
 
 

 
 

 
Machines 2022, 10, 977. https://doi.org/10.3390/machines10110977 www.mdpi.com/journal/machines 

Article 

Uncertainty Analysis of Suspension System Caused by  
Horizontal Misalignment and Its Suppression Method 
Qing Yang 1, Zhenxiang Chi 2 and Lianchun Wang 1,* 

1 College of Intelligence Science and Technology, National University of Defense Technology,  
Changsha 410073, China 

2 Northwest Institute of Nuclear Technology, Xi’an 710024, China 
* Correspondence: wlc03@nudt.edu.cn 

Abstract: The suspension system of the maglev train is a complex system, which is difficult to model 
accurately. The horizontal misalignment between the suspension magnet and the rail is one of the 
common uncertainty factors in the suspension system, which will affect the suspension perfor-
mance. This article focuses on this problem. Firstly, the formula of suspension force considering 
horizontal misalignment is derived and the results of the formula and the FEA (Finite Element Anal-
ysis) simulation is consistent. Secondly, a suspension system model considering the horizontal mis-
alignment is established for the first time, which can effectively describe the impact of the horizontal 
misalignment on the suspension system. Thirdly, a controller for the suspension system is designed 
by using the GIMC (Generalized Internal Model Control) paradigm and how the controller can ef-
fectively suppress the uncertainty caused by the horizontal misalignment is proved theoretically for 
the first time. Finally, the simulation and physical experiment verify that the proposed algorithm 
shows excellent performance and robustness in the system. 

Keywords: system uncertainty modeling; control algorithm; GIMC (Generalized Internal Model 
Control); suspension system; robustness; horizontal misalignment 
 

1. Introduction 
Since Herman Kemper applied for the patent of the maglev train in 1937, the devel-

opment of the theory and engineering of the maglev train technology has made great pro-
gress [1–3]. EMS (electro-magnetic suspension) system is one of the most common sus-
pension methods in the maglev train. In China, EMS medium-and-low-speed maglev 
trains have been in commercial operation [4], for example, the Beijing Line S1, the Chang-
sha Maglev Express and the Fenghuang line. Due to the demonstrated effectiveness of 
these two mature commercial lines, China is building more EMS medium-and-low-speed 
maglev train commercial lines, such as the Qingyuan line [5]. In the development of the 
EMS medium-and-low-speed maglev train, the stability of the suspension system is the 
most concerning problem. The horizontal misalignment between the rail and the suspen-
sion magnet is one of the factors that affect the stability of the suspension system, which 
may occur in many cases, such as when the train runs on a curved rail, the train encoun-
ters a strong wind from its horizontal direction, and so on. 

Some scholars have focused on the problem caused by the horizontal misalignment. 
Regarding EMS medium-and-low speed maglev train as the research object, Lu [6] de-
duced the suspension force formula with the influence of horizontal misalignment but 
did not consider the whole suspension system. Yim et al. [7] paid attention to the perfor-
mance when the maglev train passes through the curve and tried to minimize the varia-
tion in the lateral gap. To this end, Yim et al. established a full vehicle, multi-body dy-
namic model, so that the curving performance of the maglev train with U-shaped electro-
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magnetic suspension, which provides suspension force and guiding force, could be sim-
ulated more accurately. Han et al. [8] pointed out that when the horizontal misalignment 
between the suspension magnet and the rail exceeds the allowable range, the maglev train 
cannot maintain suspension and may even be unsafe. In order to secure the system stabil-
ity and improve the curving performance of the train, Han et al. proposed to install a 
lateral damper between the cabin and the bogie and analyzed the influence of a crosswind 
as the train runs along a curve and the function of the lateral damper. 

To sum up, the problem caused by horizontal misalignment has attracted the atten-
tion of scholars. However, almost all relevant studies are about the impact of horizontal 
misalignment on the guidance system. There is a lack of research on modeling of the sus-
pension system with uncertainty caused by horizontal misalignment and on the proposal 
of the corresponding suspension control strategy. Modeling the disturbance of horizontal 
misalignment on the suspension system can not only increase the understanding of the 
suspension system, but also be helpful to design an effective control algorithm to elimi-
nate this impact. 

At present, there is no suspension control algorithm that suppresses the influence of 
horizontal misalignment specifically. Most of the research studies build the model of un-
certainty that might exist in the suspension system in two categories: structural uncer-
tainty and non-structural uncertainty, and adopt suitable robust control algorithms to deal 
with them according to the category of uncertainty [9–14]. Yu et al. [10] designed a robust 
controller for the permanent magnet electromagnetic hybrid suspension system based on 
the µ synthesis, and showed that the system has good stability and anti-interference abil-
ity through simulations and experiments. Sun et al. [13] designed an adaptive robust con-
troller based on the Riccati method and sliding mode technology, taking into account the 
effects of time delay and disturbance. Simulation and experiments show that the modified 
controller can deal with time delay and disturbance well. Fei et al. [14] propose a robust 
controller based on an improved suspension force model, which ensures superior system 
performances despite suspension force ripple, disturbances, and uncertainties while sus-
taining stable suspension despite system nonlinearity. 

However, for most robust controllers it is difficult to achieve the best performance in 
the engineering of suspension systems. This is mainly because most robust control design 
techniques are based on the worst case: the design of a robust controller is usually at the 
cost of performance. Therefore, the ideal situation is that the designed robust controller 
will not affect the performance of the system in the nominal case, and at the same time 
can enhance its robustness when the system has uncertainties. In order to overcome the 
conflict between system performance and robustness, Zhou et al. proposed GIMC algo-
rithm [15]. GIMC algorithm can improve the robustness of the system on the basis of the 
nominal controller, which has been applied in many fields and has good performance [16–
22]. For example, Kazuhiro Yubai et al. [16] used GIMC structure in the application of the 
fault of strain gauge sensor of flexible arm robot, and verified the effectiveness of the al-
gorithm through experiments. Raisemche A et al. [18] applied the GIMC method to the 
induction motor speed drive of the electric vehicle powertrain with faulty speed sensors, 
and proved the effectiveness of this structure in the case of additive and multiplicative 
uncertainties through experiments. Guo Wei jie et al. [19] applied a high-performance ac-
tive fault-tolerant control (AFTC) method based on GIMC and feedforward compensation 
to HVAC systems and achieved good control results. Mingchen Xue et al. [20] apply 
GIMC to the electric power steering system, which has problems in relation to the model-
ling of uncertain and external interference, and they make it difficult for the controller to 
maintain the performance of the system. Through the simulation and the hardware-in-
the-loop experiment, GIMC was proved to be an effective algorithm. Wu J. [21] uses the 
GIMC to overcome the contradiction between performance and stability in the AFS (Ac-
tive Front Steering System) control. GIMC can both ensure the stability of the AFS con-
troller and guarantee the high performance of the AFS controller. Xie W. [22] proposed a 
new feedback controller architecture for linear systems with a single I/O delay in the 
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GIMC framework. The distinguishing features of the control system architecture are high 
tracking performance and good external disturbance rejection, which could be done sep-
arately by a nominal Smith predictor part and a finite dimensional conditional controller. 
A simple experiment is illustrated and proves the effectiveness of the method. At present, 
there is no application of the GIMC algorithm in the suspension system of the maglev 
train in the available literature. 

