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Abstract: Multi-class classification in imbalanced datasets is a challenging problem. In these cases,
common validation metrics (such as accuracy or recall) are often not suitable. In many of these
problems, often real-world problems related to health, some classification errors may be tolerated,
whereas others are to be avoided completely. Therefore, a cost-sensitive variable selection procedure
for building a Bayesian network classifier is proposed. In it, a flexible validation metric (cost/loss
function) encoding the impact of the different classification errors is employed. Thus, the model
is learned to optimize the a priori specified cost function. The proposed approach was applied to
forecasting an air quality index using current levels of air pollutants and climatic variables from a
highly imbalanced dataset. For this problem, the method yielded better results than other standard
validation metrics in the less frequent class states. The possibility of fine-tuning the objective
validation function can improve the prediction quality in imbalanced data or when asymmetric
misclassification costs have to be considered.

Keywords: multi-class classification; imbalanced data; Bayesian networks; variable selection

1. Introduction

Machine learning methods are pervasive nowadays, and classification is one of the
main problems within this field [1,2]. Classification consists of predicting the value or state
of a discrete variable of interest, called the class, given the values of other variables, called
the predictive or feature variables. Multi-class classification [3,4] is a specific classification
problem, in which the class variable has more than two possible values, as opposed to
the usual binary classification. Some authors propose the adaptation of binary classifi-
cation methods to deal with multi-class data [5–7], but these techniques often present
inconveniences.

In real-world datasets, the distribution of the class variable is usually far from being
uniform, with some classes being much more frequent than others. This kind of data
is called imbalanced [8,9]. As the rare classes have few cases to learn from, standard
classifiers tend to learn the rules to classify the common classes and ignore the rare ones.
Consequently, rare classes are usually misclassified. In some applications, such as cancer
or fraud detection, the main concern is precisely the identification of infrequent cases. This
is especially problematic in multi-class schemes [10,11].

Many solutions have been proposed to tackle binary classification for imbalanced
data [8,9,12], including balancing the classes by means of resampling (e.g., oversampling
of the rare class or undersampling of the common class [13]), or improving the recognition
of the underrepresented class. Some solutions applied to binary imbalanced data are not
practical for multi-class imbalanced data [14,15], especially resampling methods, due to
the increase in complexity. In this case, algorithm level approaches, which try to bias the
classification learning towards the rare classes, are more commonly applied.
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Variable or feature selection [16–19] can play a crucial role when facing imbalanced
data [20]. An excessive number of variables may decrease both the generalization of
the model by over-fitting and its performance by introducing noise. Therefore, variable
selection methods aim at choosing the set of variables that better discriminates between the
classes of the target variable, i.e., irrelevant or redundant variables are usually discarded in
order to improve the performance of the model.

Bayesian networks (BNs) [21,22] have been employed successfully for classification
purposes [23] in many applications [24–29], including multi-class tasks [30]. Roughly
speaking, BNs are compact representations of the joint probability distribution over a set of
variables, whose independence relationships are encoded by a directed acyclic graph [21].
In the context of classification, the use of fixed or restricted structures is widespread since
they allow the reduction of the number of parameters to be estimated from data while
maintaining the accuracy of the model [24].

We propose a cost-sensitive [31–33] variable selection method for multi-class imbal-
anced data [34], in the sense that the validation metric takes into account the different
impact of each error type in the classification errors. Thus, one can specify a priori a cost
or loss function encoding the problem-specific aspects (i.e., the cost/loss of each kind of
misclassification). Then, using a variable selection algorithm, this cost-based metric is opti-
mized, and the best-fitting variables are selected. Our main contribution is the introduction
of a validation metric that generalizes the standard classification metrics (i.e., accuracy,
precision, and recall) by using custom cost matrices that allow different misclassification
penalties. In order to test the proposed approach, we apply it to the problem of forecasting
the next-hour air quality from air pollutants and climate data, using a highly imbalanced
real dataset. This dataset was chosen as a case study due to its severe imbalance and the
different impact of each misclassification type.

Many predictive models have been proposed for air quality forecasting in the last
few years using machine-learning [35], most of them employing neural networks or other
deep learning techniques [36,37]. In [36], different neural network structures were tested
for both short-term and long-term predictions. In [37], deep neural networks are also
used but including spatial and geographical information. Other works, like [38], have
proposed several regularization techniques to increase the model performance and to
reduce over-fitting.

