1[−tα] = −Eα[−tα] + 1, (46)

q−kαtαEα,α+1

[
−q−kαtα

]
= −Eα

[
−q−kαtα

]
+ 1. (47)

Substitute (46) and (47) in (45) and get

y(t) = λEα[−tα] + λ
∞

∑
i=1

qi(1−i)α/2−i
i

∑
k=1

(
Eα

[
−q−kαtα

]
− Eα[−tα]

)

(
1− q−kα

)
W ′i (−q−kα)

. (48)

According to the definition of function Wi(s) we have
W ′i (s) = ∑i

m=1 ∏i
j=1, j 6=m(s + q−jα) and W ′i (−q−kα) = ∏i

j=1, j 6=k(q
−jα − q−kα). Finally, we

obtain the formula for the series solution of Equation (11) given by

y(t) = λEα[−tα] + λ
∞

∑
i=1

qi(1−i)α/2−i
i

∑
k=1

(
Eα

[
−q−kαtα

]
− Eα[−tα]

)

(
1− q−kα

)
∏i

j=1, j 6=k(q
−jα − q−kα)

. (49)

It is noticed that in formula (49) only one-parameter Mittag-Leffler function is used.
Accordingly, the formula (49) has an advantage comparatively with (45) in which two-
parameter Mittag-Leffler functions are used. In addition, it can be easily verified that the
expression (49) satisfies the initial condition (12), i.e., the series (49) is a solution of the
initial value problem (11) and (12).

In connection with our further considerations we will define the n-partial sum ρn of
the series (49) and we will call it n-th approximate solution of (11) and (12):

ρn(t) = λEα[−tα] + λ
n

∑
i=1

qi(1−i)α/2−i
i

∑
k=1

(
Eα

[
−q−kαtα

]
− Eα[−tα]

)

(
1− q−kα

)
∏i

j=1, j 6=k(q
−jα − q−kα)

. (50)

Also, define the absolute residual error REn(t) by

REn(t) =
∣∣∣ C

0 Dα
t ρn(t) + ρn(t)−

1
q

ρn

( t
q

)∣∣∣ (51)

Applying the equality C
0 Dα

t Eα[atα] = aEα[atα], t ≥ 0, a ∈ R we get
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REn(t) =
∣∣∣ C

0 Dα
t ρn(t) + ρn(t)−

1
q

ρn

( t
q

)∣∣∣

=
∣∣∣− λEα[−tα]− λ

n

∑
i=1

qi(1−i)α/2−i
i

∑
k=1

(
q−kαEα

[
−q−kαtα

]
− Eα[−tα]

)

(
1− q−kα

)
∏i

j=1, j 6=k(q
−jα − q−kα)

,

+ λEα[−tα] + λ
n

∑
i=1

qi(1−i)α/2−i
i

∑
k=1

(
Eα

[
−q−kαtα

]
− Eα[−tα]

)

(
1− q−kα

)
∏i

j=1, j 6=k(q
−jα − q−kα)

− 1
q

λEα

[
−
( t

q

)α
]
− 1

q
λ

n

∑
i=1

qi(1−i)α/2−i
i

∑
k=1

(
Eα

[
−q−kα

(
t
q

)α
]
− Eα

[
−
(

t
q

)α
])

(
1− q−kα

)
∏i

j=1, j 6=k(q
−jα − q−kα)

∣∣∣,

= λ
∣∣∣1
q

Eα

[
−q−αtα

]
−

n

∑
i=1

qi(1−i)α/2−i
i

∑
k=1

Eα

[
−q−kαtα

]

∏i
j=1, j 6=k(q

−jα − q−kα)

+
n

∑
i=1

qi(1−i)α/2−i−1
i

∑
k=1

Eα

[
−q−(k+1)αtα

]
− Eα[−q−αtα]

(
1− q−kα

)
∏i

j=1, j 6=k(q
−jα − q−kα)

∣∣∣.

(52)

4. Convergence of the Series Solution

Theorem 1. For q > 1, the series solution (49) is convergent for t ≥ 0, ∀ α ∈ (0, 1].