The remainder of this article is organized as follows: in Section 2, the suspension force 
formula considering the horizontal misalignment between the suspension magnet and the 
rail is derived through analytical calculation and simulated in the FEA software (ANSYS 
Maxwell, ©2022 Copyright ANSYS, Inc., Southpointe 2600 Ansys Drive, Canonsburg, PA 
15317 USA, ANSYS, Inc.). In Section 3, the horizontal misalignment is analyzed as a cer-
tain sort of model uncertainty and the suspension system model with this uncertainty is 
built for the first time. In Section 4, the proposed controller is designed combined with the 
GIMC algorithm and original algorithm. Then the nominal stability and robust stability 
of the closed-loop system are proved by theoretical analysis. In Section 5, the simulation 
and the experiment are carried out, whose results show the effectiveness of the proposed 
control algorithm. Section 6 is the conclusion and prospects. 

2. The Suspension Force Considering Horizontal Misalignment 
In this section, the suspension force of EMS maglev train is modeled, and the influ-

ence of the horizontal misalignment between the rail and the suspension magnet on the 
suspension force is mainly studied and analyzed. Not only is the mathematical formula 
of the suspension force calculated in detail, but also the FEA simulation of the influence 
of the horizontal misalignment is carried out for the first time. 

2.1. Theoretical Analysis 
The single suspension magnet model can be regarded as the smallest model unit of 

the suspension system, and its basic structure is shown in Figure 1, in which, 2𝑎𝑎 means 
the width of suspension magnet, 𝑚𝑚 represents total mass of suspension magnet and its 
load, 𝑔𝑔 = 9.8 m ∙ s−2 represents the accelerate of gravity, 𝛿𝛿(𝑡𝑡) means the suspension gap, 
∆𝑦𝑦(𝑡𝑡) means the distance of horizontal misalignment, 𝐹𝐹𝑠𝑠(𝑡𝑡) means the nominal suspen-
sion force, and 𝐹𝐹𝑠𝑠,𝑑𝑑𝑑𝑑𝑠𝑠(𝑡𝑡) means the suspension force considering the horizontal misalign-
ment. 

The nominal state of the suspension system defined in this article is shown in Figure 
1a. In the nominal state, the suspension magnet and the rail do not reach magnetic satu-
ration and there is no horizontal misalignment between them; meanwhile, the magnetic 
induction lines form a closed loop without leakage. According to the basic law of electro-
magnetic field, the expression of 𝐹𝐹𝑠𝑠(𝑡𝑡) is 

( ) ( )
( )

2 2
0

24
turns

s

SN I t
F t

t
µ

δ
=  (1) 

where 𝜇𝜇0 = 4𝜋𝜋 × 10−7 H/m means permeability in vacuum, 𝑆𝑆 = 2𝑎𝑎 × 𝐿𝐿 means the rela-
tive polar area, 𝐿𝐿 means the length of suspension magnet, 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠 means turns of suspen-
sion magnet coil, and 𝐼𝐼(𝑡𝑡) means the current of the coils. 
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(a) (b) 

Figure 1. The single suspension magnet model. (a) The nominal state; (b) the state existing horizon-
tal misalignment. 

Figure 1b shows the state when the horizontal misalignment exists between the rail 
and the suspension magnet. When there is a horizontal misalignment, the actual distribu-
tion of magnetic induction line in the suspension gap is shown in Figure 2a. The region in 
the suspension gap can be divided into three parts: R1, R2, and R3. 

In the region R1, the magnetic flux is considered to distribute uniformly in the sus-
pension gap. 𝐹𝐹𝑠𝑠,𝑅𝑅1(𝑡𝑡) means the suspension force in R1 and its expression is 

( ) ( ) ( ), 1 2s R unitF t f t a y t= ⋅ − ∆    (2) 

where 𝑓𝑓𝑡𝑡𝑡𝑡𝑑𝑑𝑡𝑡(𝑡𝑡) means the suspension force per unit width and its expression is 

  
(a) (b) 

Figure 2. The magnetic induction line in suspension gap. (a) The actual state; (b) the approximate 
state. 

( ) ( )
( )

2 2
0

2 24
turn

unit

N I t Sf t
at

µ
δ

=  (3) 

In the regions R2 and R3, the distribution of magnetic flux Figure 2a can be equivalent 
to that shown in Figure 2b according to the literature [23]. That means the non-uniformly 
distributed magnetic flux in the regions R2 and R3 is equivalent to the uniformly distrib-
uted magnetic flux in the region R2′ and R3′. If ∆𝑦𝑦𝑎𝑎(𝑡𝑡) means the equivalent distance of 
horizontal misalignment, then 

( ) ( ) ( ) ( )
( )

arctana

t y t t
y t

y t
δ δ
π π

 ∆
∆ = +  

∆  
 (4) 

Then the expression of 𝐹𝐹𝑠𝑠,𝑑𝑑𝑑𝑑𝑠𝑠(𝑡𝑡) is 
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( ) ( ) ( ) ( ), 2 2s dis unit aF t f t a y t y t= ⋅ − ∆ + ∆    (5) 

Combine Formulas (1)–(5), then obtain 

( ) ( ),s dis sF t F t= ⋅Γ  (6) 

where Γ is a variable coefficient and its expression is 

( ) ( ) ( ) ( )
( )

1 arctan
2
y t t y t t

a a a y t
δ δ
π π

 ∆ ∆
Γ = − + +  

∆  
 (7) 

Let 𝐹𝐹𝑠𝑠,𝑑𝑑𝑑𝑑𝑠𝑠,∆𝑦𝑦=0 be the suspension force amplitude when ∆𝑦𝑦(𝑡𝑡) = 0; then, you can ob-
tain 

( ) ( )
, , 0 1s dis y s

t
F F t

a
δ
π∆ =

 
= ⋅ + 

 
 (8) 

2.2. Simulation Verification 
In this section, the FEA software ANSYS Maxwell (©2022 Copyright ANSYS, Inc, 

Southpointe 2600 Ansys Drive, Canonsburg, PA 15317 USA, ANSYS, Inc.) is used to ana-
lyze the electromagnetic field distribution and the suspension force of suspension system 
[24−26]; the detailed operation process is as follows: 

First, build a two-dimensional model as shown in Figure 3 in MAXWELL, and set the 
parameters according to physical size of the single bogie model. The number of coil turns 
of the suspension magnet is 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠 = 360, and assume that the suspension gap and sus-
pension current are constants, and set 𝛿𝛿(𝑡𝑡) = 𝛿𝛿0 = 0.008 m, 𝐼𝐼(𝑡𝑡) = 𝐼𝐼0 = 35 A. 

Then, keep the rail fixed and move the suspension magnet along the positive direc-
tion of the y axis. The simulation is carried out every 1 mm of translation until the offset 
is 28 mm. A total of 29 times of simulations are carried out. Figure 3a is the model diagram 
of the first time simulation, and ∆𝑦𝑦(𝑡𝑡) = 0; Figure 3b is the model diagram of the 29th 
time simulation, and ∆𝑦𝑦(𝑡𝑡) = 2𝑎𝑎 = 28 mm. 

