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+is paper addresses the two-dimensional loading open vehicle routing problemwith time window (2L-OVRPTW).We propose a
learning whale optimization algorithm (LWOA) to minimize the total distance; an improved skyline filling algorithm (ISFA) is
designed to solve the two-dimensional loading problem. In LWOA, the whale optimization algorithm is used to search the
solution space and get the high-quality solution. +en, by learning and accumulating the block structure and customer location
information in the high-quality solution individuals, a three-dimensional matrix is designed to guide the updating of the
population. Finally, according to the problem characteristics, the local search method based on fleet and vehicle is designed and
performed on the high-quality solution region. IFSA is used to optimize the optimal individual. +e computational results show
that the proposed algorithm can effectively solve 2L-OVRPTW.

1. Introduction

Vehicle routing problem (VRP), as a classical combinatorial
optimization problem, was first proposed by Dantzig and
Ramser [1]. Open vehicle routing problem (OVRP) is a
variant of VRP, which widely exists in the third-party lo-
gistics distribution. +is type of problem is generating a set
of vehicle routes that meet vehicle load conditions, com-
partment volume, and customer service demand. +e ve-
hicles do not need to return to the central depot. With the
rapid development of e-commerce technology, the impor-
tance of third-party logistics is more prominent, and the
loading link is an essential part of the logistics field. +e
loading order of goods can directly affect the service effi-
ciency of customer points. In this context, it has impor-
tant practical significance to study the two-dimensional
loading open vehicle routing problem with time windows
(2L-OVRPTW). 2L-OVRPTW includes “routing” and
“loading.” Generally speaking, we need to consider both
“routing” and “loading” to obtain a satisfactory solution. In

addition, due to factors such as the weight, height, and
fragility of the goods, the goods cannot be stacked on each
other during the loading process, such as the distribution of
large household appliances and delicate home appliances.
+erefore, the study of 2L-OVRPTW has an important
economic value. In theory, 2L-OVRPTW comprises a vehicle
routing problem and a two-dimensional loading problem, so
2L-OVRPTW is an NP-hard problem with high complexity.

+e research on the vehicle routing problem and the
two-dimensional loading problem has been relatively ma-
ture, but the vehicle routing problem with two-dimensional
loading constraints (2L-CVRP) has gradually received at-
tention in recent years. Research is very limited. Ma et al. [2]
proposed a graph-based fuzzy evolutionary algorithm to
solve the two-echelon vehicle-routing problem. With the
optimization goal of minimizing the cost, each offspring is
generated from the parent’s allocation graph through the
graph-based fuzzy allocation process, and a fuzzy local
search process is designed to further improve the perfor-
mance of the offspring. Iori et al. [3] proposed 2L-CVRP for
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the first time in 2007 and used an exact algorithm based on
branch pricing to solve it, but this algorithm can only ef-
fectively solve small- and medium-sized cases. Zachariadis
et al. [4] proposed a metaheuristic algorithm for 2L-CVRP.
+e algorithm combines the tabu search algorithm and the
guiding local search principle. In addition, the paper uses
storage structure record feasible loading scheme and a set of
heuristic algorithms to solve the loading problem and has
achieved good results. Fuellerer et al. [5] proposed a new ant
colony optimization algorithm based on saving algorithm to
solve 2L-CVRP. At the same time, different heuristic al-
gorithms were used to solve the loading problem. Good
results were obtained on small-scale issues. Duhamel et al.
[6] proposed a GRID×ELS algorithm for 2L-CVRP, which
transforms loading constraints into resource constrained
project scheduling problems. +e optimization framework
deals with RCPSP-CVRP and finally transforms the RCPSP-
CVRP solution into 2L-CVRP solution by solving special
loading problems. For 2L-CVRP, Guimarans et al. [7]
proposed a hybrid simulation algorithm combining Monte
Carlo simulation, an iterative local search framework, and a
route and bin loading heuristic method with stochastic bias
to solve the problem. Wei et al. [8] proposed a variable
domain search algorithm to solve the routing problem for
2L-CVRP, used skyline heuristic algorithm to solve the
loading problem, and designed a data structure to record the
loading feasibility information to reduce the loading time.
Leung et al. [9] proposed a metaheuristic method combining
tabu search and extended guided local search (EGLS).
Firstly, it is proved that tabu search algorithm can solve
CVRP effectively, and EGLS can avoid the algorithm from
falling into local optimal. Secondly, a new heuristic loading
algorithm is added to solve the loading problem, which
improves the distribution cost significantly. Wei et al. [10],
aiming at 2L-CVRP, proposed a simulated annealing al-
gorithm with repeated temperature rise and fall mechanism
to solve the problem and adopted a heuristic method based
on open space to solve the loading problem. Based on 2L-
CVRP, Rui et al. [11] established the corresponding
mathematical model considering the constraints of multi-
depot and time window. +e former is used to solve the
vehicle routing problem, and the latter is used to solve the
bin loading problem. Two groups of experiments are
designed to verify the effectiveness of the algorithm. Wang
and Zhou [12] aimed at establishing a multiobjective vehicle
scheduling problem model with two-dimensional loading
constraints based on comprehensively considering the
constraints of time window, two-dimensional loading, and
customer satisfaction. At the same time, a multiobjective ant
colony optimization algorithm was proposed. In the loading
stage, the two-dimensional loading strategy of improved
minimum horizontal line search algorithm was adopted to
improve the success rate of loading.Ma et al. [2] proposed an
adaptive localized decision variable analysis approach under
the decomposition-based framework to solve large-scale
multiobjective optimization problems. An adaptive strategy
is used to optimize the decision variables, which can
adaptively balance the convergence and diversity of solu-
tions in the target space. Leung et al. [13] established a

