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Abstract: This paper presents a novel method to control sinusoidal distributed winding or sinusoidal
back electromotive force (back-EMF) multi-phase permanent magnet (PM) machines under open-
circuit fault conditions. In this study, five different fault conditions are considered: single-phase,
adjacent double-phase, non-adjacent double-phase, adjacent three-phase, and non-adjacent three-
phase open circuit conditions. New current sets for the remaining healthy phase under open-circuit
fault conditions are obtained by compensating the direct-quadrature (d-q) axes currents. For this
purpose, an iterative method has been used to get the new set of currents. D-q axes currents, due to
faulty phase/phases, are shared to the healthy phases to obtain the same d-q axes currents as in the
healthy condition. Therefore, the same torque is produced as in the healthy condition. The developed
method is simulated in MATLAB/Simulink by using a d-q modelled sinusoidal back-EMF five-phase
machine. A vector control block diagram has been designed to run the machine under healthy and
faulty conditions. The machine model has been run successfully under fault tolerant conditions.
Additionally, a finite element analysis (FEA) has been undertaken to simulate the five-phase PM
model machine by using MagNet software. Open-circuit fault-tolerant control currents are fed into
the coils of the machine model. Satisfactory torque results have been obtained. Because the model
five-phase PM machine includes higher order back-EMF harmonics, especially the third harmonic,
torque has ripple due to interaction between the fault-tolerant control currents and the higher order
back-EMF harmonics.

Keywords: open-circuit fault-tolerant; permanent magnet machines; multi-phase machines; five-
phase machine

1. Introduction

In recent years, multi-phase machines have garnered interest from researchers due
to their various beneficial features [1]. One point of interest is that the level of current
that flows in a semiconductor power device in an inverter is decreased by increasing the
number of phases [2–6]. The second point of interest is the reduction of the amplitude
of the torque pulsations by increasing their frequency [7]. For better performance, the
desired torque response should be flat. Increasing the number of phases creates a net
torque production that is close to being constant.

Additionally, losses in the stator and rotor, along with the vibration and noise of the
machine, are reduced in a multi-phase machine compared to a three-phase machine [7–11].
Multi-phase machines have a better fault tolerance. This means multi-phase machines can
produce a rotating field even if they have lost one or more phases. Thus, a multi-phase
machine can continue to operate under open-circuit fault conditions.

Sui et al. [12] developed a fault-tolerant control strategy by keeping the current
amplitude constant for five different open-circuit conditions in a five-phase machine. A
neutral connection has been used in this method to run the machine with up to three-phases
in open-circuit. Smooth torque for the sinusoidal back-EMF machines has been obtained
by keeping the rotating (resultant) magnetomotive force (MMF) constant around the stator
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circumference. Single-phase open-circuit fault-tolerant control currents are discussed in [13]
for the four-phase, five-phase, six-phase, and seven-phase machines. In [14], fault tolerant
control strategies are introduced for the single-phase and the adjacent double-phase open-
circuit conditions for the sinusoidal and the trapezoidal back-EMF five-phase machines. A
rotating MMF, the same as in the healthy condition, is produced by eliminating the use of
the neutral connection. Dwari and Parsa introduced an open-circuit fault-tolerant control
method for the trapezoidal back-EMF machines in [15,16]. Mohammadpour et al. studied
open-circuit fault tolerant control of pentagon connected five-phases in [17], discussed the
design and fault-tolerant control of permanent magnet (PM) machines in [18], developed a
control method under the short-circuit fault conditions in [19], and discussed fault-tolerant
control techniques that allow PM machines to achieve maximum ripple-free torque with
minimum ohmic loses in [20]. They proposed a generalized method for the open-circuit
fault-tolerant control of multi-phase machines in [21] and, in addition to this study, they
developed a fault-tolerant control strategy for both short-circuit and open-circuit fault
conditions in [22] by using the Lagrange equations.