Finally, the magnetic field distribution and the suspension force can be observed 
through the options of “fields” and “results → solution data” in MAXWELL. 

  
(a) (b) 

Figure 3. Two-dimensional simulation model diagram with horizontal misalignment. (a) ∆𝑦𝑦(𝑡𝑡) =
0; (b) ∆𝑦𝑦(𝑡𝑡) = 2𝑎𝑎. 

Figure 4 shows the distribution of magnetic induction lines in the conditions of 
∆𝑦𝑦(𝑡𝑡) = 0 and ∆𝑦𝑦(𝑡𝑡) = 2𝑎𝑎. The results show that when ∆𝑦𝑦(𝑡𝑡) = 0, the magnetic flux is 
basically distributed in the iron core, the rail, and the air gap between iron core and the 
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rail, the surrounding magnetic leakage is little; when ∆𝑦𝑦(𝑡𝑡) = 2𝑎𝑎, the horizontal misalign-
ment between the suspension magnet and the rail leads to the increase of magnetic leak-
age and the weakening of the magnetic lines distributed in the rail. 

Table 1 shows the results of the suspension force amplitude in the 2nd–29th simula-
tions. The results show that the amplitude of 𝐹𝐹𝑠𝑠,𝑑𝑑𝑑𝑑𝑠𝑠 gradually decreases with the increase 
of ∆𝑦𝑦(𝑡𝑡). In particular, in the first simulation, the amplitude of suspension force was 
𝐹𝐹𝑠𝑠,𝑑𝑑𝑑𝑑𝑠𝑠,∆𝑦𝑦=0 = 16,838 N. 

  

(a) (b) 

Figure 4. Two-dimensional simulation results with horizontal misalignment (distribution of mag-
netic induction line). (a) ∆𝑦𝑦(𝑡𝑡) = 0; (b) ∆𝑦𝑦(𝑡𝑡) = 2𝑎𝑎. 

Table 1. The simulation results of the suspension force amplitude. 

∆𝒚𝒚(𝒕𝒕) [mm] 𝑭𝑭𝒔𝒔,𝒅𝒅𝒅𝒅𝒔𝒔 [N] ∆𝒚𝒚(𝒕𝒕) [mm] 𝑭𝑭𝒔𝒔,𝒅𝒅𝒅𝒅𝒔𝒔 [N] 
1 16,805 15 12,415 
2 16,707 16 11,969 
3 16,552 17 11,509 
4 16,349 18 11,036 
5 16,102 19 10,557 
6 15,825 20 10,062 
7 15,516 21 9558.2 
8 15,183 22 9042.4 
9 14,831 23 8517.2 

10 14,466 24 7988.5 
11 14,081 25 7456.3 
12 13,683 26 6925.6 
13 13,275 27 6402.4 
14 12,848 28 5897.2 

2.3. Comparison between Formula and Simulation 
Let ∆𝐹𝐹𝑠𝑠,𝑑𝑑𝑑𝑑𝑠𝑠,𝑡𝑡𝑎𝑎𝑡𝑡𝑟𝑟 mean the variation proportion of suspension force when horizontal 

misalignment exists. Its expression is 

( ) ( ), , , 0
, ,

, , 0

100s dis s h y
s dis rate

s dis y

F t F
F t

F
∆ =

∆ =

−
∆ = ×  (9) 
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Combine Formulas (6), (8), and (9), when 𝛿𝛿(𝑡𝑡) = 𝛿𝛿0, ∆𝐹𝐹𝑠𝑠,𝑑𝑑𝑑𝑑𝑠𝑠,𝑡𝑡𝑎𝑎𝑡𝑡𝑟𝑟 can be written as 

( )

( ) ( ) ( ) ( )
( )

( )

( ), ,

1 arctan
2

1
100

1
s dis rate

y t t y t t

a a a y t

t
a

F t
t
a

δ δ

π π

δ
π

δ
π

∆ ∆
− + +

∆

    − +        ∆ = ×
 
+ 

 

 (10) 

In particular, ∆𝐹𝐹𝑠𝑠,𝑑𝑑𝑑𝑑𝑠𝑠,𝑡𝑡𝑎𝑎𝑡𝑡𝑟𝑟(𝑡𝑡) < 0 means that the suspension force is decreasing and 
∆𝐹𝐹𝑠𝑠,𝑑𝑑𝑑𝑑𝑠𝑠,𝑡𝑡𝑎𝑎𝑡𝑡𝑟𝑟(𝑡𝑡) > 0 means that the suspension force is increasing. 

The parameters used in the simulation are substituted into Formula (10), which 
means 2𝑎𝑎 = 0.028 m, 𝛿𝛿(𝑡𝑡) = 𝛿𝛿0 = 0.008 m, and ∆𝑦𝑦 ∈ [0, 0.028] m. Then Figure 5 can be 
obtained. It can be seen that, with the increase of horizontal misalignment ∆𝑦𝑦(𝑡𝑡), the am-
plitude of suspension force decreases. The theory and simulation results are in good 
agreement. 

 
Figure 5. Attenuation ratio of suspension force with different horizontal misalignments. 

To sum up, this section deduces the suspension force formula when the horizontal 
misalignment exists, and analyzes the influence of the horizontal misalignment on the 
magnetic flux distribution and suspension force through FEA simulation for the first time, 
and the result of formula is in good agreement with the result of FEA simulation. The 
research in this section lays a foundation for modeling the suspension system. 

3. System Modeling 
In this section, the influence of the horizontal misalignment on the suspension system 

will be treated as an uncertainty for the first time, and the transfer function of the suspen-
sion system with this uncertainty is established. 

3.1. The Nominal Model 
To calculate the transfer function, the Taylor Formula is used to linearize Formula 

(1). When omitting the higher-order term, the linear nominal suspension force 𝐹𝐹𝑠𝑠,𝑡𝑡(𝑡𝑡) is 

( ) ( ) ( ),s t IF t mg k I t k tδ δ= + ∆ − ∆  (11) 

Where ∆𝐼𝐼(𝑡𝑡) = 𝐼𝐼(𝑡𝑡) − 𝐼𝐼0  is the suspension current variation, ∆𝛿𝛿(𝑡𝑡) = 𝛿𝛿(𝑡𝑡) − 𝛿𝛿0  is the 
suspension gap variation, 𝐼𝐼0 and 𝛿𝛿0 are the suspension current and suspension gap at 
the equilibrium point respectively, 𝑘𝑘𝐼𝐼 and 𝑘𝑘𝛿𝛿 are the constants and 

2 2 2
0 0 0 0

2 3
0 02 2
turn turn

I
SN I SN I

k kδ
µ µ

δ δ
= =，  (12) 

Let ∆𝐹𝐹𝑠𝑠,𝑑𝑑𝑑𝑑𝑠𝑠(𝑡𝑡) mean the variation of 𝐹𝐹𝑠𝑠,𝑡𝑡(𝑡𝑡); then, 

△ y [m]

△
F
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s,
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te

 [%
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( ) ( ) ( ) ( ), ,s t s t IF t mg F t k I t k tδ δ∆ = − = − ∆ − ∆    (13) 