mathematical model to minimize the transportation cost for
the heterogeneous vehicle routing problem with two-di-
mensional loading constraints. A simulated annealing al-
gorithm combined with heuristic local search is proposed,
and a set of bin loading heuristic algorithms are designed to
solve the bin loading problem. Zhang et al. [14] took the total
cost minimization as the optimization objective, studied the
heterogeneous vehicle routing problem with loading con-
straints, designed a hybrid particle swarm optimization
algorithm combining artificial bee colony and artificial
immune to solve the problem, and proposed several strat-
egies to avoid the algorithm falling into local optimum.
Sabar et al. [15] proposed a two-stage algorithm to solve the
heterogeneous vehicle routing problem with two-dimen-
sional bin loading constraints. In the first stage, an adaptive
meme algorithm was designed to solve the routing problem.
In the second stage, a hybrid algorithm based on five
heuristic algorithms was used to solve the bin loading
problem. Dominguez et al. [16] proposed a hybrid algorithm
based on neighborhood search and loading heuristic algo-
rithm to solve the two-dimensional vehicle routing problem
with cluster backhaul and used randomization technology to
guide the search process. Good results were obtained. Wang
et al. [17] established a mathematical model for the logistics
distribution problem with two-dimensional loading and
proposed a memetic algorithm to solve the problem. +e
algorithm integrates the heuristic search knowledge of
loading and route and improves the performance and result
quality of existing algorithms. Literature research shows that
the research on 2L-OVRPTW is still in its infancy.

+e 2L-OVRPTW can establish two different problem
models. One is the 0-1 mixed integer model (MIP) and the
other is the order model. For MIP, the most exact algorithms
such as branch and bound and column generation mainly
solve the problem. +e solution space can be searched
through commercial solvers (such as GUROBI or CPLEX)
for small-scale problems. +e optimal solution can be found
reasonably, but the exact algorithm will show a geometric
growth trend with the increase of the problem size for large-
scale problems. For the order model, it is usually composed
of customer sequence of vehicle service. +e constraints of
such problems are often hidden in the order model, mainly
by heuristic algorithm and intelligent algorithm. +e heu-
ristic algorithm is usually based on the characteristics of the
problem to construct feasible solutions, such as Johnson
algorithm, palmar algorithm, and Gupta algorithm. +is
kind of algorithm can obtain a feasible solution quickly, but
it cannot guarantee that the solution is the best solution in
the global range. Intelligent algorithm is a combination of
the characteristics of the problem and intelligent mechanism
to solve; through simulating some mechanisms in nature to
guide the algorithm search, often in a short time, we can get a
satisfactory solution or approximate optimal solution of
complex scheduling problems. He pointed out in [18] that
the effectiveness of intelligent algorithm depends on the
model characteristics of scheduling problem and the
mechanism of the intelligent algorithm. +e intelligent
optimization algorithm only needs to spend a short time
searching part of the solution space of the scheduling model
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to find a satisfactory solution so that it can effectively solve
all kinds of complex scheduling problems.

+e whale optimization algorithm (WOA) is a new
swarm intelligence optimization algorithm proposed by
Seyedali and Andrew [19]. WOA simulates the predator-
prey process of humpback whales in nature and realizes the
search of high-quality solution by searching, encircling, and
attacking. WOA is widely used in many fields [20–23] be-
cause of its advantages of simple operation, few parameters,
easy understanding, and strong optimization performance
and has achieved good results. From the current research
status of WOA, reasonable selection of adaptive weights in
the search process can effectively control the search direction
and further improve the search ability of the algorithm. At
present, WOA is mainly used to solve continuous optimi-
zation problems, but for discrete optimization problems, the
real solution space needs to be discretized. WOA has a
certain effect on global search, but it cannot avoid the
problem that the high-quality block structure is destroyed in
the process of generating new species group. +erefore,
WOA is used to construct a three-dimensional matrix after
the first stage search in the solution space and to search in
the second stage. +e three-dimensional matrix is used to
learn and accumulate the block structure and its location
information based on customer service order. +en, the
population updating process is guided to improve the search
efficiency of learning whale optimization algorithm
(LWOA), for example, for the customer service order of
high-quality solution [1,3,5,2,4] and [2,4,5,1,3], where [2, 4]
is a block structure based on the order relationship of
customer 2 before customer 4 and [2, 4] appears in both the
fourth position of the first solution and the first position of
the second solution. +erefore, the three-dimensional ma-
trix can retain the block structure of the first two and the last
four and also record the location information of the block
structure, that is, the block structure [2, 4] can be stored in
the elements with subscripts (4,2,4) and (1,2,4), respectively,
in the three-dimensional matrix (the first dimension sub-
script in the three-dimensional matrix represents the lo-
cation information, and the second and third dimensions
represent the order relationship of customers).

In this paper, the model and solution of 2L-OVRPTW
are studied. In the model aspect, the 2L-OVRPTW model
integrated by OVRPTW and BPP is established, and the
optimization objective of this problem model is to minimize
the driving distance. In the process of solving, through the
analysis of the properties of the problem, a learning whale
optimization algorithm (LWOA) is proposed to optimal
vehicle routing problem, and an improved skyline method is
designed to solve the loading problem. Specifically, three
rules are used to initialize the population, and LOV rules are
used to discretize the real solution. Secondly, in the global
search, the whale optimization algorithm is used to find the
optimal solution in the first stage. In the second stage, the
block structure based on the order relation and the three-
dimensional matrix of its position information are designed
to effectively learn the solution and accumulate relevant
information. Finally, the local search which combines the
exchange operation, swap operation, and insert operation is

introduced to carry out the efficient and detailed local search
for the solution obtained from the two-stage global search,
which can effectively balance the global and local search of
LWOA and improve the overall search ability of the algo-
rithm. Simulation results and algorithm comparison show
that LWOA is an effective algorithm for 2L-OVRPTW.

+e rest of this paper is arranged as follows. In Section 2,
the definition of the OVRPTW is introduced and a corre-
sponding integer programming model is also proposed. In
Section 3, the LWOA algorithm is proposed and described in
detail. In Section 4, experimental results and comparisons
are given and discussed. +e current work is summarized
and the future research direction is prospected in Section 5.