In this paper, an open-circuit fault-tolerant control method has been presented for
a five-phase machine by compensating the d-q axis currents. Some of the existing fault-
tolerant control (FTC) methods need a new transfer matrix to calculate the d-q axis currents
for the vector control of the machine, and it is not possible to use the vector control by
using existing FTC methods. However, a new transfer matrix is not required to obtain
the d-q currents for the vector control of the machine when using this developed method
under open-circuit FTC. Five different open-circuit fault conditions have been discussed,
and the neutral connection is required for this strategy to enhance the method with up
to three-phases open-circuited. This paper is organized as follows. The methodology
of the developed strategy, d-q axis currents, and the rotating MMF of the five-phase
machine are introduced in Section 2. In Section 3, the developed strategy is simulated in
MATLAB/Simulink, and finite element analysis (FEA) results are presented in Section 4.

2. Methodology
2.1. Direct and Quadrature Axes Currents

Direct and Quadrature (d-q) axes transform of the phase currents involves finding the
total projections of the phase currents on the two axes (d-q plane) frame. Generally, the
d-q plane is called the rotating frame because it is positioned on the rotor of the machine.
The d axis is located in the center of the rotor’s N pole, and q axis is located in the middle
of the N and S pole of the rotor. From another point of view, assuming that there are
axes in the center of the rotor poles, the q axis will be the bisector of these two axes. For
maximum torque production, the projection of total phase currents should be kept in the q
axis direction, so the reference current value for the d axis current is set as zero. D-q axes
are illustrated in Figure 1 for the two-pole five-phase sinusoidal distributed PM machine.

D-q currents for a sinusoidal distributed winding or sinusoidal back-EMF five-phase
machine can be derived from Equation (1). Where θ = ωet is the electrical angle, ωe is the
electrical angular speed, t is the time, and θr is the rotor position according to the reference
phase (Phase A) magnetic flux axis. For this study, the flux axis of phase A has been chosen
as a reference. For the concentrated winding or non-sinusoidal back-EMF five-phase
machines, these d-q currents in Equation (1) relate to the fundamental current components.
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Figure 1. Illustration of the direct and quadrature (d-q) axes for the two-pole five-phase perma-
nent magnet (PM) machine. 
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Figure 1. Illustration of the direct and quadrature (d-q) axes for the two-pole five-phase permanent
magnet (PM) machine.

Inverse transform of the d-q currents for the sinusoidal distributed winding or sinu-
soidal back-EMF five-phase machine can be derived from Equation (2).
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The balanced five-phase current is given below in Equation (3), Where Im is the
amplitude of the phase currents.

ia(θ) = Im sin(θ)
ib(θ) = Im sin(θ − 2π5)
ic(θ) = Im sin(θ − 4π5)
id(θ) = Im sin(θ − 6π5)
ie(θ) = Im sin(θ − 8π5)

(3)

Id and Iq currents can be expressed by Equation (4) by applying Equation (3) into
Equation (1).

Id = Im sin(θr − θ)
Iq = Im cos(θr − θ)

(4)

According to Equation (4), for maximum torque production, θr should be equal to θ
for a two-pole integral slot five-phase machine. The square root of the sum of the square of
Id and Iq in Equation (5) is equal to the amplitude (Im) of the phase currents, according to
Equation (1). √

I2
d + I2

q = Im (5)

The q axis current (Iq ) should be equal to the amplitude (Im) of the phase currents
and the d axis current should be zero for maximum torque production. Therefore, the q
and d axes currents can be expressed by Equation (6) for maximum torque.

Id = 0
Iq = Im

(6)
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2.2. Resultant (Rotating) Magnetomotive Force of the Sinusoidal Distributed Five-Phase Machine

In a five-phase machine, the phase windings are displaced from each other by 2π/5.
In order to produce a resultant (rotating) magnetomotive force (MMF), the balanced five-
phase windings should be supplied with balanced five-phase currents, as in Equation
(3). The MMF of each phase can be calculated using Equation (7) for the sinusoidally
distributed five-phase machine, where N is the number of turns and ∅ represents the
spatial angle.

fa(θ,∅) = N
2 ia(θ) sin(∅)

fb(θ,∅) = N
2 ib(θ) sin

(
∅− 2π

5
)

fc(θ,∅) = N
2 ic(θ) sin

(
∅− 4π

5

)
fd(θ,∅) = N

2 id(θ) sin
(
∅− 6π

5
)

fe(θ,∅) = N
2 ie(θ) sin

(
∅− 8π

5
)