According to the Newton’s second law you can obtain 

( ) ( ) ( ),s tF t m a t m tδ∆ = ∆ = ∆   (14) 

where 𝑎𝑎(𝑡𝑡) means the vertical acceleration of the suspension magnet and �̈�𝛿(𝑡𝑡) means 
the second derivative of the suspension gap. Combine Formulas (13) and (14) and omit 
the incremental symbol ∆, then you can obtain 

( ) ( ) ( )Im t k I t k tδδ δ= − +  (15) 

According to the relationship between current and voltage and the current loop con-
trol [27], you can obtain 

( ) ( ) ( ) ( ) ( )0 0r Iu t k I t k RI t L I t k tδ− = + −  
  (16) 

where �̇�𝛿(𝑡𝑡) means the first derivative of the suspension gap and 𝐼𝐼(̇𝑡𝑡) means the first de-
rivative of the suspension current. In particular, 𝑢𝑢(𝑡𝑡) is the output of the controller and 
the input of the plant, which means it is the expected suspension current. 𝑅𝑅 means the 
resistance of the coils, 𝑘𝑘𝑡𝑡  means the feedforward coefficient of the current loop, 𝑘𝑘0 
means the feedback coefficient of the current loop, 𝐿𝐿0 is the constant, and 

2
0

0
02
turnSN

L
µ

δ
=  (17) 

Then the time-domain equations used to describe the nominal suspension system 
model can be written as 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )0 0

I

r I

m t k I t k t

u t k I t k RI t L I t k t
δδ δ

δ

 = − +


− = + −  





 (18) 

After Laplace transformation, the frequency-domain equations used to describe the 
nominal suspension system model can be written as 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2

0 0

I

r I

m s s k I s k s

u s k I s k RI s L I s s k s s
δδ δ

δ

 = − +


− = + −  
 (19) 

Then, the transfer function from 𝑢𝑢(𝑠𝑠) to 𝛿𝛿(𝑠𝑠) to describe the nominal suspension 
system model can be obtained as 

( ) ( )
( ) ( ) ( )

0
0 3 2

0 0 0

I

r r

s k k
P s

u s mL s m R k k s k R k kδ

δ
= = −

+ + − +
 (20) 

3.2. The Model with Uncertainty 
Similarly to Section 3.1, the linear suspension force with uncertainty 𝐹𝐹𝑠𝑠,𝑑𝑑𝑑𝑑𝑠𝑠,𝑡𝑡(𝑡𝑡) is 

( ) ( ) ( ), ,s dis t IF t mg k I t k tδ δ= + Γ∆ − Γ∆  (21) 

Combine Newton’s second law when there is uncertainty: 

( ) ( ) ( )Im t k I t k tδδ δ= − Γ + Γ  (22) 

Then the time-domain equations used to describe the suspension system model with 
uncertainty can be written as 



Machines 2022, 10, 977 9 of 22 
 

 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )0 0

I

r I

m t k I t k t

u t k I t k RI t L I t k t
δδ δ

δ

 = − Γ + Γ


− = + −  





 (23) 

After Laplace transforming, the frequency-domain equations used to describe the 
suspension system model with uncertainty can be written as 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2

0 0

I

r I

m s s k I s k s

u s k I s k RI s L I s s k s
δδ δ

δ

 = − Γ + Γ


− = + −  
 (24) 

Then, the transfer function from 𝑢𝑢(𝑠𝑠) to 𝛿𝛿(𝑠𝑠) to describe the suspension system 
model with uncertainty can be obtained as  

( ) ( )
( ) ( ) ( )

0
3 2

0 0 0

I

r r

s k k
P s

u s mL s m R k k s k R k kδ

δ Γ
= = −

+ + −Γ +
 (25) 

It is worth noting that the uncertainty Γ ∈ [Γmin,Γmax] is affected by the horizontal 
misalignment between the suspension magnet and the rail. During the operation of the 
maglev train, it is difficult to obtain the value of Γ in real time, but the range of Γ can be 
calculated according to the parameters of the suspension system; that is, the value of Γmin 
and Γmax. 

In order to deal with this uncertainty better, let 

0 wΓ = Γ + Γ ∆Γ  (26) 

where Γmax means the maximum value of Γ, Γmin means the minimum value of Γ, ∆Γ ∈
[−1,1] is a variable coefficient, and 

max min max min
0 [ 1,1]

2 2w
Γ +Γ Γ −Γ

Γ = Γ = ∆Γ∈ −， ，  (27) 

Combining Formulas (25) and (26) will obtain 

( ) ( ) ( ) ( )
0 0 0

3 2
0 0 0 0 0

I I w

r r r w

k k k k
P s

mL s m R k k s k R k k k R k kδ δ

Γ + Γ ∆Γ
= −

+ + − + Γ − + Γ ∆Γ
 (28) 

When ∆Γ = 1, Γ = Γ0 + Γw = Γmax, it means that the horizontal misalignment is the maxi-
mum; when ∆Γ = −1, Γ = Γ0 − Γw = Γmin, it means that the horizontal misalignment is 
the minimum. 

4. Controller Design 
The transfer function of the plant with uncertainty is built in Section 3. In this section, 

the controller is designed including nominal controller and robust controller, and it im-
proves the structure of the GIMC so that it can be better applied in engineering. 

4.1. The Nominal Controller 
In this paper, the nominal controller is represented as 𝐾𝐾0(𝑠𝑠), which is designed for 

the nominal control system. When there is no uncertainty in the plant, it is a nominal plant, 
and the performance of the closed-loop system with the nominal controller is called the 
nominal performance. The nominal performance is the ideal performance that the de-
signer hopes the system can achieve. 

The nominal controller can be designed in many ways, but the most desirable effect 
is that it can make the system have good nominal performance in a very simple form. As 
a widely used controller in engineering, PID controller is one of the most suitable choices. 
Therefore, this paper selects PID controller as the nominal controller. 

For the plant shown in Formula (20), the nominal controller 𝐾𝐾0(𝑠𝑠) is: 
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( )0
i

P d
k

K s k k s
s

= + +  (29) 

In which 𝑘𝑘𝑝𝑝,  𝑘𝑘𝑑𝑑, and 𝑘𝑘𝑑𝑑 are the proportional, integration, and differential gains, re-
spectively. In order to 𝐾𝐾0(𝑠𝑠) ∈ 𝑅𝑅𝑅𝑅∞, let 

( ) ( )

2

0
0 1

d p i

d

k s k s k
K s

s T s
+ +

=
+

 (30) 

where 𝑇𝑇𝑑𝑑0 is a constant and 𝑇𝑇𝑑𝑑0 ≪ 1. 
The error of the suspension system is 𝑒𝑒 = 𝛿𝛿 − 𝑟𝑟, so the feedback control loop com-

posed of 𝐾𝐾0(𝑠𝑠) and 𝑃𝑃0(𝑠𝑠) is shown in Figure 6a, where 𝑟𝑟 means the desired suspension 
gap, 𝛿𝛿 means the actual suspension gap, and 𝑢𝑢0 means the output of the controller. In 
order to facilitate the analysis in, the following parameters are introduced: 

( ) ( )0 0
ˆ ˆ, ,r r P s P sδ δ= − = − = −  (31) 

 

 
(a) 

 
(b) 

Figure 6. The feedback control loop. (a) The feedback control loop composed of 𝐾𝐾0(𝑠𝑠) and 𝑃𝑃0(𝑠𝑠). 
(b) The feedback control loop is composed of 𝐾𝐾0(𝑠𝑠) and 𝑃𝑃�0(𝑠𝑠). 