2. Two-Dimensional Loading Open Vehicle
Routing Problem with Time Window

2.1. Problem Description and Symbol Definition of the 2L-
OVRPTW. +e 2L-OVRPTW can be described as follows.
In directed network graph G � (V, E), V � 0, 1, 2, . . . , N{ }

represents the vertex set, where vertex 0 represents central
depot and V′ � V\ 0{ } represents the customer set.
E � (i, j)|i, j ∈ V, i≠ j􏼈 􏼉 is the arc set, and dij is the distance
from customer i to customer j. +ere are Nk homogeneous
vehicles in the central depot for service, the capacity of each
vehicle is Q, and the length and width of the carriage
are(L, W); the carriage area is S � L∗W. Mi is the total
number of rectangular goods required by customer i, qi is the
total weight of goods required by customer i, and qik is the
weight of the kth item required by customer i; then,
qi � 􏽐

mi

k�1 qik. Mig is the g goods required by customer i, lig is
the length of the g goods required by customer i, and wig is
the width of the g goods required by customer i; then,
sig � lig · wig. At the same time, considering the needs of
customer satisfaction, the time window for customer i to
receive service is set as [ei, hi], ei means the earliest service
time allowed, hi means the latest service time, and the service
time of each customer is Ti. If the service starts within the
time window of customer acceptance, the satisfaction is 1,
otherwise it is 0. +e time to arrive at the customer is sti. If
the service arrives in advance, it needs to wait until the
service start time.

+e objective of 2L-OVRPTW is to minimize the dis-
tance and consider the following constraints:

(1) Each vehicle starts from the central depot and does
not need to return back after serving all customers

(2) When serving current customers, it is not necessary
to move the goods of other customers (the principle
of last in first out)

(3) +e loading edge of all articles must be parallel to the
carriage edge

(4) All goods in the carriage shall not be overlapped
(5) +e goods loaded on each vehicle shall not exceed the

length and width of the carriage and the maximum
load of the vehicle

(6) Each vehicle must be serviced after the service time
allowed by the customer
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Figure 1 shows a distribution route of the 2L-OVRPTW.
It can be seen from Figure 1 that three homogeneous ve-
hicles serve 11 customers in the central depot. +e service
routes of vehicle 1, vehicle 2, and vehicle 3 are route[1] �

0, 1, 2, 3, route[2] � 0, 4, 5, 6, 7, and route[3] � 0, 8, 9, 10, 11.
+e loading scheme of vehicle 2 is shown in Figure 2. +e
goods are placed at the lower-left corner of the top view
of the carriage (the front of the carriage is on the left).
When unloading the goods, the current customer’s goods
are unloaded through a straight line parallel to the length
of the carriage. +e thick line in the figure represents the
skyline, the thick line parallel to the length of the carriage
is the longitudinal skyline, and the thick line parallel to
the width of the carriage is the transverse skyline; the
shaded part is the redundant space (wasted space) of the
vehicle.

2.2. Mathematical Model of the 2L-OVRPTW

minf1 � 􏽘

Nk

k�1
􏽘
i,j∈v

dijxkij, (1)

s.t. 􏽘
N

i�1
qiyik ≤Q, k ∈ 0, 1, . . . , Nk􏼈 􏼉, (2)

􏽘

Nk

k�1
yik � 1, ∀i ∈ V′, (3)

􏽘

N

i�1
xijk � yik, ∀j ∈ V′, k ∈ 0, 1, . . . , Nk􏼈 􏼉, (4)

􏽘

N

j�1
xijk � yik, ∀i ∈ V′, k ∈ 0, 1, . . . , Nk􏼈 􏼉, (5)

0≤ vkig ≤W − wkig, k ∈ 0, 1, . . . , Nk􏼈 􏼉,∀i ∈ V′,∀g ∈Mi,

(6)

0≤ hkig ≤L − Ikig, k ∈ 0, 1, . . . , NK􏼈 􏼉,∀i ∈ V′,∀l ∈Mi,

(7)

HHii′gg′ � max yik · Hkig + wig􏼐 􏼑, yi′k′ · Hki′g′ + wi′g′􏼐 􏼑􏼐 􏼑􏼐

− yik · wig + yi′k′ · wi′g′􏼐 􏼑􏼑,

∀i, i′ ∈ V′,∀g, g′ ∈Mi, g≠g′, k ∈ 0, 1, . . . , Nk􏼈 􏼉,

(8)

LLii′gg′ � max yik · Vkig + lig􏼐 􏼑, yi′k′ · Vki′g′ + li′g′􏼐 􏼑􏼐 􏼑􏼐

− yik · lig + yi′k′ · li′g′􏼐 􏼑􏼑,

∀i, i′ ∈ V′,∀g, g′ ∈Mi, g≠g′, k ∈ 0, 1, . . . , Nk􏼈 􏼉,

(9)

max HHii′gg′ , LLii′gg′􏼐 􏼑≥ 0, ∀i, i′ ∈ V′,∀g, g′ ∈Mi,

(10)

max HHii′gg′ , Hkig − Hki′g′􏼐 􏼑􏼐 􏼑≥ 0,

∀i, i′ ∈ V′,∀g, g′ ∈Mi, g≠g′,
(11)

yki · sti ≥yki · ei, ∀i ∈ V′, k ∈ 0, 1, . . . , Nk􏼈 􏼉, (12)

ei ≤yki · sti + Ti ≤ hi, ∀i ∈ V′, k ∈ 0, 1, . . . , Nk􏼈 􏼉, (13)

xijk �
1, if customer i is visited before customer j by the vehicle k,

0, otherwise,
􏼨

(14)

yijk �
1, if customer i is visited by the vehicle k,

0, otherwise.
􏼨 (15)

In the above model, (1) gives the objective function of
2L-OVRPTW. Constraint (1) represents the minimization of
the total distance. Constraint (2) ensures that the load of the
vehicle does not exceed the maximum load of the vehicle.
Constraint (3) ensures that every customer can be served.
Constraints (4) and (5) ensure that every customer has and
only has one vehicle to serve. Constraints (6)–(11) are the
loading constraints, in which constraints (6) and (7) ensure
that all items are fully loaded into the compartment.
Whereas wkig and lkig, respectively, represent the g item
width and length of the k vehicle serving the i customer. Hkig

and Vkig, respectively, represent the horizontal and vertical
coordinates of the upper-left corner of the g item of the i

customer served by the k vehicle. Constraints (8)–(10) show
that customers cannot overlap. Constraint (11) satisfies the
principle of first in and last out. Constraints (12) and (13)
show the time window constraints. Constraints (14) and (15)
show the value range of decision variables.