Proof. Let t ≥ 0 be a fixed number and i ≥ 1 be a fixed integer. Then from (49) and
0 < Eα[−u] ≤ 1, Eα[−(u/β)α]− Eα[−uα] < 1 for u ≥ 0, β ≥ 1, and qjα ≤ qiα, qjα ≥ qα for
j = 1, 2, . . . , i, we have

|y(t)| ≤ |λ|Eα[−tα] + |λ|
∣∣∣

∞

∑
i=1

qi(1−i)α/2−i
i

∑
k=1

(Eα[−q−kαtα]− Eα[−tα])(
1− q−kα

)
∏i

j=1, j 6=k(q
−jα − q−kα)

∣∣∣

≤ |λ|+ |λ|
∞

∑
i=1

qi(1−i)α/2−i
i

∑
k=1

∏i
j=1 qjα

(
qkα − 1

)
∏i

j=1, j 6=k |1− q(j−k)α|

≤ |λ|+ |λ|
∞

∑
i=1

qi(1−i)α/2−i+i2α
i

∑
k=1

1(
qkα − 1

)
∏i

j=1, j 6=k |1− q(j−k)α|

≤ |λ|+ |λ|
qα − 1

∞

∑
i=1

qi(1+i)α/2−i
i

∑
k=1

1

∏i
j=1, j 6=k |1− q(j−k)α|

= |λ|+ |λ|
qα − 1

∞

∑
i=1

qi(1−i)α/2−i
i

∑
k=1

qkα ∏i
j=1, j 6=k qjα

(
qkα − 1

)
∏i

j=1, j 6=k |1− qj−kα|

= |λ|+ |λ|
qα − 1

∞

∑
i=1

qi(α−1)
i

∑
k=1

1(
qkα − 1

)
∏i

j=1, j 6=k |1− qj−kα|
.

(53)

Denote ui = qi(α−1) ∑i
k=1

1
(qkα−1)∏i

j=1, j 6=k |1−qj−kα | for i = 1, 2, . . . .

Apply q(i−k)α ≥ qα for k − 1, 2, . . . , i − 1 and j − i ≤ −1; for j = 1, 2, . . . , i − 1, i.e.,
q(j−i)α ≤ q−α and |1− q(j−i)α| = 1− q(j−i)α ≥ 1− q−α and obtain
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ui = qi(α−1)
i

∑
k=1

1(
qkα − 1

)
∏i

j=1, j 6=k |1− q(j−k)α|

= qi(α−1)
( i−1

∑
k=1

1(
qkα − 1

)
(q(i−k)α − 1)∏i−1

j=1, j 6=k |1− q(j−k)α|
+

1(
qiα − 1

)
∏i−1

j=1 |1− qj−iα|
)

= qi(α−1)
( i−1

∑
k=1

1(
qkα − 1

)
(q(i−k)α − 1)∏i−1

j=1, j 6=k |1− q(j−k)α|
+

1(
qiα − 1

)
∏i−1

j=1 |1− qj−iα|
)

≤ qi(α−1)

(qalp − 1)2

i−1

∑
k=1

1

∏i−1
j=1, j 6=k |1− q(j−k)α|

+
1

qi(1−α)
(
qiα − 1

)
∏i−1

j=1 |1− q(j−i)α|

≤ q(α−1)

(qα − 1)2 ui−1 +
1

qi(1−α)
(
qiα − 1

)
(1− q−α)i−1

.

(54)

From (57), inequalities q > 1, α ∈ (0, 1) it follows that qα−1 < 1,limi→∞
1

|1−qiα | = 0 and

therefore, limi→∞
ui

ui−1
< 1, i.e., the series solution given by (49) is convergent for t > 0.
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REn(t) =
∣∣∣ C

0 Dα
t ρn(t) + ρn(t)−

1
q

ρn

( t
q

)∣∣∣

=
∣∣∣− λEα[−tα]− λ

n

∑
i=1

qi(1−i)α/2−i
i

∑
k=1

(
q−kαEα

[
−q−kαtα

]
− Eα[−tα]

)

(
1− q−kα

)
∏i

j=1, j 6=k(q
−jα − q−kα)