It is worth noting that the closed loop transfer functions in Figure6a,b are exactly the 
same, and 

ˆe r rδ δ= − = −  (32) 

Therefore, in Figure 6a,b, the input and output of the nominal controller 𝐾𝐾0(𝑠𝑠) are 
identical. When 𝐾𝐾0(𝑠𝑠) is a PID controller, the gain of 𝑘𝑘𝑝𝑝, 𝑘𝑘𝑑𝑑 ,𝑘𝑘𝑑𝑑  can be determined by 
Routh Criterion. In practical engineering, a group of appropriate gains can be selected 
within the range of stability conditions with the help of manual parameter tuning. Gener-
ally, the selected gain can make the system have good nominal performance. It means that 
under the control of the selected gain, the overshoot of the system is small, the response 
time is fast, and the stiffness is moderate. 

4.2. The Robust Controller 
When there exists uncertainties in the plant, the system can make it difficult to 

achieve good nominal performance under the control of the nominal controller. Under 
these circumstances, GIMC algorithm proposed by Zhou et al. [15] is used in the control 
algorithm design of the suspension system. In this section, it is proved that how the GIMC 
algorithm can effectively suppress the uncertainty of the numerator and denominator of 
the controlled object through theoretical analysis for the first time. 

Combined with the basic theory of GIMC, 𝑃𝑃(𝑠𝑠) can be expressed as 
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( ) ( )
( )

N

M

N s W
P s

M s W
+ ∆Γ

=
+ ∆Γ

 (33) 

In which 

( )0 0,N I w M r wW k k W k R k kδ= − Γ = − + Γ  (34) 

𝑁𝑁(𝑠𝑠),𝑀𝑀(𝑠𝑠) ∈ 𝑅𝑅𝑅𝑅∞, and 𝑅𝑅𝑅𝑅∞ represent the set of all stable, proper, and real rational 
transfer functions. In order to implement the coprime factorization, (𝑠𝑠 + 𝜃𝜃)𝑘𝑘  is intro-
duced for calculation, and 𝜃𝜃 and 𝑘𝑘 are the constant that make 𝑁𝑁(𝑠𝑠),𝑀𝑀(𝑠𝑠) ∈ 𝑅𝑅𝑅𝑅∞ true. 
Then 

( ) ( ) ( ) ( )3 2
0 0 0 00 0 ,

( ) ( )
r rI

k k

mL s m R k k s k R k kk k
N s M s

s s
δ

θ θ
+ + − + Γ− Γ

= =
+ +

 (35) 

When 𝑘𝑘 > 3, the coprime factorization condition cannot be satisfied, because there is 
a common zero 𝑠𝑠 = ∞ between 𝑁𝑁(𝑠𝑠) and 𝑀𝑀(𝑠𝑠); meanwhile, when 𝑘𝑘 < 3, 𝑀𝑀(𝑠𝑠) is not 
proper. So that 

3k =  (36) 

Let 𝐾𝐾(𝑠𝑠) mean the robust controller for the plant. In order to facilitate the analysis 
in the following, the parameters are introduced: 

( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ, ,M MP s P s W s W s M s M s= − = − = −  (37) 

The feedback control loop composed of the controller 𝐾𝐾(𝑠𝑠) and the plant 𝑃𝑃�(𝑠𝑠) can 
be obtained as shown in Figure 7. 

 
Figure 7. The feedback control loop composed of 𝐾𝐾(𝑠𝑠) and 𝑃𝑃�(𝑠𝑠). 

Then, the robust controller 𝐾𝐾(𝑠𝑠) is designed. As shown in Figure 7, two concepts 
need to be explained: 
(a) Nominal Stability (NS): the controller 𝐾𝐾(𝑠𝑠) internally stabilizes the nominal plant 

𝑃𝑃�0(𝑠𝑠). 
(b) Robust Stability (RS): the controller 𝐾𝐾(𝑠𝑠) internally stabilizes the plant 𝑃𝑃�(𝑠𝑠). 

This section will design the controller 𝐾𝐾(𝑠𝑠) that meets both NS and RS. 

4.2.1. The Nominal Stability (NS) 

Lemma 1. (Youla Parameterization) [28]. Suppose that 𝐾𝐾0(𝑠𝑠) stabilizes internally the standard 
feedback system shown in Figure 7. Let 𝐾𝐾0(𝑠𝑠)  and 𝑃𝑃�0(𝑠𝑠)  have the coprime factorizations as 
𝐾𝐾0(𝑠𝑠) = 𝑉𝑉−1(𝑠𝑠)𝑈𝑈(𝑠𝑠), 𝑃𝑃�0(𝑠𝑠) = 𝑀𝑀�−1(𝑠𝑠)𝑁𝑁(𝑠𝑠). Then every controller 𝐾𝐾(𝑠𝑠) that internally stabi-
lizes the feedback system shown in Figure 7 can be written as 𝐾𝐾 (𝑠𝑠) =  [𝑉𝑉(𝑠𝑠)  −
 𝑄𝑄(𝑠𝑠)𝑁𝑁(𝑠𝑠)]−1 [𝑈𝑈(𝑠𝑠)  +  𝑄𝑄(𝑠𝑠)𝑀𝑀�(𝑠𝑠)] for some 𝑄𝑄(𝑠𝑠) ∈ 𝑅𝑅𝑅𝑅∞ such that [𝑉𝑉 (∞)  −  𝑄𝑄(∞)𝑁𝑁 (∞)] ≠
0. 

The suspension system studied in this article is a single input single output system, 
so the nominal plant 𝑃𝑃�0(𝑠𝑠) can be written as 
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0
( )ˆ ( ) ˆ ( )

N sP s
M s

=  (38) 

According to Lemma 1, if 

0
( )( )
( )

U sK s
V s

=  (39) 

is a controller that can internally stabilize the nominal model 𝑃𝑃�0(𝑠𝑠), the controller 𝐾𝐾 (𝑠𝑠) 
that meets the following formula can internally stabilize 𝑃𝑃�0(𝑠𝑠): 

ˆ( ) ( ) ( )( )
( ) ( ) ( )

U s Q s M sK s
V s Q s N s

+
=

−
 (40) 

In which, 𝑈𝑈(𝑠𝑠),𝑉𝑉(𝑠𝑠) ∈ 𝑅𝑅𝑅𝑅∞ is the coprime decomposition of 𝐾𝐾0(𝑠𝑠) and satisfy. 

ˆ( ) ( ) ( ) ( ) 1N s U s M s V s+ =  (41) 

Moreover, 𝑄𝑄(𝑠𝑠) ∈ 𝑅𝑅𝑅𝑅∞ is the controller parameter that needs to be designed. 

4.2.2. The Robust Stability (RS) 
For the convenience of analysis, Figure 7 is redrawn as Figure 8 and these two figures 

represent the same system. 