3. The LWOA for Solving 2L-OVRPTW

3.1. Global Search. In this section, the population initiali-
zation, standard WOA, block structure and three-dimen-
sional matrix, local search, and loading strategy are
introduced. Finally, the loading flowchart and the flowchart
of LWOA are given.

3.1.1. Population initialization. In order to ensure the di-
versity and dispersion of the solutions, two individuals are
generated by rule1 and rule2, and then, the rest individuals
are generated by rule3.Rule1 considers the nearest neighbor
principle, rule2 considers the highest satisfaction principle,
and rule3 adopts the quasi-opposition strategy. Placing all
unserved customers in set Z, the specific rules are as follows:

Rule1 is the nearest neighbor principle.
After the vehicle departs from the central depot, the
distance between the central depot and each customer
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in Z is calculated, and the nearest customeri (if there
are multiple customers, the customer with the highest
satisfaction) is selected for service. +e customeri from
set Z was removed and the distances between customer
i and other customers inZ are calculated. After selecting
the nearest customer j, if the constraints are still met
when continuing to serve the customer j, it is necessary
to remove the customer j from set Z and calculate the
distance between the customer and other customers in
Z. Otherwise, the vehicle will give up serving the
customer and dispatch the vehicle from the central
depot to serve the customers in Z again. +is cycle will
last until all customers inZ are served.
Rule2 is the maximum satisfaction principle.
After vehicle starts from the central warehouse, we
calculate the arrival time of each customer in Z from
the central depot and select the customer i meeting the
time window constraint to serve. If there are multiple
customers whose arrival time is within the time

window, the nearest customer i is selected to serve.
Move customer i out of set Z and calculate the time
from customer i to other customers in Z. Select cus-
tomer j that meets the time window constraint. If
customer j still meets the constraint, it is necessary to
move customer j out of set Z and calculate the arrival
times from customer Z to other customers in Z.
Otherwise, the vehicle will give up serving the customer
and send the vehicle from the central depot to serve the
customers in Z again until all the customers in Z are
served.
Rule3 is quasi-antagonistic strategy.
Let the population size be popsize and use the quasi-
opposition strategy to generate popsize-2 individuals
with n customers (that is, the search space is n). Let
πgen

i � [πgen

i [1], πgen

i [2], . . . , πgen

i [g], . . . , πgen

i [S]]

(πgen

i [g] ∈ V, n + 1≤ S≤ 2n) denote thei individual
(distribution scheme) in the gen population. Let P

gen

i �

[P
gen

i [1], P
gen

i [2], . . . , P
gen

i [g], . . . , P
gen

i [n]] (P
gen

i

[g] ∈ V′) be the customer-based discrete sort in in-
dividual πgen

i (i.e., the customer sequence without
central depot), and let X

gen

i � [X
gen

i [1], X
gen

i [2],

. . . , X
gen

i [g], . . . , X
gen

i [n]] (X
gen

i [g] ∈ [a, b]) be the
real number sequence corresponding to the customer’s
discrete sort P

gen

i . As shown in equation (16), the quasi-
antagonistic strategy is to obtain the opposite inverse
solution (quasi-antagonistic solution) X

gen
j � [X

gen
j [1],

X
gen
j [2], . . . , X

gen
j [g], . . . , X

gen
j [n]] (X

gen
j [g] ∈ [a, b])

of the gen generation individual i through the calcu-
lation of equation (16) in the real number field [a, b].
+erefore, the population with quasi-opposite solution
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11 9

8

10

4

5

6

7

1
2

3

12,14 10,15 10,12

14,15 16,13 15,17 17,18
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Figure 1: Distribution route of 2L-OVRPTW.
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Figure 2: Vehicle loading scheme.
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can be obtained when the population is randomly
generated. popsize-2 individuals are selected from
the two populations as the next generation
population:

X
gen

j [g] �
rand X, X

gen

i [g]( 􏼁, X
gen

i [g]>X,

rand X
gen
i [g], X( 􏼁, X

gen
i [g]≤X,

⎧⎪⎨

⎪⎩
X �

a + b

2
.

(16)

+e population obtained by X
gen
i through rule3 is a real

number sequence over a continuous field. +erefore, this
paper uses LOV (large-order value) rule to transform the
individual real number sequenceX

gen
i into discrete customer

sequence P
gen

i .
+e specific steps of LOV rules are as follows:

Step 1: we select the real number sequence
X

gen
i � [X

gen
i [1], X

gen
i [2], . . . , X

gen
i [g], . . . , X

gen
i [n]],

arrange X
gen
i in the descending order to get X

gen′
i , find

the corresponding sequence number X
gen
i in X

gen′
i [g],

and place it in φgen
i [g] to get the intermediate sequence

φgen
i

Step 2: for discrete customers, the values in P
gen

i are
obtained successively by the formula P

gen
i [φgen

i [g]] � g

As shown in Table 1, an example of LOV application is
given. If the real number sequence of an individual is
X

gen

i � [2.30, 1.59, 2.17, 1.78, 2.06, 1.89, 0.88], the real
number sequence after descending is
X

gen′
i � [2.30, 2.17, 2.06, 1.89, 1.78, 1.59, 0.88]. +rough the

above steps, the intermediate sequence
φgen

i � [1, 6, 2, 5, 3, 4, 7] and the customer’s discretization
sequence P

gen

i � [1, 3, 5, 6, 4, 2, 7] are obtained.
By calling the LOV rule, we can realize the transfor-

mation from real sequence to discrete sequence. Similarly,
if the customer’s discrete sequence changes, we can adjust
it by using the reverse largest order value (RLOV) rule.
+erefore, the RLOV rule is used to real number the
discrete customer sequence obtained by rule1 and rule2
to get the corresponding real number solution. +e ini-
tialization population is composed of popsize-2 indi-
viduals generated by rule3.

3.1.2. Standard WOA. Wang et al. [17] designed a whale
optimization algorithm (WOA) by studying the foraging
behavior of humpback whales. WOA mainly includes
three search mechanisms: encircling search mechanism,
spiral search mechanism, and random search
mechanism.