,

+ λEα[−tα] + λ
n

∑
i=1

qi(1−i)α/2−i
i

∑
k=1

(
Eα

[
−q−kαtα

]
− Eα[−tα]

)

(
1− q−kα

)
∏i

j=1, j 6=k(q
−jα − q−kα)

− 1
q

λEα

[
−
( t

q

)α
]
− 1

q
λ

n

∑
i=1

qi(1−i)α/2−i
i

∑
k=1

(
Eα

[
−q−kα

(
t
q

)α
]
− Eα

[
−
(

t
q

)α
])

(
1− q−kα

)
∏i

j=1, j 6=k(q
−jα − q−kα)

∣∣∣,

= λ
∣∣∣1
q

Eα

[
−q−αtα

]
−

n

∑
i=1

qi(1−i)α/2−i
i

∑
k=1

Eα

[
−q−kαtα

]

∏i
j=1, j 6=k(q

−jα − q−kα)

+
n

∑
i=1

qi(1−i)α/2−i−1
i

∑
k=1

Eα

[
−q−(k+1)αtα

]
− Eα[−q−αtα]

(
1− q−kα

)
∏i

j=1, j 6=k(q
−jα − q−kα)

∣∣∣.

(52)

4. Convergence of the Series Solution

Theorem 1. For q > 1, the series solution (49) is convergent for t ≥ 0, ∀ α ∈ (0, 1].

Proof. proof

Proof. Let t ≥ 0 be a fixed number and i ≥ 1 be a fixed integer. Then from (49) and
0 < Eα[−u] ≤ 1, Eα[−(u/β)α]− Eα[−uα] < 1 for u ≥ 0, β ≥ 1, and qjα ≤ qiα, qjα ≥ qα for
j = 1, 2, . . . , i, we have

|y(t)| ≤ |λ|Eα[−tα] + |λ|
∣∣∣

∞

∑
i=1

qi(1−i)α/2−i
i

∑
k=1

(Eα[−q−kαtα]− Eα[−tα])(
1− q−kα

)
∏i

j=1, j 6=k(q
−jα − q−kα)

∣∣∣

≤ |λ|+ |λ|
∞

∑
i=1

qi(1−i)α/2−i
i

∑
k=1

∏i
j=1 qjα

(
qkα − 1

)
∏i

j=1, j 6=k |1− q(j−k)α|

≤ |λ|+ |λ|
∞

∑
i=1

qi(1−i)α/2−i+i2α
i

∑
k=1

1(
qkα − 1

)
∏i

j=1, j 6=k |1− q(j−k)α|

≤ |λ|+ |λ|
qα − 1

∞

∑
i=1

qi(1+i)α/2−i
i

∑
k=1

1

∏i
j=1, j 6=k |1− q(j−k)α|

= |λ|+ |λ|
qα − 1

∞

∑
i=1

qi(1−i)α/2−i
i

∑
k=1

qkα ∏i
j=1, j 6=k qjα

(
qkα − 1

)
∏i

j=1, j 6=k |1− qj−kα|

= |λ|+ |λ|
qα − 1

∞

∑
i=1

qi(α−1)
i

∑
k=1

1(
qkα − 1

)
∏i

j=1, j 6=k |1− qj−kα|
.

(53)

Denote ui = qi(α−1) ∑i
k=1

1
(qkα−1)∏i

j=1, j 6=k |1−qj−kα | for i = 1, 2, . . . .

Apply q(i−k)α ≥ qα for k − 1, 2, . . . , i − 1 and j − i ≤ −1; for j = 1, 2, . . . , i − 1, i.e.,
q(j−i)α ≤ q−α and |1− q(j−i)α| = 1− q(j−i)α ≥ 1− q−α and obtain

5. Limit Case as α→ 1 of the Series Solution

According to Remark 1 the Caputo fractional derivative is reduced to an ordinary
one as α → 1. Thus, the studied Caputo fractional generalzation (11) of Ambartsumian
differential equation will be reduced to the well known and studied in the literature model

y′(t) = −y(t) +
1
q

y
(

t
q

)
, t > 0, (55)