 
Figure 8. The equivalent diagram of Figure 7. 

In the following analysis, the Laplace operator “s” is omitted in order to simplify the 
writing. Then the following formula can be obtained from Figure 8. 

1

2

1 2

ˆ ( ) ˆˆ ˆ
ˆ ˆ ˆ( ) ( )ˆˆ ˆ

ˆ ˆ ˆ( ) ( )ˆˆ ˆ

N N

M M

M V QN V QNe r
MV NU MV NU
W M U QM W U QM

z r
MV NU MV NU

W N U QM W V QNz r
MV NU MV NU
z z

ω

ω

ω

ω

 − −
= −

+ +
 + +

= −
 + +
 + − = +
 + +
 = ∆Γ −∆Γ

 (42) 

Rewrite Formula (42) as 
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ˆ
LFT

e r
M

z
z

ω
ω

   
=   

   
 = ∆

 (43) 

In which 

( )

1 11 12

2 21 22

1 1
11 12

1 1
21 22

, [ , ], ,

ˆ ˆ ˆ( )( ) , ( ) ,
ˆ ˆ ˆ( ) ( )ˆ ˆ( ) , ( )

ˆ ˆ ˆ( ) ( )

LFT

N N

M M

z M M
z M

z M M

M M V QN MV NU M V QN MV NU

W M U QM W U QM
M MV NU M MV NU

W N U QM W V QN

− −

− −

   
= ∆ = ∆Γ −∆Γ =   
   

= − + = − − +

   + − +
= + = +   

+ −      

 (44) 

Then Figures 9 and 10 can be obtained. Specially, Figure 9 is a typical LFT (Linear 
Fractional Transformation) analysis block diagram. In Figure 10, �̃�𝑟1  =  𝑀𝑀21𝑟𝑟 , �̃�𝑟2  =  0. 

Lemma 2. (Small Gain Theorem) [28]. Suppose 𝑀𝑀22(𝑠𝑠) ∈ 𝑅𝑅𝑅𝑅∞ and 𝛾𝛾 > 0. Then the intercon-
nected system shown in Figure 10 is well-posed and internally stable for all ∆(𝑠𝑠) ∈ 𝑅𝑅𝑅𝑅∞ with 

(a). ‖∆‖∞ ≤ 1/𝛾𝛾 if and only if ‖𝑀𝑀22‖∞ < 𝛾𝛾; 
(b). ‖∆‖∞ < 1/𝛾𝛾 if and only if ‖𝑀𝑀22‖∞ ≤ 𝛾𝛾. 

Lemma 3. [28]. Consider the system in Figure 11, where 𝐾𝐾0(𝑠𝑠) = 𝑈𝑈(𝑠𝑠)
𝑉𝑉(𝑠𝑠)

, 𝑃𝑃�0(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)
𝑀𝑀�(𝑠𝑠)

, 
[𝑈𝑈(𝑠𝑠),𝑉𝑉(𝑠𝑠)] is a stable coprime factorization of 𝐾𝐾0(𝑠𝑠), [𝑀𝑀�(𝑠𝑠),𝑁𝑁(𝑠𝑠)] is a stable coprime factoriza-
tion of the controlled object 𝑃𝑃�0(𝑠𝑠), and 𝑀𝑀�(𝑠𝑠),𝑁𝑁(𝑠𝑠),𝑈𝑈(𝑠𝑠),𝑉𝑉(𝑠𝑠) ∈ 𝑅𝑅𝑅𝑅∞. The following conditions 
are equivalent: 

(a). The feedback system is internally stable. 
(b). �𝑀𝑀�(𝑠𝑠)𝑉𝑉(𝑠𝑠) + 𝑁𝑁(𝑠𝑠)𝑈𝑈(𝑠𝑠)� is invertible in 𝑅𝑅𝑅𝑅∞. 

 
Figure 9. Block diagram of the linear fractional transformation. 

 
Figure 10. Block diagram of the small gain theorem. 

 
Figure 11. Block diagram of internal stability analysis. 
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Theorem 1. Consider the system in Figure 7. Let 𝐾𝐾(𝑠𝑠) = 𝑈𝑈(𝑠𝑠)+𝑄𝑄(𝑠𝑠)𝑀𝑀�(𝑠𝑠)
𝑉𝑉(𝑠𝑠)−𝑄𝑄(𝑠𝑠)𝑁𝑁(𝑠𝑠)

,𝑃𝑃�(𝑠𝑠) =
𝑁𝑁(𝑠𝑠)+𝑊𝑊𝑁𝑁∆𝛤𝛤
𝑀𝑀�(𝑠𝑠)+𝑊𝑊�𝑀𝑀∆𝛤𝛤

,𝑃𝑃�0(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)
𝑀𝑀�(𝑠𝑠)

, and 𝑀𝑀�(𝑠𝑠),𝑁𝑁(𝑠𝑠),𝑈𝑈(𝑠𝑠),𝑉𝑉(𝑠𝑠),𝑄𝑄(𝑠𝑠) ∈ 𝑅𝑅𝑅𝑅∞. Assume there is uncertainty 
∆ =  [∆𝛤𝛤,−∆𝛤𝛤] ∈ 𝑅𝑅𝑅𝑅∞, and ‖∆‖∞ ≤ 1. Then the closed-loop system in Figure 7 is well-posed and 
internally stable for all ∆ if and only if 

1
ˆ( ) ˆ( )  1

ˆ ( )
N

M

W U QM
MV NU

W V QN
−

∞

 − +
+ < 

−  
 (45) 

Proof. By Lemma 3, the closed-loop system is internally stable if and only if 

( )( ) ( )( )
1ˆ ˆ ˆ

N MN W U QM M W V QN RH
−

∞
 + ∆Γ + + + ∆Γ − ∈   (46) 

Since 𝐾𝐾(𝑠𝑠) stabilizes 𝑃𝑃�0(𝑠𝑠), 

( ) ( )
1ˆ ˆN U QM M V QN RH
−

∞
 + + − ∈   (47) 

Then condition (46) is satisfied if and only if 

( ) ( )
1ˆ ˆ

ˆ
N MW U MQ W V NQ

I RH
NU MV

−

∞

 ∆Γ + + ∆Γ −
 + ∈
 +
 

 (48) 

The Formula (48) equals 
1

1
ˆ( ) ˆ[ , ] ( )

ˆ ( )
N

M

W U QM
I MV NU RH

W V QN

−

−
∞

  − +
 − ∆Γ −∆Γ + ∈ 
 −   

 (49) 

By Lemma 2, the above is true for all ‖∆‖∞ ≤ 1 if and only if Formula (45) is true. 
□ 

Furthermore, according to the definition of LFT, the closed-loop transfer function 
from 𝑟𝑟 to 𝑒𝑒 can be calculated as 

1
11 12 22 21( , ) ( )er l LFTT F M M M I M M−= ∆ = + ∆ −∆  (50) 

where 𝑀𝑀11(𝑠𝑠) represents the influence of reference signal 𝑟𝑟 on the output 𝑒𝑒, the rest part 
represents the influence of uncertainty ∆ on the output 𝑒𝑒, and 

( )

1
12 22 21( )