Encircling search mechanism: when finding prey (so-
lution), individual whales communicate with each other in
the whole population so that the individual whales in the
population keep approaching the prey. +e mathematical
model of encircling search mechanism is shown in formula
(17)∼(18):

D � CX
gen∗

− X
gen
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (17)

X
gen+1
i � X

gen∗
− A · D, (18)

where gen is the current number of iterations, X
gen
i is the i

individual in the gen generation,Xgen∗ is the position of prey
in the gen generation, A and C are coefficient vectors, a is the
control parameter, t is the current number of iterations, each
iteration updates the population, and Tmax is the maximum
number of iterations, with the increase of the number of
iterations.

Spiral search mechanism: after calculating the distance
from the prey, the individual whale takes the prey as the
center and constantly approaches it in a spiral form. +e
mathematical model of spiral search mechanism is shown as

X
gen+1
i � D · e

bl cos(2πl) + X
gen
i , (19)

where b is the parameter controlling the shape of the spiral, l

is the random value of [−1,1], and c is the search factor.
In equation (20), the probability p is introduced to

choose whether to update the position information of in-
dividual whale by using the encircling search mechanism or
the spiral search mechanism:

X
gen+1
i �

X
gen
i − A · D, p< c,

D · e
bl cos(2πl) + X

gen∗
, p≥ c.

⎧⎨

⎩ (20)

Random search mechanism: when the value of A is
greater than 1, it will search outside the bounding circle.
When we cannot get the effective information of the prey, we
will choose a random way to search the prey to update the
position information of the population, which can effectively
enhance the diversity of the population. +en, the mathe-
matical model of random search mechanism is as follows:

X
gen+1
i � X

gen′
− A · D, (21)

D � CX
gen′

− X
gen
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (22)

where Xgen′ is a randomly selected individual in the gen

generation population.

3.1.3. Block Structure and :ree-Dimensional Matrix. For
any solution of 2L-OVRPTW, the block structure refers to
the order of two consecutive adjacent customers in the
solution. In the process of updating, the solution set shows
certain similarities in the structure of the solution (block
structure and its location information). +e three-dimen-
sional matrix proposed in the second stage of global search
can effectively learn and accumulate the block structure. +e
location information of the solution set is obtained in the
first stage so as to improve the overall effect of the algorithm.
Because the same block structure in different positions will
have a great impact on the target value of the solution, the
first dimension of the designed three-dimensional matrix is
used to record the location information of the block
structure, and the other two dimensions represent two
customers in the block structure.
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We define Best P(gen) � Best πgen,1, Best πgen,2,􏼈

· · · Best πgen,g, · · · , Best πgen,n}, where Best P(gen) is the
gen generation population, and Best_πgen,w �

Best_πgen,w
1 , Best_πgen,w

2 , · · · Best_πgen,w

g , · · · ,􏽮 Best_πgen,w
n },

where Best πgen,w is the w individual and Best πgen,w

g is the g

customer in the w individual of gen population. Let TM
gen

l×n×n

represent the three-dimensional matrix based on block
structure and its location information in gen generation
population, where TM

gen

l×n×n(p, x, y) represents the value of
block structure (x, y) in p position and PM

gen

l×n×n(p) is the
two-dimensional probability matrix normalized at p posi-
tion. +e specific definition is as follows:

ONE TM
gen,w

l×n×n(p, x, y)
1, x � Best πgen,w

p , y � Best πgen,w
p+1 ,

0, else,

⎧⎨

⎩ p � 1, 2, · · · , l x, y � 1, 2, · · · , n, (23)

TM
gen

l×n×n(p, x, y) � 􏽘

popsize

w�1
ONE TM

gen,w

l×n×n(p, x, y), p � 1, 2, · · · , l x, y � 1, 2, · · · , n, (24)

TM
gen

l×n×n(p, x) � TM
gen

l×n×n(p, x, 1), TM
gen

l×n×n(p, x, 2), · · · , TM
gen

l×n×n(p, x, n)􏽨 􏽩, p � 1, 2, · · · , l x � 1, 2, · · · , n, (25)

TM
gen

l×n×n(p) � TM
gen

l×n×n(p, x, 1), · · · , TM
gen

l×n×n(p, x, n)􏽨 􏽩

�

TM
gen

l×n×n(p, 1, 1), · · · , TM
gen

l×n×n(p, 1, n)

⋮
TM

gen

l×n×n(p, n, 1), · · · , TM
gen

l×n×n(p, n, n)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(26)

TM
gen

l×n×n � TM
gen

l×n×n(1), TM
gen

l×n×n(2), · · · , TM
gen

l×n×n(l)􏽨 􏽩, (27)

PM
gen

l×n×n(p) � PM
gen

l×n×n(p, x, 1), · · · , PM
gen

l×n×n(p, x, n)􏽨 􏽩

�

PM
gen

l×n×n(p, 1, 1), · · · , PM
gen

l×n×n(p, 1, n)

⋮
PM

gen

l×n×n(p, n, 1), · · · , PM
gen

l×n×n(p, n, n)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(28)

􏽘
n

x�1
􏽘

n

y�1
PM

gen

l×n×n(p, x, y) � 1, p ∈ 1, 2, · · · , l{ }, (29)

where ONE TM
gen,w

l×n×n(p, x, y) is the number of times that
customer x � Best_πgen,w

p and customer y � Best_πgen,w
p+1

appears in p position of individual w in the gen generation,
that is, the number of times that block structure [x, y]

appears in p position of individual w. For example, for
individual Best πgen,1 � [1, 3, 2, 5, 4, 6] and individual
Best πgen,2 � [2, 5, 3, 6, 1, 4], let p � 2; then, the client block
structure of individual 1 in position 2 is [3,2], and the client
block structure of individual 2 in position 2 is [5,3].
+erefore, ONE TM

gen,1
l×n×n(2, 3, 2) � 1, ONE TM

gen,2
l×n×n

(2, 3, 2) � 0, ONE TM
gen,1
l×n×n(2, 5, 3) � 0, and ONE TM

gen,2
l×n×n

(2, 5, 3) � 1. As shown in Figure 3, the block structure in-
formation of each p position is recorded in TM

gen

l×n×n(p).
In the first stage of global search, the improved WOA is

used to search in the whole solution space to obtain high
quality. In the second stage, a three-dimensional matrix TM
is constructed based on the high-quality solution obtained in
the first stage. When the population is updated by using the
three-dimensional matrix, the structure and location in-
formation of customer blocks in the current high-quality
solution is learned and accumulated after each update and
used to generate new individuals.+e specific update process
is as follows:

Table 1: Solution representation of LOV.