Now, take limit α → 1 in the obtained series solution (49), use the equality E1[u] =
eu, u ∈ R and obtain

ỹ(t) = λe−t + λ
∞

∑
i=1

qi(1−i)1/2−i
i

∑
k=1

e
− t

qk − e−t
(
1− q−k

)
∏i

j=1, j 6=k(q
−j − q−k)

. (56)

As partial cases of (56) we obtain
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y0(t) = λe−t,

y1(t) = λq−1 e−
t
q − e−t

(1− q−1)
= λ

e−
t
q − e−t

(q− 1)
,

y2(t) = λq−3
( e−

t
q − e−t

(1− q−1)(q−2 − q−1)
+

e
− t

q2 − e−t

(1− q−2)(q−1 − q−2)

)
,

= λ
( e−

t
q − e−t

(q− 1)(1− q)
+

e
− t

q2 − e−t

q−1(q2 − 1)(q− 1)

)
,

= λ
1

(1− q)2(1 + q)

(
qe
− t

q2 − (q + 1)e−
t
q + e−t

)
,

y3(t) = λq−6
( e−

t
q − e−t

(1− q−1)(q−2 − q−1)(q−3 − q−1)
+

e
− t

q2 − e−t

(1− q−2)(q−1 − q−2)(q−3 − q−2)

+
e
− t

q3 − e−t

(1− q−3)(q−1 − q−3)(q−2 − q−3)

)
,

= λ
( e−

t
q − e−t

(q− 1)(q− 1)(q2 − 1)
− q

e
− t

q2 − e−t

(q2 − 1)(q− 1)(q− 1)
+ q3 e

− t
q3 − e−t

(q3 − 1)(q2 − 1)(q− 1)

)
,

=
λ

(q− 1)(q2 − 1)(q3 − 1)

(
− e−t + (1 + q + q2)e−

t
q − (q + q2 + q3)e

− t
q2 + q3e

− t
q3
)

.

(57)

The Equation (55) with initial condition (12) is studied by many authors and different
types of series solutions are obtained. In [15] a series solutions with exponential functions
is obtained. If we compare the formulas (10), (11) (with corrected typos) for the first three
in terms, obtained in [15], one can see, that they coincide the formulas (57), obtained as a
limit case of the new formula (49). Therefore, the new series solution (49) in fractional case
α ∈ (0, 1) is a generalization for the ordinary case known in the literature.

6. Numerical Simulations and Discussions

We will discuss the series solution (49) in different point of view by computer simula-
tions. We will apply CAS Wolfram Mathematica to simulate and graph the results.

Case 1. Convergence. Consider the n-th partial sums ρn(t) of the series solution (49),
called n-th approximate solution of (11), (12) and the error function REn(t) defined by (50)
and (51), respectively. Fix λ = 1, q = 1.5, α = 0.5 and graph the partial sums (n-th
approximate solution of (11), (12) ) for various values of n = 2, 4, 7, 10, 15 (see Figure 1) and
the corresponding errors (see Figure 2). In addition, the numerical results of the residual
error RE10(t) at various values of α are tabulated in Table 1 when q = 1.5 and Table 2
when q = 2. From both Figures and Tables it could be seen the convergence of the n-th
approximate solution of (11), (12) with increasing of n. Moreover, the obtained numerical
values for the residual error RE10(t) reflects the accuracy of the present analysis.
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ρ2(t)

ρ4(t)

ρ7(t)

ρ10(t)

ρ15(t)

5 10 15 20 25 30
t

0.2

0.4

0.6

0.8

1.0

ρn(t)

Figure 1. Graphs of the n-th approximate solution of (11), (12) with n = 2, 4, 7, 10, 15 and λ = 1,
q = 1.5, and α = 0.5.

Table 1. The residual error RE10(t) when λ = 1 and q = 1.5 at three different values of α.