Bayesian networks (BNs) and Bayesian methods have also been used for air pollution
prediction [39–42]. In [39], BNs were successfully used for predicting ozone levels through
structural learning. Other more recent works have employed BNs for predicting the air
quality with a fixed set of predictors in Shanghai (China) [40] and in Genoa (Italy) [41].
In the former, a general structure is compared to other models, whereas, in the latter, an
expert-elicited model is compared to an automatically built structure. However, these
two works look rather elementary, and few details on the methodology and experimental
set-ups were given. A more exhaustive list of machine-learning contributions to forecasting
air pollutants or air quality can be found in [38,42].

Regarding the air quality prediction problem, we propose to use the aforementioned
methodology to improve the classification rate on the infrequent class states (which nor-
mally correspond to harmful pollution levels), which consists of using a variable selection
procedure and a more general validation metric that allows custom misclassification penal-
izations.

The structure of the rest of the paper is as follows. In Section 2, we give a brief overview
of Bayesian networks, a description of a parsimonious variable selection procedure, and
we describe the multi-class classification problem and discuss how to validate a multi-class
model. Then, still in Section 2, we introduce the problem of forecasting an air quality
index and propose custom cost functions for it. In Section 3, we present and describe the
experimental results of the proposed approach, testing it with air quality data. Finally, in
Section 4, we discuss the results and comment on their main implications.
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2. Methodology
2.1. Bayesian Networks

A Bayesian network is a compact representation of the joint probability distribution
over a set of variables X = {X1, . . . , Xn}, whose independence relations are encoded by
the structure of an underlying directed acyclic graph (DAG) [21,22]. Briefly speaking, a
BN is defined as a pair (G, P), where G is a DAG and P is a set of conditional probability
distributions (CPDs). G is composed of nodes that represent random variables (X), and
links between pairs of nodes representing statistical dependence. Each node Xi has an
associated probability distribution p(Xi |Pa(Xi)), where Pa(Xi) denotes the parents of Xi
in the DAG G. Attending to the factorization encoded in the DAG, the joint probability
distribution over all the variables in the network is defined as the product of the CPDs
attached to each node, so that

p(X1, . . . , Xn) =
n

∏
i=1

p(Xi |Pa(Xi)), for Xi ∈ Ωi, i = 1, . . . , n,

where Ωi represents the domain or set of all possible values of the variable Xi.
Figure 1 shows an example of a Bayesian network, whose joint distribution for vari-

ables X1, . . . , X7 can be factorized as p(X1, X2, X3, X4, X5, X6, X7) = p(X1)p(X7)p(X2|X1)
p(X3|X1)p(X5|X3, X7)p(X4|X2, X3)p(X6|X4).

X1

X2 X3

X4 X5

X6

X7

Figure 1. An example of a Bayesian network.

When a BN contains both discrete and continuous nodes, it is called a hybrid BN.
A hybrid BN classifier is a BN that contains a discrete variable of interest C and a set of
predictive (continuous or discrete) variables X1, . . . , Xn. The goal of such a classifier is to
determine the probability that an object with observed features x1, . . . , xn belongs to each
class {C = cj}, and to return the most likely one [23]:

arg max
j

p(C = cj |X).

A number of restricted DAGs have been proposed to solve regression tasks, aiming
at reducing the number of parameters to be estimated from data while maintaining the
accuracy of the model [23,24]. The simplest case is the naive Bayes (NB), a fixed structure
whose class variable C is the parent of all remaining explanatory variables X1, . . . , Xn,
i.e., n − 1 links point from C to each Xi. In other words, the predictors are considered
independent of each other given C. The strong independence assumption is compensated
by the reduction in the number of parameters to be estimated from data since the posterior
probability distribution over the class variable C is computed as follows:

p(C = cj |X) =
p(C = cj)p

(
X |C = cj

)
p(X)

=
p(C = cj) ∏n

i=1 p
(
Xi |C = cj

)
∑m

j=1 p(C = cj)p
(
X |C = cj

) , j = 1, . . . , m.
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There exist other restricted and more elaborated structures that relax the independence
assumption, for instance, k-dependence Bayesian classifiers (kDB), which allow that each
feature has up to k more parents besides the class variable. The naive Bayes is a special
case of kBDs, where k = 0 [23]. Learning the structure of restricted models can be done
from data by means of constraint-based techniques or greedy search techniques [23,43].
These approaches can also be used to learn unrestricted structures, i.e., those that do
not distinguish a class variable. However, these techniques are often computationally
expensive and harder to implement. Moreover, the naive Bayes model has repeatedly
shown excellent performance in classification problems.