Dimension (g) 1 2 3 4 5 6 7
X

gen
i [g] 2.30 1.59 2.17 1.78 2.06 1.89 0.88

φgen
i [g] 1 6 2 5 3 4 7

P
gen
i [g] 1 3 5 6 4 2 7
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Step 1: construct a three-dimensional probability
matrix TM

gen

l×n×n by using the high-quality solution
obtained by WOA and construct a list cos sequence of
remaining optional customers and a list tabu of selected
customers. Perform step 2.
Step 2: let p � 1, and randomly generate a random
number a, a ∈ (0, 1) and execute step 3.
Step 3: select the matrix of position p, set the occur-
rence times of block structure containing customers in
tabu to 0, and get the probability matrix of position p

after TM
gen

l×n×n(p) normalization as PM
gen

l×n×n(p);
sum � 􏽐

n
x�1 􏽐

n
y�1 PM

gen

l×n×n(p, x, y); if sum> 0, perform
step 4; otherwise, perform step 5.
Step 4: if there is a selectable block structure, the
roulette method is used to select the customer block
structure for PM

gen

l×n×n(p). Let p � p + 2; perform
step 6.
Step 5: if there is no optional block structure in the
current position, randomly select a customer in
cos sequence and place it in this position; let
p � p + 1, and then, go to step 6.
Step 6: delete the selected customers from
cos sequence and add the selected customers to tabu.
Step 7: if p> num customer, output the generated new
individual tabu; if p � num customer, return to step 5;
otherwise, return to step 3.

+e pseudocode of the LWOA algorithm is as follows.
+e values range of c, popsize, and max l are analyzed

in detail in Section 4.2.

3.2. Local Search. According to the characteristics of the 2L-
OVRPTWproblem, the solution space is huge, and the high-
quality solutions are usually distributed in each local region
of the solution space. +erefore, it is necessary to search the
high-quality solutions from the global search; VNS includes
three neighborhood operations: interchange operation,

insert operation, and swap operation. Interchange operation
is used between vehicles, and insert operation and swap
operation are used inside vehicles. In this way, local search
can be carried out more carefully to update the current
optimal solution. +e variable neighborhood local search
execution pseudocode is as follows.

3.3. Complexity Analysis of the LWOA. Let the population
size be popsize, the number of running iterations of global
search be genglobal, and the number of iterations of each
generation of local search be genlocal. +e number of times
that local search actually uses neighborhood operators in
each generation of search is Z(Z� 20∗ 40). +e algorithm
complexity of LWOA TLWOA is composed of global search
complexity and local search complexity, respectively. In each
generation, the global search complexity consists of pop-
ulation initialization complexity O(popsize∗N, where N is
the number of customers), discretization complexity
(2∗ popsize∗N!), three-dimensional probability matrix
update complexity O(N2∗ (N− 1)), complexity O(popsize∗
(1 +N2∗ (N− 1))) of generating new population based on
three-dimensional probability matrix, and population
evaluation complexity (popsize∗N); the result is
O(popsize∗ (1 +N2∗ (N− 1))). +e complexity of local
search is O(genlocal∗Z∗ (N)) (the worst-case scenario).

+rough the above analysis, TLWOA �O(genglobal∗
(popsize∗ (1 +N2∗ (N− 1)) + genlocal∗Z∗ (N))).

3.4. Loading Strategy. For the loading problem based on the
principle of “first in, last out” in the customer service order,
this paper adopts the loading strategy of the skyline filling
method to check every feasible solution generated. Only
when the loading constraint is satisfied can the solution be
retained. +is section mainly includes initialization of
loading order and loading mechanisms.

3.4.1. Initialize Loading Sequence. Each time we get a so-
lution, we need to make sure that all the customers’ goods
can be loaded into the car in the reverse order of the cus-
tomers’ order. However, the loading order of multiple goods
of each customer is not unique. +erefore, this paper pro-
poses two rules for the initial loading order of customers’
goods.

Rule1: sort items according to their length
Rule2: sort items by area from small to large

For example, if the vehicle service sequence is customer
1, customer 2, customer 3, and customer 4, customer 4 of the
final service uses rule1 for initial loading and the other three
customers use rule2 for initial loading.

3.4.2. Loading Method. +e loading process of articles is
based on the skyline. Initially, the horizontal skyline and
the vertical skylines are the width of the carriage and the
length of both sides of the vehicle, respectively. +e
loading position of articles is determined by the score of
articles placed on each section of the horizontal skyline.

π1 = 1, 3, 6, 5, 4, 2
π2 = 2, 5, 3, 6, 1, 4
π3 = 2, 5, 4, 3, 1, 6
π4 = 6, 3, 2, 5, 4, 1

0 0 0 0 0 0

0 2 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

6

5

4

3

2

1

1 2 3 4 5 6 The second
dimension

Position 1

Th
e t
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rd

 d
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sio

n

The first
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Figure 3: +ree-dimensional matrix based on block structure.
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(1) When the width is equal to the horizontal skyline, if the
length is equal to either side of the adjacent vertical
skyline, the score is 5. If the length is lower than the
longitudinal skyline of the lowest adjacent side, the score
is 4. If the length is between the two sides, the score is 3.
Otherwise, the score is 2. (2) If the width is less than the
transverse skyline, the score is 4 if the length is equal to
either side of the longitudinal skyline of the two adjacent
sides. If the length is lower than the longitudinal skyline of
the lowest adjacent side, the score is 3. Otherwise, the
score is 2. (3) If the width is greater than the transverse
skyline, the score is 1. If all the horizontal skylines are less
than the width of the object, it is necessary to fill the
skyline before loading the object. In addition, when
placing the object, it is also necessary to consider whether
it exceeds the length and width limits of the vehicle.
Loading the object into the vehicle and updating the
skyline at the position with the highest score.