ˆ ˆ ˆ( )( )( )
ˆ ˆ ˆ ˆ( ) ( )

N M

N M

M I M M

V QN U QM W M W N
MV NU MV NU W U QM W V QN

−∆ − ∆

− − + ∆Γ −∆Γ
=

 + + + ∆Γ + + ∆Γ − 

 (51) 

It can be seen that when 

ˆ0    0V QN or U QM− = + =  (52) 

the influence of uncertainty ∆ on the system is zero. Because the suspension system 
𝑃𝑃�0(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)

𝑀𝑀�(𝑠𝑠)
 has unstable poles, for the suspension system 

ˆ
UQ RH
M ∞= − ∉  (53) 

Then for the suspension system, the optimal solution of 𝑄𝑄(𝑠𝑠) is 

VQ
N

=  (54) 
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4.3. The Controller Structure 
The controller 𝐾𝐾(𝑠𝑠) that meets both NS and RS is designed in the previous section, 

and the optimal controller parameter 𝑄𝑄(𝑠𝑠) that can eliminate the model uncertainty is 
obtained through theoretical analysis. This section will analyze the controller structure 
designed in the previous section and further improve GIMC to better apply in the engi-
neering. 

Figure 12 shows the GIMC structure and the Theorem 1 can be applied to it. It is 
worth emphasizing that how the GIMC algorithm can overcome the conflict between per-
formance and robustness in the traditional feedback framework can be explained: 
(a) If the signal 𝑓𝑓 = 𝑁𝑁(𝑠𝑠)𝑢𝑢 −𝑀𝑀�(𝑠𝑠)𝛿𝛿 is zero when 𝑃𝑃�(𝑠𝑠) = 𝑃𝑃�0(𝑠𝑠), then the inner loop in 

Figure 12 does not work. At this time, the closed-loop system has the nominal per-
formance under the nominal controller 𝐾𝐾0(𝑠𝑠) = 𝑈𝑈(𝑠𝑠)/𝑉𝑉(𝑠𝑠). 

(b) If signal 𝑓𝑓 = 𝑁𝑁(𝑠𝑠)𝑢𝑢 −𝑀𝑀�(𝑠𝑠)𝛿𝛿 is NOT zero when 𝑃𝑃�(𝑠𝑠) ≠ 𝑃𝑃�0(𝑠𝑠), that means the inner 
loop is active when there is a model uncertainty or other sources of uncertainties such 
as disturbances and sensor noises. Therefore, the robustness of the closed-loop sys-
tem can be enhanced with the help of the inner loop. 
According to the previous analysis, Figure 12 has an obvious disadvantage, which is 

that, when 𝐾𝐾0(𝑠𝑠) is PID controller, the coprime decomposition will not only introduce 
new parameters, but also not be conducive to engineering application, so Figure 12 is op-
timized to Figure 13 in this article. 

 
Figure 12. The standard GIMC control structure for the suspension system. 

 
Figure 13. The improved GIMC control structure for the suspension system. 

For Figure 12, 

ˆ ˆˆGIMC
U U QMu r

V QN V QN
δ+

= −
− −

 (55) 

For Figure 13, 

0 0
,

ˆ ˆˆ ˆˆ ˆ
1 1

a a
GIMC Qa

a a a a

K K Q M U Q VMUu r r
Q N Q N V Q VN V Q VN

δ δ
+ +

= − = −
− − − −

 (56) 

It can be seen that Formula (55) equals Formula (56) if and only if 
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aQ Q V=  (57) 

From Formula (57), it can be obtained that 

1
aQ

N
=  (58) 

5. Simulation and Experiment 
The previous analysis shows that the horizontal misalignment will cause the uncer-

tainty of the numerator and denominator of the suspension system, and the GIMC control 
algorithm can effectively suppress this uncertainty. This section will verify this through 
simulation and experiments. 

In this section, the proposed control structure used in simulations and experiments 
is carried out according to Figure 13. When setting 𝑄𝑄𝑎𝑎(𝑠𝑠) according to Formula (58), to 
ensure that 𝑄𝑄𝑎𝑎(𝑠𝑠) ∈ 𝑅𝑅𝑅𝑅∞, let 

0 0

1 ( )
( )

k

a k
I

sQ
N k k Ts

θ
θ

+
= =

− Γ +
 (59) 

where k = 3, 𝑇𝑇 = 1/100. In addition, due to the special structure of the GIMC block dia-
gram, the value of 𝜃𝜃 will not affect the system performance. It is worth noting that in 
Figure 13, in the case of 𝑄𝑄𝑎𝑎(𝑠𝑠) = 0, the plant was only controlled by the PID feedback 
controller. Therefore, the simulation and experiment in this section are divided into two 
groups for comparison. Only the values of 𝑄𝑄𝑎𝑎(𝑠𝑠) in the control group are different, and 
the other settings are the same. The first group is in the case of 𝑄𝑄𝑎𝑎(𝑠𝑠) = 0, the simulation 
or experiment under the “PID control algorithm” hereinafter. The second group selects 
𝑄𝑄𝑎𝑎(𝑠𝑠) as Formula (59), which will be referred to as the simulation or experiment under 
“GIMC control algorithm” later. 

𝐾𝐾0(𝑠𝑠) is PID feedback controller, the selection of the values of 𝑘𝑘𝑝𝑝,𝑘𝑘𝑑𝑑 , 𝑘𝑘𝑑𝑑 is according 
to theoretical calculation and engineering practice. These parameters can make the system 
reach the critical damping state in theory, and have achieved good performances in engi-
neering. Specifically, under the control of these parameters, the suspension system has 
small overshoot, fast response time, moderate stiffness, and small fluctuation of the sus-
pension gap. 

The analysis in this section will depend on two experimental platforms: 
One is the small-scale experimental platform of the suspension system, as shown in 

Figure 14. The suspension principle of this platform is completely consistent with the sus-
pension system of the maglev train; the main difference is smaller size and no secondary 
system. The parameters of the plant are based on the blueprint of the small scale experi-
mental platform, as shown in Table 2. 

The other one is the single bogie experimental platform of the suspension system, as 
shown in Figure 15, which shows a single bogie experimental platform of the maglev train 
whose structure and size are completely the same as the maglev train that runs in com-
mercial lines. In the project, five single bogies carry a carriage of a maglev train. A single 
bogie test platform mainly includes a loading platform, an air spring, a suspension mod-
ule and a controller. The parameters of the plant are based on the blueprint of the experi-
mental platform, as shown in Table 2. 



Machines 2022, 10, 977 17 of 22 
 

 

 
Figure 14. The small-scale experimental platform of the suspension system. 

 
Figure 15. The single-bogie experimental platform of the suspension system. 

Table 2. Relevant parameters of the suspension system. 