In this study, a conditional linear Gaussian (CLG) Bayesian network with naive Bayes
structure is considered. More precisely, the class C is a multinomial variable with four
states, and the remaining nodes are continuous variables. Even though exact inference is
feasible in this case, approximate inference is easier to implement and to generalize to more
complex network structures. Approximate inference includes algorithms such as evidence
or likelihood weighting [44], importance sampling [45], and other techniques [22,43]. The
R package bnlearn [46], which includes an implementation of the likelihood weighting
algorithm, was used to build the hybrid BN classifier.

2.2. Variable Selection

A variable selection process was carried out using an incremental wrapper sequential
subset with replacement method [47]. Let C be the class variable, i.e., the variable we are
interested in classifying, and X = {X1, . . . , Xn} the set of predictive variables of C. Let D
be the set of variables included in the classification modelM. Firstly, we need to determine
an order for the predictive variables X. Let Z = {Z1, . . . , Zn} be the ordered set of the
predictive variables.

To initialize the algorithm, the first variable in Z (Z1) and the class C are included in
D. Then, the variables in D are used to build a classification model,M, and a measure of
predictive performance, V, is computed using the k-fold cross-validation technique [48].
This technique splits the complete dataset into k subsets, with k-1 being used to learn
the model (train set) and the other to compute the predictive performance (test set). The
splits are obtained randomly and maintaining the proportions of the different values of
the class variable. This method is repeated k times so that a new train and test sets are
used each time. The average of the k performance measures (V), giving an estimate of the
out-of-sample loss. In our experiments, a k-value of 10 was applied.

After the initial model is obtained, the next variable in Z (Z2) can either be added to
D, replace a predictive variable in D or not being included in D. The criteria to decide
the path of the variables in Z depends on the predictive performance of the new classifier,
M′. More precisely, each variable in Z always takes the following steps (not necessarily in
this order):

• it replaces the predictive variables in D, one by one, and the predictive performance,
V′, of the new classifier, M′, is computed. If the predictive performance ofM′ is
higher, i.e., V′ > V, the new variable Z2 replaces Z1 and the predictive performance
(V′) is set as the current one (V);

• it is inserted in D and the predictive performance ofM′, V′, is computed. If V′ > V,
Z2 is kept in D and V = V′.

These steps are repeated for all the variables in Z and the loop starts over as long as
the model’s performance improves. The details for the variable selection method carried
out are shown in Algorithm 1.

The predictive performance of modelM can be measured with any metric of interest,
such as the global accuracy, the recall or precision of a class, among others. Section 2.3
further discusses the validation metrics used in this work.
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Algorithm 1: Incremental Wrapper Sequential Subset with Replacement (IWSR)

Input: A set of predictive variables X = {X1, . . . , Xn} and a class variable C.
Output: A set of selected predictive variables, S.

1 Get an ordered set Z = {Z1, . . . , Zn} of the n predictive variables.
2 Create an empty dataset, D.
3 Initialize a set of selected variables, S = {Z1}.
4 Include S and C in D.
5 Learn modelM from D.
6 Let V(M) be the predictive performance of modelM.
7 improving = TRUE
8 while improving do
9 improving = FALSE

10 Initilize best set of selected variables, bestS = NULL
11 for i in 1:n do
12 if Zi in S then
13 skip Zi
14 else
15 # replacement
16 for j in 1:lenght(S) do
17 Snew = S
18 Replace Sj for Zi in Snew

19 D = {Snew, C}
20 Learn modelM′ form D.
21 Compute V′(M′).
22 if V′ > V then
23 V = V′
24 bestS = Snew

25 # additon
26 Snew = {S, Zi}
27 D = {Snew, C}
28 Learn modelM′ form D.
29 Compute V′(M′).
30 if V′ > V then
31 V = V′
32 bestS = Snew

33 # If there is an improvement with replacement or addition
34 if !=null(bestS) then
35 S = bestS
36 improving = TRUE

37 return S

2.3. Multi-Class Classification

In binary classification, the most common validation metrics are accuracy, precision,
and recall. A single metric among these can be rather informative, depending on the
specific problem. However, in highly imbalanced datasets, the accuracy may not be reliable.
Moreover, in problems where one wants to keep the false-negative rate low, obtaining a
high value of the recall rather than the accuracy or the precision is preferable.