3.5. Flowchart of LWOA. +is section gives the flowchart of
LWOA. In the whole operation process, the individual needs
to be boxed after each update of the individual, and the
individual meeting the boxing constraints will be retained.
+e overall schematic diagram of the LWOA algorithm and
the detailed flowchart of local search are shown in Figures 4
and 5.

4. Simulation Experiment and
Comparative Analysis

+e main content of this section includes the design of
customer goods, performance index and parameter setting,
and simulation experiment comparison and analysis. All
experiments are run on Windows 10 platform, which has
3.0GHz CPU and 8GB RAM, and are on a single thread.+e
algorithm in this paper is implemented by Python 3.7.

(1) Input:
(2) Let the number of customers be N.

Mn represents the total number of items required by the customer n.
gen be the current number of iterations; the maximum number of iterations is genmax.
πgen

i is the individual i of generation gen, and the population size is popsize.
c is the search factor.
+e update times of three-dimensional matrix is max l.
+e vehicle number is k, k ∈ K.
Ing indicates the item g of the customer n

(3) Let A � 2ar1 − a, C � 2r2, r1, r2 ∈ ran do m[0, 1], a � 2 − 2∗ gen/genmax, b � 1, l ∈ ran do m[−1, 1], p ∈ ran do m[0, 1]

(4) begin:
(5) Population initialization: using rule1 and rule2 in Section 3.1.1 to generate an individual and using rule3 to generate popsize −

2 individuals.
(6) for each gen ∈ genmax do
(7) for each i ∈ popsize do
(8) if A> 1 then
(9) update πgen

i by equation (21)
(10) else
(11) update πgen

i by equation (20)
(12) end if
(13) end for
(14) end for
(15) for each gen ∈ max l do
(16) Choosing the best individuals gen

π to construct the three-dimensional matrix
(17) Update the population by the three-dimensional matrix
(18) end for
(19) Choosing the best individual as π∗best

(20) Loading initialization: Initialize the loading sequence of all customers using rules 1 and 2 in 3.4.1.
(21) for each k ∈ π∗best do
(22) for each n ∈ k do
(23) for each Ing ∈ n do
(24) Loading the customer’s goods into the carriage through the loading strategy in Section 3.4.2
(25) end for
(26) end for
(27) end for
(28) Output:
(29) return π∗best

ALGORITHM 1: Learning whale optimization algorithm.
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4.1. Experimental Setup. Since there is no standard testing
benchmark suitable for 2L-OVRPTW, this paper uses the
dataset and generates customer items according to [24], as
shown in Table 2. In the homogeneous fleet, the length and
width (L,W) of the car are (40, 20). Category 1 corresponds

to the pure CVRP instance, and no boxing constraint is
imposed on it. +erefore, this paper uses categories 2–5 to
generate rectangular items needed by customers. As shown
in Table 2, select category 4 for the dataset with less than 25
customers, that is, randomly select the number of items
required by customers in [1, 4] and then assign one of three
possible shapes to each item with the same probability. +e
three shapes are vertical (relative height is greater than
relative width), uniform (relative height and width are
generated in the same interval), or horizontal (relative height
is less than relative width). Similarly, for datasets with more
than 25 customers, category 3 is used.

4.2. Parameter Setting. +e parameters involved in LWOA
include population size, search factor, and learning times of
the three-dimensional matrix. +is paper selects problem
C201 with 25 customers for experimental analysis and uses
design of experiment (DOE) to explore the influence of
parameters on LWOA performance. Four level values are
selected for each parameter, as shown in Table 3, and the
orthogonal test table of the L16 (43) scale is established. In
each group of parameters, the algorithm runs independently
20 times, intending to minimize the mileage. +e experi-
mental results are as follows. +e experimental results are as
follows.

It can be seen from Tables 3–5 that different parameter
combinations have a great influence on the algorithm.
+erefore, to maximize the algorithm’s performance, this
paper sets the parameter combination based on the

(1) Input:
(2) Choose the best individual πi and convert it to the permutation π0 according to the LOV rule. Perform a neighborhood operation

on π0 to get π
(3) begin:
(4) Set loop� 1, max-loop� 40, n� 1, max-n� 20
(5) while n<max-n do
(6) Random select m-k, m-k ∈ {1, 2, 3}
(7) Randomly select k and l, where k ≠ l
(8) if m-k� 1, then π′ � insert(π, k, l)

(9) else if m-k� 2, then π′ � swap(π, k, l)

(10) else if m-k� 3, then π′ � inverse(π, k, l)

(11) end if
(12) end if
(13) end if
(14) if π′≺ π, then π � π′
(15) else n� n+ 1
(16) end if
(17) end while
(18) π′ � interchange(π, k, l)

(19) if π′≺ π,then π � π′
(20) end if
(21) until loop�max-loop
(22) if π ≺ π0, then π0 � π
(23) end if
(24) Output:
(25) Convert π0 back toπi according to the RLOV rule

ALGORITHM 2: Variable neighborhood local search.

start

Setting LWOA
parameters

Initial population

i= 1

WOA operations

Update solution

i= i+1

i>max_num

gen = 1

Selective solution
Best_πgen

Constructing three-
dimensional matrix

Regeneration population

Renewal solution

gen > max_l

Local search

end

N

Global search

Y

Y

N

Figure 4: LWOA flowchart.

10 Discrete Dynamics in Nature and Society



experimental analysis. +at is, the later experimental part
will also be based on this parameter combination.

4.3. Comparison and Analysis of Simulation Experiments.
In order to verify the effectiveness of LWOA in solving 2L-
OVRPTW, this paper compares LWOAwithWOA, GA, and

EDA. +e objective of the optimization is to minimize the
driving mileage for 20 independent experiments. +e three
performance indexes of optimal value (BST), the worst
(WST) and the average value (AVG) are selected for
comparative analysis, and the optimal results are roughened.
+e experimental results are shown in Table 6. It can be seen
from Table 6 that the three indexes of LWOA in most cases

start

Setting parameters, loop=1

n = 1

select m-k

if m-k = 1

insert

elif m-k = 2

swap

inverse

n = n+1

n>max_num

loop = loop+1

loop>max_loop

end

Figure 5: Local search flowchart.