RE10(t)

t α = 0.5 α = 0.75 α = 1

0 1.8600 × 10−12 5.6288 × 10−14 1.3656 × 10−13

2 5.1695 × 10−9 3.3530 × 10−12 6.1451 × 10−14

4 7.4734 × 10−8 3.4129 × 10−10 3.0542 × 10−13

6 3.1829 × 10−7 4.4299 × 10−9 1.4283 × 10−11

8 8.3965 × 10−7 2.5116 × 10−8 1.8487 × 10−10

10 1.7190 × 10−6 9.1315 × 10−8 1.2649 × 10−9

5 10 15 20 25 30
t

0.01

0.02

0.03

0.04

0.05

0.06

REn(t) RE2(t)

RE4(t)

RE7(t)

RE10(t)

RE15(t)

Figure 2. Graphs of the n-th errors REn(t) with n = 2, 4, 7, 10, 15 and λ = 1, q = 1.5, and α = 0.5.
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Table 2. The residual error RE10(t) when λ = 1 and q = 2 at three different values of α.

RE10(t)

t α = 0.5 α = 0.75 α = 1

0 1.0991 × 10−14 1.0603 × 10−14 1.9651 × 10−14

2 1.8281 × 10−13 7.2858 × 10−15 1.4322 × 10−14

4 3.7821 × 10−12 6.7724 × 10−15 1.1852 × 10−14

6 2.0318 × 10−11 9.5479 × 10−15 1.0519 × 10−14

8 6.4565 × 10−11 2.8588 × 10−14 9.8532 × 10−15

10 1.5476 × 10−10 1.0314 × 10−13 9.3953 × 10−15

Case 2. Impact of the parameter q. We fix λ = 1, α = 0.5 and graph the n-th approximate
solution of (11), (12) at n = 2, 4, 7, 10, 15 for various values of q = 1.5 (see Figure 1), q = 1.8
(see Figure 3), q = 2 (see Figure 4) and q = 2.5 (see Figure 5). A rapid convergence is
observed from these figures using only a few terms of the series solutions (49). We could
see, that the rate of convergence is increased for higher values of q, for example q > 2,
where at q = 2.5 (see Figure 5) the 4-term, 7-term, 10-term, and 15-term are nearly identical.
However, a rapid decrease in the surface brightness has been remarked by increasing the
delay parameter q. This latest notice reveals that the curves of the approximate solutions
tend faster to zero at higher values of q.

Case 3. Impact of the initial value λ. To study the impacts of the initial value λ on the
approximation, we fix q = 1.5, α = 0.5, n = 10, and graph the 10-th approximate solution
ρ10(t) of (11), (12) for various values of λ = 1, 2, 3 (see Figure 6). It can be seen from
Figure 6 that the surface brightness is increased by increasing the given initial value λ.

ρ2(t)

ρ4(t)

ρ7(t)

ρ10(t)

ρ15(t)

5 10 15 20 25 30
t

0.2

0.4

0.6

0.8

1.0

ρn(t)

Figure 3. Graphs of the n-th approximate solution of (11), (12) with n = 2, 4, 7, 10, 15 and λ = 1,
α = 0.5, and q = 1.8.
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ρ2(t)

ρ4(t)

ρ7(t)

ρ10(t)

ρ15(t)

5 10 15 20 25 30
t

0.2

0.4

0.6

0.8

1.0

ρn(t)

Figure 4. Graphs of the n-th approximate solution of (11), (12) with n = 2, 4, 7, 10, 15 and λ = 1,
α = 0.5, and q = 2.

ρ2(t)

ρ4(t)

ρ7(t)

ρ10(t)

ρ15(t)

5 10 15 20 25 30
t

0.2

0.4

0.6

0.8

1.0

ρn(t)

Figure 5. Graphs of the n-th approximate solution of (11), (12) with n = 2, 4, 7, 10, 15 and λ = 1,
α = 0.5, and q = 2.5.
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λ=1

λ=2

λ=3

5 10 15 20 25 30
t

0.5

1.0

1.5

2.0

2.5

3.0

ρ10 (t)

Figure 6. Impact of the initial value λ on the 10-term approximate solution of (11), (12) at q = 1.5,
and α = 0.5.