Multi-class classification models are challenging to validate. Several strategies have
been proposed to reduce multi-class classification to binary classification, such as one-
versus-all and all-versus-all schemes [15,49]. However, this approach may generate a large
number of models and metrics, and it is preferable to use purely multi-class classifiers.

In a multi-class problem, it is often impossible to compare models with a single metric,
or even with a few of them. In particular, in a multi-class scheme, there are not single
values for precision and recall, but there are different values for each class variable state.
The validation or the selection of a model will rely critically on the chosen metrics.

Classification results can be gathered in what is called the confusion matrix, either
represented as a table (Table 1, left) or purely as a matrix: CM =

(
ni,j
)r

i,j=1, where we
assume r class values or states. The value ni,j, in row i and column j, stands for the number
of observations whose class value is Ci and were classified as being of class Cj. From these



Mathematics 2021, 9, 156 6 of 15

values, we can compute ni, the absolute frequency of class value i, as ni = ∑r
j=1 ni,j, and the

total number of observations, N = ∑r
i,j=1 ni,j. The sum of the main diagonal, s = ∑r

i=1 ni,i,
yields the total number of correct classifications, whereas values out of that diagonal, ni,j
with i 6= j, represent misclassifications. From the confusion matrix, the accuracy (fraction
of correct predictions) is computed simply as s/N. The recall reck and precision preck for
class k can be calculated as:

reck =
nk,k

ni
=

nkk

∑r
j=1 nk,j

, preck =
nk,k

ni
=

nkk

∑r
i=1 ni,k

(1)

whose denominators are respectively the sums of elements in row k and column k, and the
common numerator is the number of correctly classified observations in class k.

Table 1. Confusion matrix (left) and loss matrix (right) for multiclass classification with r states.

Obs.
Pred. C1 C2 . . . Cr Obs.

Pred. C1 C2 . . . Cr

C1 n1,1 n1,2 . . . n1,r C1 `1,1 `1,2 . . . `1,r
C2 n2,1 n2,2 . . . n2,r C2 `2,1 `2,2 . . . `2,r
...

...
...

. . .
...

...
...

...
. . .

...
Cr nr,1 nr,2 . . . nr,r Cr `r,1 `r,2 . . . `r,r

All these metrics are symmetric, in the sense that the importance of every classification
error is the same. Therefore, there are many problems where these standard metrics are
not suitable, due to imbalance in the data or the different cost of classification errors
(i.e., misclassifications for some class values have a heavier impact than for other class
states). These problems typically arise in diagnostic or health problems, in which it is critical
to have a low proportion of false negatives, and the impact of having some false positives
is admissible. In these situations, asymmetric costs should be employed to measure the
performance of a model.

To overcome these inconveniences, we propose an extension of the metrics above that
generalizes them and permits establishing different weights for every possible classification.
We define `i,j, which is a weight for the classification of class state i as j. These will be a
cost or loss in case of failure (i 6= j) but a benefit or reward in the case of success (i = j).
These weights can be collected in what we call a loss matrix, LM =

(
`i,j
)r

i,j=1, even though
values in the main diagonal actually correspond to rewards (see Table 1, right). Absolute
cost/reward values in this matrix are not relevant, as long as the ratios between different
types of errors are kept.

Using the loss matrix LM, and the confusion matrix introduced above, we define the
validation metric V, which depends on both, as:

VLM(CM) =
∑r

i=1 CMi,iLMi,i

∑r
i,j=1 CMi,jLMi,j

(2)

where the numerator stands for the weighted number of successes and the denominator is
the total weighted number of classifications (both successes and failures). This definition of
validation metric V is motivated by two aspects: it is a generalization of the usual metrics
(accuracy, recall, precision), and it is bounded between 0 and 1, where 1 corresponds to a
perfect classification. For instance, if we set LM to be a matrix full of ones, VLM becomes
the usual accuracy. If LM is a matrix full of zeros but with ones in the row (resp. column) k
(see Equation (3) below), then VLM yields the usual recall (resp. precision) for class k. For
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instance, to recover the precision for class state 1, prec1, and the recall for class state 2, rec2,
we can compute VLMprec1

and VLMrec2
respectively, with the following loss matrices:

LMprec1 =


1 0 0 . . . 0
1 0 0 . . . 0
1 0 0 . . . 0
...