Table 2: Item generation category.

Category mi
Vertical Regular Level

Relatively long Relatively wide Relatively long Relatively wide Relatively long Relatively wide
2 [1, 2] [0.4L, 0.9L] [0.1W, 0.2W] [0.2L, 0.5L] [0.2W, 0.5W] [0.1L, 0.2L] [0.4W, 0.9W]
3 [1, 3] [0.3L, 0.8L] [0.1W, 0.2W] [0.2L, 0.4L] [0.2W, 0.4W] [0.1L, 0.2L] [0.3W, 0.8W]
4 [1, 4] [0.2L, 0.7L] [0.1W, 0.2W] [0.1L, 0.4L] [0.1W, 0.4W] [0.1L, 0.2L] [0.2W, 0.7W]
5 [1, 5] [0.1L, 0.6L] [0.1W, 0.2W] [0.1L, 0.3L] [0.1W, 0.3W] [0.1L, 0.2L] [0.1W, 0.6W]

Discrete Dynamics in Nature and Society 11



Table 3: Parameter level.

Parameter
Level

1 2 3 4
popsize 30 50 70 90
c 0.2 0.4 0.6 0.8
max l 20 40 60 80

Table 6: Comparison of LWOA, WOA, GA, and EDA.

Problem
LWOA WOA GA EDA

BST WST AVG BST WST AVG BST WST AVG BST WST AVG
C101 242.01 311.58 279.80 245.30 327.05 288.46 259.00 333.53 294.73 243.28 323.21 288.33
C102 247.62 317.52 284.29 252.38 333.87 295.02 261.09 321.98 292.14 251.17 327.60 287.46
C103 224.83 315.95 279.87 252.77 326.05 283.24 252.57 354.41 290.81 246.63 341.71 286.53
C104 245.98 308.16 280.61 268.13 338.33 296.82 258.78 314.58 299.73 245.44 330.65 292.10
C105 242.79 301.49 280.94 234.54 311.92 277.52 254.55 333.01 289.48 253.74 326.57 283.90
C106 242.15 317.8 283.21 266.43 345.98 297.04 230.55 332.64 288.16 254.22 329.45 295.28
C107 248.19 306.76 279.81 261.62 310.61 283.85 248.30 316.79 282.72 255.93 328.17 294.70
C108 232.96 321.57 285.42 260.09 329.08 292.76 241.78 326.56 285.77 242.38 314.09 279.75
C109 224.48 318.68 279.85 253.77 338.80 287.91 236.75 330.6 294.60 247.37 339.38 288.42
C201 328.36 406.8 373.00 357.83 420.27 389.59 343.67 413.31 384.74 342.78 420.57 382.82
C202 348.97 410.72 385.56 352.52 420.19 389.23 332.24 425.89 386.71 353.85 446.74 392.55
C203 353.11 425.83 387.58 358.11 435.19 395.75 356.26 451.24 388.47 357.60 428.34 383.84
C204 337.79 415.66 379.23 354.86 431.27 384.55 294.66 448.28 384.45 337.60 456.18 399.28
C205 347.33 416.55 382.22 361.29 417.95 394.90 317.31 429.01 383.39 356.92 441.02 387.02
C206 337.47 409.87 388.76 364.22 423.06 395.74 365.30 433.86 391.15 363.18 436.91 395.05
C207 336.32 418.19 382.28 359.74 420.08 388.47 340.18 422.48 385.61 337.76 431.17 391.35
C208 339.42 427.92 376.57 346.28 425.14 381.89 340.07 446.34 386.12 340.42 438.14 394.69

Table 4: Results of orthogonal experiment.

Parameter
Level

AVE
popsize c max l

1 1 4 3 395.988
2 1 3 4 404.856
3 1 2 2 412.829
4 1 1 1 411.833
5 2 4 1 379.291
6 2 3 2 393.795
7 2 2 4 383.189
8 2 1 3 382.693
9 3 4 1 387.112
10 3 3 3 374.384
11 3 2 2 359.409
12 3 1 4 379.464
13 4 4 3 377.916
14 4 3 2 369.746
15 4 2 1 380.632
16 4 1 4 376.294

Table 5: Average response value of parameters.

Level popsize c max l

1 406.376 390.176 389.717
2 384.742 384.015 383.945
3 375.092 385.695 382.745
4 377.569 385.077 387.763
Range 31.284 6.161 6.972
Grade 1 2 3
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are significantly better than other comparison algorithms.
+is shows that the proposed three-dimensional matrix can
effectively learn and accumulate block structure information
based on customer order relationship, improve the overall
search effect of the algorithm, and verify the effectiveness of
LWOA in solving 2L-OVRPTW.

For the objective function values (BST, WST, and AVG)
as test samples, nonparametric paired sample test is carried
out on the operation results of each algorithm with 95%
confidence. +e results are shown in Table 7.

5. Conclusions

In this paper, a learning whale optimization algorithm (LWOA)
combined with improved skyline filling algorithm (ISFA) is
proposed to solve 2L-OVRPTW. +e specific contributions are
as follows. (1) Establish the 2L-OVRPTWmodel with the aim of
minimizing the total distance. (2) In the route optimization
stage, after the whale optimization algorithm is used to update
the population, a three-dimensional matrix update strategy
based on customer order relationship is designed to learn and
accumulate the block structure and customer location infor-
mation in the high-quality solution, which can effectively guide
the population update. According to the characteristics of the
problem, the variable neighborhood local search between and
within vehicles is designed to carry out the detailed and efficient
local search for the high-quality solution individuals after global
search. (3) In the loading optimization stage, to improve the
feasibility of the post solution of path optimization, ISFA is used
to optimize the loading process, and the customer’s goods are
effectively loaded into the carriage through the scoring mech-
anism based on the skyline.

Future work will focus on the multiobjective problem
with loading and time window constraints, refine the nature
of the problem, and design an efficient algorithm to solve it
so that the research is more in line with the actual distri-
bution of logistics transportation.
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