Case 4. Comparing the series solution (49) with known ones in the literature. The initial
value problem (11), (12) is studied by some other authors and they obtained some different
types of series solution. For example, in [19], the following series solution is obtained:

ỹ(t) = λ
∞

∑
k=0

tkα

Γ(kα + 1)

k

∏
j=1

(
q−(k−j)α−1 − 1

)
, (58)

with n-th partial sum (n-th approximate solution of (11), (12)) defined by

Ψn(t) = λ
n

∑
k=0

tkα

Γ(kα + 1)

k

∏
j=1

(
q−(k−j)α−1 − 1

)
. (59)

We fix λ = 1, α = 0.5, q = 1.4 and graph both n-the approximate solution ρn(t) and
Ψn(t) of (11), (12) for various values of n = 10 (see Figure 7), n = 15 (see Figure 8).

ρ10(t)

ψ10(t)

1 2 3 4
t

0.2

0.4

0.6

0.8

1.0

ρ10 ,ψ10

Figure 7. Graphs of the n-th approximate solutions ρ10(t) (present) and Ψ10(t) (Ref. [19]) for λ = 1,
q = 1.4, and α = 0.5
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ρ15(t)

ψ15(t)

1 2 3 4 5 6
t

0.2

0.4

0.6

0.8

1.0

ρ15 ,ψ15

Figure 8. Graphs of the n-th approximate solutions ρ15(t) (present) and Ψ15(t) (Ref. [19]) for λ = 1,
q = 1.4, and α = 0.5

Figures 7 and 8 show that both approximations coincide on an interval close to zero,
however they differ for large t. However, the interval of coincidence increases by increasing
the number of terms taken from both series. For example, our 10-term series solutions
coincide on the interval [0, 3] (Figure 7) while taking 15-term from both series led to a
coincidence on a slightly wider interval [0, 4] (Figure 8). At the same time, the approximate
solutions ρn(t), n = 10, 15 are convergent to the exact solution in the whole domain of
t ≥ 0.

The numerical values of ρ15(t) (present), Ψ15(t) (Ref. [19]), and the difference dn(t) =
ρn(t)−Ψn(t) are tabulated in Table 3. It can be seen from this table that the difference dn(t)
increases as t increases and hence dn(t) is significant. The main observation here is that the
values of Ψ15(t) are negative at some points such as at t = 8 and t = 10 (see Table 3) which
is not physically acceptable. By this, the published solution in the literature [19] is not
physical in the whole domain. Therefore, our approach is applicable and convergent in the
whole domain which are the main advantages of the present work over the corresponding
one in the literature [19].

Table 3. Comparison between ρ15(t) (present), Ψ15(t) (Ref. [19]) when λ = 1, q = 2 and α = 1.

dn(t) = ρn(t)−Ψn(t)

t ρ15(t) (Present) Ψ15(t) [26] d15(t)

0 1 1 0
2 0.458295 0.458159 8.1554 × 10−10

4 0.284022 0.283919 4.8080 × 10−5

6 0.204525 0.175858 2.8667 × 10−2

8 0.159575 −2.466450 0.2626 × 10+1

10 0.130763 −86.072400 0.8620 × 10+3

7. Conclusions

A combined approach based on the LT and the ADM was developed in this paper to
solve the fractional model of the Ambartsumian delay equation with Caputo fractional
derivative. The first step of such approach was applying the LT on current fractional
equation and then solving the transformed equation by the ADM. It was also shown that
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a general formula for the yi(t)-components (Adomian’s components) was successfully
obtained. Hence, the exact solution was provided to the first time for fractional model of the
Ambartsumian equation. Both of the approximate and the exact solutions were obtained
and expressed in terms of the Mittag-Leffler functions. Moreover, the advantage of the
present approach over the previous one in the relevant literature was that our solution
converges in the whole domain as properties of the Mittag-Leffler functions. While the
solution in the relevant literature [7] was given as a power series in terms of tα which
converges in certain domains, i.e., not valid in the whole domain of the present model.
The results obtained by simulations of the studied equation reveal that the approximate
solution is highly accurate. Moreover, the absolute residual error approaches zero even
at higher values of the delay parameter. Finally, the authors believe that the current
developed approach deserves further extensions to include and investigate other higher-
order fractional delay equations.
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