(7)

The resultant MMF is derived from Equation (8).

f (θ,∅) = fa(θ,∅) + fb(θ,∅) + fc(θ,∅) + fd(θ,∅) + fe(θ,∅)

f (θ,∅) = 5
2

[
N
2 Im cos(θ −∅)

] (8)

In Equation (8), because the angle, θ, always follows the angle, ∅, the resultant MMF
will always be equal to a constant value. Assuming N/2 = 1 and Im = 1 to ease the
calculations, then the resultant MMF is equal to 2.5, as in Equation (9), and this value is
going to be used as a reference MMF while obtaining the fault-tolerant control currents
using the proposed method.

f (θ,∅) = 2.5 (9)

2.3. Open-Circuit Fault-Tolerant Control of a Sinusoidal Distributed Winding Five-Phase Machine

In this study, open-circuit fault-tolerant control currents have been obtained by com-
pensating the d-q currents. Equation (6) is the starting point of this study. For the healthy
conditions, Iq = Im and Id = 0 for maximum torque. It is assumed that Im = 1 in order
to derive the open-circuit fault-tolerant control currents for the remaining healthy phases,
so that Iq = 1. When one or more phases are open-circuited, this q axis current Iq will no
longer be equal to 1. There will be a missing q axis current under the open circuit condition.
This missing q axis current (Iqc) can be obtained using Equation (10).

Idc = 0
Iqc = 1 − Iq

(10)

The missing q axis current should be reproduced by using the remaining healthy
phases. Additional phase currents are obtained by transforming the missing Idc and Iqc
currents to the five-phase to compensate the d-q axes currents. Faulty phases (open-
circuited ones) should be taken as zero. New currents for the healthy phases are obtained
by adding these compensating currents. Then, by transforming these newly obtained
resultant phase currents to the d-q axes currents, there will be new compensated Id and Iq
currents. However, there is still a missing q axis current. These processes are repeated until
a smooth rotating magnetomotive force (rotating-MMF) is obtained.

For a clear explanation of the proposed method, a flow diagram can be seen in Figure 2.
Assuming phase A is open circuited, Figure 2 shows the flow diagram that can be used
to obtain a fault-tolerant control current of the healthy phases under a single-phase open-
circuit fault condition. Remaining healthy phase currents are obtained for the phase A
open-circuit condition by using the iterative method in Figure 2. Obtaining the new phase
currents for the remaining healthy phases under open-circuit fault conditions is explained
clearly by the flow diagram in Figure 2.
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For all open-circuit fault-conditions, Equation (3) is used as a reference to obtain the
fault-tolerant control currents. To ease the calculations, it is assumed that Im = 1 for the
open-circuit fault conditions. Amplitude of the currents can be set in the control block of
the open-circuit fault-tolerant system according to the d and q axes voltages by using the
vector control method.

2.3.1. Single-Phase Open-Circuit Condition

Assuming phase A is open circuited for the single-phase open-circuit (SPOC) condi-
tion, after the faulty condition, the resultant MMF of the sinusoidally distributed winding
five-phase machine can be seen in Figure 3a. It can be seen from Figure 3a that there is
a ripple that changes between 1.5 At and 2.5 At in the resultant MMF. The reflection of
this ripple in the rotating MMF will be in the torque. Applying the proposed method to
obtain the remaining healthy phase currents, resultant MMFs are shown in Figure 3b–d
after the 1st, 2nd, and 8th iteration, respectively. It is clear from Figure 3b–d that ripple in
the resultant MMF disappears slowly as the number of iterations increases. In Figure 3d,
which shows the resultant MMF after the 8th iteration, the resultant MMF is flat and has
no ripple. Its value is 2.5 At, as in the healthy condition of the sinusoidally distributed
five-phase machine, which means the obtained currents after the 8th iteration can be used
for the SPOC fault-tolerant condition when phase A is open circuited. The remaining
healthy phase currents are illustrated in Figure 4. The coefficient of the remaining healthy
phase currents can be seen in Figure 4 as well.
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2.3.2. Adjacent Double-Phase Open-Circuit Condition