...
...

. . .
...

1 0 0 . . . 0

 LMrec2 =


0 0 0 . . . 0
1 1 1 . . . 1
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 (3)

Another metric that has been proposed for multi-class classification problems is the
geometric mean of the recalls (GMR) [50] of each class value (see Equation (4)). Due to the
nature of the geometric mean, this metric will try to maximize, simultaneously and with
certain homogeneity, all the recall values:

VGMR =

(
r

∏
i=1

reci

)1/r

. (4)

2.4. Forecasting Air Quality Index

To check the proposed approach for cost-sensitive variable selection in multi-class
imbalanced data, Algorithm 1 was tested with different objective functions in the problem
of forecasting the air quality index (NAQI) one time-step ahead. Several alternatives were
employed and analyzed, depending on the objective metric to be optimized in the variable
selection process. The six objective functions were: accuracy (acc), recall for state C4 (rec4),
recall for state C3 (rec3), geometric mean of the recalls (GMR), and the two custom cost
functions, CLM1 and CLM2, defined in Section 2.4.3.

2.4.1. The NAQI Air Quality Index

In order to establish air quality levels, we use the definition of the National Air Quality
Index (NAQI) from Spain, according to the official Spanish methodology [51]. This index
comprises the values of five key air pollutants: PM10, PM2.5, O3, NO2, and SO2, and the
index category is assigned based on the worst level among the pollutants. The explanation
of each pollutant can be found in Table 2. For NO2 and SO2, the hourly average levels are
used in NAQI. For O3, PM2.5, and PM10, the index uses the moving average of the values
among the last 8, 24, and 24 h, respectively. We will denote these moving averages as O3ma,
PM2.5ma, and PM10ma, and they will also be used as predictive variables later. There
are six possible labels for the NAQI, which, ordered by increasing pollution, are defined
in Spanish as: “buena” (good), “razonablemente buena” (fair), “regular” (moderate),
“desfavorable” (poor), “muy desfavorable” (very poor), and “extremadamente desfavorable”
(extremely poor). Further details can be found in [51].

2.4.2. Data Source and Analysis

Three yearly datasets containing a number of relevant pollutants and climatic variables
measured hourly were acquired from www.gijon.es/es/datos. These datasets originate
from Gijón (Asturias), a city in northern Spain, and covers the period from 2017 to 2019.

The merged dataset contained missing values, which were imputed using the R
package missForest. On the other hand, the first 23 h were removed since the computation
of the moving averages leads to data loss. Moreover, the last observation (i.e., the last hour
of the last day) was also removed since no data were available for the next hours. Table 2
shows the description of the predictive variables considered, as well as their percentage of
missing values in the original dataset. The completed dataset was used to compute the
air quality index (NAQI), described above. Since our goal is to predict the NAQI value
one hour ahead, we shifted this variable one time step behind. The NAQI variable, i.e.,
the class in this case study, is a highly imbalanced multinomial variable with four states.
Table 3 shows the relative frequency of each category of the class variable.

www.gijon.es/es/datos
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Table 2. Description of the predictive variables and their percentage of missing values in the original
dataset.

Pollutant Description %%% Missing Values

SO2 Sulfur dioxide (µg/m3) 1.12
NO Nitrogen monoxide (µg/m3) 0.92
NO2 Nitrogen dioxide (µg/m3) 1.00
CO Carbon monoxide (mg/m3) 34.01

PM10 Particulate matter 10 µm or less in diameter (µg/m3) 1.22
PM2.5 Particulate matter 2.5 µm or less in diameter (µg/m3) 0.92

O3 Tropospheric ozone (µg/m3) 2.05
BEN Benzene (µg/m3) 2.23
TOL Toluene (µg/m3) 2.23

MXIL m-Xylene (µg/m3) 3.51
vv Wind speed (m/s) 1.34
dd Wind direction (º) 1.34

TMP Temperature (°C) 0.75
HR Relative humidity (%) 0.75
PRB Atmospheric pressure (mbar) 0.47
RS Solar radiation (W/m2) 0.47
LL Rainfall (l/m2) 0.47

Time Time of day in 24-h format 0
Weekday Day of the week (1-Monday to 7-Sunday) 0

O3ma Moving average of the previous 8 h of O3 -
PM2.5ma Moving average of the previous 24 h of PM2.5 -
PM10ma Moving average of the previous 24 h of PM10 -

Table 3. Relative frequency (%) of each category of the class variable (NAQI) and sample sizes for
the complete, train, and test datasets.