Symbols The Small-Scale Platform The Single Bogie Platform 
2𝑎𝑎 0.01 m 0.028 m 
𝐿𝐿 0.014 m 0.66 m 
𝑆𝑆 0.0014 m2 0.01848 m2 
𝑚𝑚 46.69 kg 250 kg 

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠 663 360 
 𝑅𝑅 2 Ω 0.55 Ω 
𝛿𝛿0 0.0065 m 0.008 m 
𝑘𝑘0 200 250 
∆𝑦𝑦 [0, 0.001] m [0, 0.028] m 
Γ [0.7807, 1.4138] [0.3591, 1.1819] 
Γ0 1.0973 0.7705 
Γw 0.3165 0.4114 

5.1. Simulation Analysis 
In this section, Figures 13 and 14 will be simulated in the MATLAB soft-

ware(MATLAB R2021a,Natick, Apple Hill Campus, MA, USA, MathWorks Inc.). 
Simulation 1: 
Make the system suspend stably at 0.0065 m. Then make ∆Γ change sinusoidally in 

the interval of [−1,1], which can simulate the situation when the train runs on the curved 
rail. The simulation results are shown in Figure 16. 

Air Spring

Suspension Module

Controller Case

Loading Platform
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The figure shows the variation of ∆Γ with time. At 0–5 s, ∆Γ = 1, it means that there 
is no horizontal uncertainty in the suspension system; at 5–15 s, ∆Γ changes sinusoidally 
with time, with an amplitude of 1 and a frequency of 0.15 Hz. The desired trajectory is 
0.0065 m over the whole course.  

It can be seen that with the control of the PID algorithm, the fluctuation of the actual 
suspension gap is quite obvious; under the control of GIMC algorithm, the suspension 
gap is always very close to 0.0065 m, which is hardly affected by the change of ∆Γ. 

Simulation 2: 
Make the system firstly suspend stably at 0.0065 m. Let the value of ∆Γ change to 

−1 at 7s, then let the value of ∆Γ change to 1 at 10s. This can simulate the situation when 
the train encounters strong lateral wind during driving. The simulation results are shown 
in Figure 17.  

The figure shows the variation of ∆Γ with time. When ∆Γ = −1, the misalignment 
between the suspension magnet and the rail of the suspension system reaches maximum. 
The whole course of desired trajectory is 0.0065 m.  

It can be seen that under the control of GIMC algorithm, the fluctuation of the sus-
pension gap is significantly reduced and the adjustment time is obviously faster. 

 
Figure 16. The result of simulation 1. 

 
Figure 17. The result of simulation 2. 

5.2. Experiment in the Small-Scale Experimental Platform 
In this section, the experiment is carried out in the small-scale experimental platform 

shown in Figure 14. The experimental method is shown in Figure 18. When the system is 
stably suspended at 6.5 mm, slowly apply the lateral force in the horizontal direction with 
a tension gauge. After the lateral force gradually increases to 98 N (the maximum value 
of the tension gauge), slowly reduce the lateral force until the system recovers to the nom-
inal suspension state. Repeat the above process three times. During the whole experiment, 
the gap, current, and acceleration sensors of the suspension system will measure the data 
of the suspension gap, current, and acceleration. Record and save them through the upper 
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computer. The above process repeats twice, the first time using PID controller, the second 
time using GIMC controller. 

  
(a) (b) 

Figure 18. The experimental method in the small-scale experimental platform. (a) The nominal state; 
(b) the state existing horizontal misalignment. 

The experimental results are shown in Figure 19. It can be seen that when there is a 
horizontal misalignment under the action of the lateral force:  
(1) If you are using the PID controller (the inner loop is inactive), the suspension gap 

and current have obvious fluctuations. In general, they will increase as the lateral 
force increases and will decrease as the lateral force decreases; 

(2) If you are using the GIMC controller (the inner loop is active), the suspension gap is 
almost maintained at 6.5 mm for the whole process and is not affected by external 
forces and the fluctuation of the suspension current is significantly small;  

(3) Under the control of these two algorithms, there are no obvious differences in the 
suspension acceleration. 

 
Figure 19. The experimental results in the small-scale experimental platform. 

5.3. Experiment in the Single-Bogie Experimental Platform 
Experimental method: firstly, the single bogie platform should be suspended stably 

at point A, and the suspension gap is kept at 8 mm, and then it moves slowly from point 
A to point B; Then floating at point B for a period of time, and then move the single bogie 
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platform from point B to point A slowly. The above process repeats twice. The PID feed-
back control algorithm is used for the first time and the GIMC algorithm is used for the 
second time. The curve in experiment scene is shown in Figure 20. 

 
Figure 20. Curved rail of physical experiment platform. 

The experimental results are shown in Figure 21. It can be seen that the fluctuation 
of suspension gap under PID controller is larger than that under GIMC controller, and the 
variation of suspension current and acceleration are almost the same. 

  
(a) (b) 

Figure 21. The experimental results in the single-bogie experimental platform. (a) From point A to 
point B; (b) from point B to point A. 

In order to compare the control effects of these two algorithms more carefully, the 
experimental data are compared quantitatively. The maximum, minimum, average, and 
variance of experimental data of each group are shown in Table 3. It can be seen that under 
the control of GIMC algorithm, the variance of the suspension gap are smaller both from 
A to B or from B to A, indicating that the fluctuation range of the suspension gap under 
the control of GIMC algorithm is smaller. 
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Table 3. Quantitative calculation of experimental results about the suspension gap (Unit: mm). 

 From Point A to Point B From Point B to Point A  
 PID GIMC PID GIMC  

Maximum 8.1360  8.0890  8.1660  8.1070   
Minimum 7.8260  7.8890  7.8550  7.9020   
Average 7.9975  7.9933  8.0003  8.0044   
Variance 3.3891 × 10−3 1.2988 × 10−3 3.4561 × 10−3 1.1607 × 10−3  

6. Summary and Prospect 
In this article, the horizontal misalignment between the suspension magnet and the 

rail impacts on suspension system was studied. This problem has attracted the attention 
of scholars, but the current research mainly focuses on the impact of horizontal misalign-
ment on the guidance system. In fact, many studies have pointed out that the influence of 
horizontal misalignment on the suspension system cannot be ignored. This article con-
ducts an in-depth analysis on this topic for the first time.  

The main innovations and conclusions of this article are: 
(1) Considering that the influence of horizontal misalignment on suspension system is 

mainly reflected in the change of suspension force, this article first analyzes the sus-
pension force in theory and simulation. The results show that the suspension force 
considering the horizontal misalignment deduced in this article is accurate, and FEA 
simulation is in good agreement with the results of theoretical derivation. 

(2) A suspension system model with uncertainty is established for the first time, which 
can effectively describe the impact of the horizontal misalignment on the suspension 
system. This modeling process not only makes the suspension system model more 
accurate, but also lays a foundation for the controller design. 

(3) A controller for the suspension system is designed. This article proves how the con-
troller can effectively suppress the uncertainty caused by the horizontal misalign-
ment theoretically for the first time, so that the suspension system can maintain ex-
cellent nominal performance in the case of horizontal misalignment. 

(4) The closed-loop system studied in this article is simulated in MATLAB and the ex-
periment is carried out on the small-scale experimental platform and the single-bogie 
experimental platform. The results show that the proposed control algorithm can ef-
fectively suppress the suspension gap and current fluctuation caused by horizontal 
misalignment. 
This research not only solves the problem in theory, but also designs a controller that 

is suitable for engineering, which has high practicability. In future, we will study other 
uncertainties of the suspension system and verify whether the GIMC algorithm can still 
eliminate them. 
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