1 (Good) 2 (Fair) 3 (Moderate) 4 (Poor) Sample Size

Complete dataset 23.51% 70.99% 4.29% 1.21% 26,256
Train 26.44% 67.95% 4.60% 1.01% 17,497
Test 17.66% 77.05% 3.66% 1.62% 8759

For an adequate validation of the models, the dataset was split into training and test
datasets. The train set corresponds to years 2017 and 2018 (66.7% of the total observations),
whereas data in the test set correspond to 2019 (33.3%). These two datasets contain a similar
proportion of the class categories (see Table 3). The train set was used for running the
cost-sensitive variable selection procedure (Algorithm 1) to optimize different cost metrics.
The test set was employed exclusively for a final independent validation of the models
learned with the training dataset.

2.4.3. Custom Cost Functions for the Air Quality Problem

In the problem of forecasting the air quality index, the correct identification of the
worst levels is crucial. In the dataset analyzed, these are states 3 and 4, which correspond
to levels “Moderate” (the second most critical state to identify in this dataset) and “Poor”
(the most critical state), respectively, and also are, by far, the two less frequent classes in
the dataset (see Table 3). With the aim of improving the predictions on class states 3 and 4,
two custom cost functions were proposed as follows.

The first one was given by an explicit formula taking into account the relative frequen-
cies of the class states so that the most frequent classes are less relevant in the validation

metric. To do that, we computed the costs: `i,j =
|ni−nj |

ni
, where ni stands for the absolute

frequency of class state i (i = 1, 2, 3, 4; their values can be deduced from Table 3). We will
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refer to this cost function as CLM1. With this definition, if a class state Ci is much less
frequent than Cj, the cost `i,j of misclassifying the class state i as j is very high. On the
contrary, if Ci is much more frequent than Cj, the misclassification of i as j is not severely
penalized, as the cost is around 1. For this specific problem, the resulting loss matrix is
displayed in Table 4 (left). This kind of cost-sensitive metric is general and may be useful
for other imbalanced problems as well, in which asymmetrical costs make sense.

Table 4. The two custom loss matrices, CLM1 (left) and CLM2 (right), used for variable selection in
the problem of forecasting the next-hour national air quality index (NAQI) value.

Obs.
Pred. C1 C2 C3 C4 Obs.

Pred. C1 C2 C3 C4

C1 1 1.6 0.8 1 C1 1 1 4 9
C2 0.6 1 0.9 1 C2 1 1 1 4
C3 4.7 13.8 1 0.8 C3 20 15 1 10
C4 25.3 66.6 3.6 1 C4 30 20 15 1

The second custom loss function was set manually with the aim of improving the
predictions, especially the recalls on class states 3 and 4, which are the two less frequent
values and correspond to the two worst air quality levels. With that goal, we defined the
loss function given by the asymmetric loss matrix given in Table 4 (right). We will refer to
this cost function as CLM2.

3. Results

The proposed approach for cost-sensitive variable selection in multi-class imbalanced
data was tested using six objective functions: accuracy (acc), recall for state C4 (rec4), recall
for state C3 (rec3), geometric mean of the recalls (GMR), and the two custom cost functions
CLM1 and CLM2 defined previously. For each objective function, 10 independent runs
were executed, and, for each run, the variable selection algorithm in Algorithm 1 was
employed for optimizing the objective function across the training dataset. After finishing,
a set of selected variables was obtained for each objective function (see Table 5). A number
between five and eight variables were selected for each objective function, with acc and
rec3 being the ones selecting fewer variables, and GMR and CLM2 the ones selecting more
variables. The most frequently selected variable (selected by all models) was NO2, followed
by O3ma, PM2.5ma, and PM10ma (selected five out of six times).

Table 5. Selected variables depending on the optimization objective function.

Objective Metric Selected Variables

acc NO2, O3, O3ma, PM10ma, Time
rec3 (recall for C3) NO2, O3ma, PM2.5ma, PM10ma, PRB
rec4 (recall for C4) LL, MXIL, NO2, PM2.5ma, PRB, TOL
GMR (geom. mean of recalls) dd, NO2, O3, O3ma, PM2.5ma, PM10ma, PRB, Weekday
Custom cost CLM1 NO2, O3, O3ma, PM2.5ma, PM10ma, Time
Custom cost CLM2 dd, HR, NO2, O3ma, PM2.5ma, PM10ma, PRB, Time

Figure 2 shows the distribution of the most frequently selected variables for each
value of the air quality index (those selected in more than one model). For some predictive
variables, differences among their distributions are noticeable (NO2, O3ma, O3, PM25ma,
PM10ma). However, for other predictors (PRB, Time, dd), the distributions are rather
overlapped, which might make the discrimination among the class values more difficult
and, therefore, yield a worse classification performance. Nevertheless, even if some of
these variables do not individually discriminate between the class states, they still help
improve the classification performance when combined with others.
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Figure 2. Box-plots of some of the predictive variables for each value of the air quality index.

After the variable selection process, the models were fit again using the training set,
restricted to the selected variables, and their performances were analyzed using the test set,
in order to carry out an independent validation. The accuracy of each model over the test
set is reported in Table 6, and the recall and precision for each class state and each model
are reported in Table 7. The best accuracy, recalls, and precisions for class states 3 and 4 are
highlighted in boldface. Figure 3 shows the pair precision–recall for each class state and
optimized objective function, plotted from the figures in Table 7. Note that the higher and
more to the right a point is, the better.

Table 6. Accuracy over the test set for each objective metric. The best value is highlighted in boldface.

acc rec3 rec4 GMR CLM1 CLM2

0.828 0.855 0.719 0.861 0.866 0.858

Table 7. Recall and precision over the test set for each validation metric and for each class state. The
best values for class states 3 and 4 are highlighted in boldface.

Recall Precision
1 2 3 4 1 2 3 4

acc 0.81 0.87 0.23 0.35 0.60 0.91 0.43 0.63
rec3 0.75 0.90 0.45 0.65 0.73 0.92 0.35 0.70
rec4 0.44 0.80 0.19 0.92 0.36 0.84 0.27 0.65
GMR 0.77 0.91 0.43 0.68 0.74 0.92 0.34 0.68
CLM1 0.77 0.91 0.44 0.67 0.76 0.93 0.35 0.70
CLM2 0.74 0.91 0.44 0.74 0.73 0.92 0.36 0.71

The objective metrics show an accuracy value between ≈0.72 and ≈0.87, with CLM1
being the most accurate, closely followed by GMR, and rec4 being the least accurate,
followed by acc (Table 6). Note that the model with objective function acc is the second-
worst model in terms of accuracy, even though it was trained to maximize this measure.

Regarding recall and precision (Table 7), no objective function outperforms the others
in all class states. Class state 1 has a recall around 0.75 in all objective metrics, except
for rec4, which obtains a value of ≈0.44. In terms of precision, the pattern is similar, rec4
obtains a lower value in comparison with the others. Regarding the recall and precision of
class 2, most objective metrics obtain a value of around 0.9, except for rec4, which obtains
lower values. Class state 3 is the most difficult to classify, as all objective metrics get recall
values up to 0.45 (rec3), and precision values up to 0.43 (acc). Finally, rec4 gets the highest
recall for class 4 (0.92) and second-lowest precision (0.65), with CLM2 getting the highest
precision (0.71) and second-highest recall (0.74).
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Figure 3. Results of precision–recall pairs for each class state and each optimized objective function
(by columns).

4. Discussion

The problem of multi-class classification presents some characteristics that make it
much more complex than the binary case [15]. One of the most relevant aspects is the
imbalance, or very marked non-uniformity, in the distribution of the class values [8].
In these cases, the metrics usually used to measure the predictive quality of the models,
such as accuracy, precision, or recall, may not be suitable for the model validation [10,11].

In addition, in some of these problems, the impact of a classification error varies
dramatically depending on the actual class and the predicted class. For example, this
happens in real-world models related to the diagnosis of diseases, public health issues, the
occurrence of natural disasters, or other similar situations. Ideally, it would be desirable
that there were no classification errors. However, if this is not possible, one strategy is to
be more conservative in the predictions, so that the most severe cases are detected correctly,
even if this means that a higher number of less serious class states are misclassified.

In this work, we propose an approach for dealing with multi-class imbalanced datasets,
employing a flexible validation metric that encodes the different impacts of classification er-
rors. These kinds of techniques are sometimes referred to as cost-sensitive [32,33]. To build
the predictive model or classifier, we use a variable selection algorithm [47] that parsimo-
niously adds or removes variables to increase the model performance. This performance
is measured according to a specific cost or loss function in order to take into account the
different types of classification errors adequately.

As proof of concept, the proposed methodology has been applied to predict an air
quality index (NAQI [51]) using current levels of air pollutants and climatic variables. The
incorrect identification of poor air quality events may jeopardize sensitive individuals (chil-
dren, seniors, lung, or heart diseases) or even healthy people, worsening their symptoms
and quality of life [52,53]. In these episodes, the authorities usually recommend to avoid or
reduce outdoors activities [54]. Therefore, it is desirable to be able to reliably identify these
events in advance.

In the analyzed air quality problem, the results show some interesting facts. The model
built to optimize the accuracy over the training set is the second-worst in accuracy over
the test set. This suggests overfitting in that model and remarks the need for independent
validation of the model results. By contrast, the methods rec3 and rec4 that were optimized
for recall over the training set on class states 3 and 4, respectively, keep leading these metrics
in the test set as well; however, they reduce the recall of other class states, especially rec4.

If we consider class states 3 and 4 at the same time, CLM1 and CLM2 are the two
best alternatives, closely followed by GMR, with CLM2 being the best-performing if we
focus on state 4. According to the results, CLM2 seems to yield the most balanced results
on the minority class states, which are also the most relevant to predict in this problem.
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Therefore, the custom loss metrics were capable of improving the prediction quality and a
better forecasting of high pollution episodes.

The proposed cost-sensitive variable selection method can be employed not only with
a Bayesian network classifier, but with any other classification technique (e.g., CNNs, SVMs,
random forests, etc.). This approach also allows the use of probabilistic loss functions (e.g.,
log-likelihood, or similar). In that case, the model would necessarily have to be probabilistic
too, which is a natural property of the Bayesian networks.

Concerning the air quality problem, the use of Bayesian networks is scarce in the
literature, and the works are often rudimentary. Unlike other related papers [40–42],
the method we propose allows an optimal selection of the predictive variables. It also
performs a more adequate evaluation of the models for this highly imbalanced multi-class
problem using custom loss metrics, which can improve the prediction quality over the
infrequent class states. As opposed to [42], we use a purely multi-class model, avoiding
the need to establish thresholds for discriminating different class levels. In this work, we
have chosen the naive Bayes structure for the classifier, since it is flexible enough and
cost-effective [24]. Nevertheless, a more complex Bayesian network structure could yield
better classification results for the air quality prediction, as [40] suggests. However, the
computational complexity of the variable selection algorithm could increase significantly if
it is combined with a structural learning procedure.

A relevant part of our approach is the choice of the custom loss matrix LM to be used
in Equation (2). In [42], they propose the ranked probability score (RPS) metric, whose
misclassification weights are the distances between the class values. However, the use of
an adjustable loss matrix permits a better fit to a specific problem, which is essential in
the context of imbalanced data. The costs in LM should reflect the nature of the problem
and the impact of the classification errors in each case. Although there is not a general
recipe, the costs `i,j should normally be non-negative, and their values should increase with
|i− j| if the class variable is ordinal, or reflect the relative frequencies of the class states for
heavily imbalanced data, in order to favor the infrequent values (see Section 2.4.3).

To summarize, we have presented a possible generalization of the usual validation
metrics for classification, which can codify the cost or reward of the different classification
outcomes. Using it, a variable selection algorithm was able to select the best-performing
variables for the less frequent class states in a highly imbalanced dataset. The selected
variables improved the results over the infrequent class values in an independent validation.
The possibility of fine-tuning the objective validation function can improve the prediction
quality in imbalanced data or when asymmetric misclassification costs have to be taken
into account.
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Abbreviations
The following abbreviations are used in this manuscript:

DAG Directed acyclic graph
BN(s) Bayesian network(s)
CLG Conditional linear Gaussian
CPD Conditional probability distributions
CM Confusion matrix
LM Loss (cost) matrix
acc Accuracy
reck Recall for class state k
preck Precision for class state k
GMR Geometric mean of the recalls
CLMk Custom loss matrix k (k = 1, 2)
Obs. Observed values
Pred. Predicted values
NAQI National Air Quality Index (Spanish official air quality index)
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