Phase A and Phase B are assumed to be open circuited for the adjacent double-phase
open-circuit (ADPOC) condition. After the ADPOC fault condition, the resultant MMF of
the ADPOC condition is shown in Figure 5a. It has a ripple and changes between 1 At and
2 At. After applying the proposed method for the ADPOC condition, the resultant MMF
increases and then settles at a level of 2.5 At. The ripple in the resultant MMF decreases
as the resultant MMF increases, and it finally disappears at the level of 2.5 At. Twelve
iterations have been done to get a smooth rotating MMF. The resultant MMFs after the 1st,
2nd, and 12th iteration can be seen in Figure 5b–d. The resultant currents that have been
obtained after the 12th iteration can be used for the ADPOC fault-tolerant control. The
obtained phase currents for the remaining healthy phases are shown in Figure 6.
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2.3.3. Non-Adjacent Double-Phase Open-Circuit Condition

For this condition, it is assumed that phase A and phase C are open circuited. After
the faulty condition, the resultant MMF can be seen in Figure 7a. The resultant MMF
has a ripple as in the previous open-circuit fault conditions. After applying the proposed
method, the amplitude of the ripple is reduced a little after the 1st iteration. The ripple
in the resultant MMF decreases as the number of iterations increases, as in the previous
conditions. The resultant MMF is a flat line at the level of 2.5 At after the 18th iteration. The
resultant MMFs belonging to the 1st, 2nd, and 18th iterations can be seen in Figure 7b–d,
respectively. The resultant currents are obtained after the 18th iteration, and the waveform
of these currents can be seen in Figure 8.
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2.3.4. Adjacent Three-Phase Open Circuit Condition

Assuming that phase A, phase B, and phase C are open circuited for the adjacent three-
phase open-circuit (ATPOC) condition, the resultant MMFs for the after faulty condition
and the 1st, 2nd, and 20th iteration can be seen in Figure 9a–d. The resultant MMF reaches
and settles down after the 20th iteration at 2.5 At. The required currents for the ATPOC
fault-tolerant control is shown in Figure 10.

Energies 2021, 14, x FOR PEER REVIEW 10 of 19 
 

 

  
(a) R-MMF after faulty condition (b) R-MMF after 1st iteration 

  
(c) R-MMF after 2nd iteration (d) RMMF after 20th iteration 

Figure 9. Adjacent three-phase open-circuit (ATPOC) condition resultant MMFs. 

 
Figure 10. ATPOC condition fault-tolerant control currents. 

2.3.5. Non-Adjacent Three-Phase Open Circuit Condition 
It is assumed that phase A, phase B, and phase D are open circuited for the non-

adjacent three-phase open-circuit (NATPOC) condition. The resultant MMFs after the 
NATPOC condition and the 1st, 2nd, and the 64th iteration can be seen in Figure 11a–d, 
respectively. The number of iterations for the smooth resultant MMF is 64, which is very 
high compared to the previous open-circuit fault conditions. The resultant currents for the 
ATPOC fault-tolerant control are shown in Figure 12. 

Figure 9. Adjacent three-phase open-circuit (ATPOC) condition resultant MMFs.



Energies 2021, 14, 192 10 of 18

Energies 2021, 14, x FOR PEER REVIEW 10 of 19 
 

 

  
(a) R-MMF after faulty condition (b) R-MMF after 1st iteration 

  
(c) R-MMF after 2nd iteration (d) RMMF after 20th iteration 

Figure 9. Adjacent three-phase open-circuit (ATPOC) condition resultant MMFs. 

 
Figure 10. ATPOC condition fault-tolerant control currents. 

2.3.5. Non-Adjacent Three-Phase Open Circuit Condition 
It is assumed that phase A, phase B, and phase D are open circuited for the non-

adjacent three-phase open-circuit (NATPOC) condition. The resultant MMFs after the 
NATPOC condition and the 1st, 2nd, and the 64th iteration can be seen in Figure 11a–d, 
respectively. The number of iterations for the smooth resultant MMF is 64, which is very 
high compared to the previous open-circuit fault conditions. The resultant currents for the 
ATPOC fault-tolerant control are shown in Figure 12. 

Figure 10. ATPOC condition fault-tolerant control currents.

2.3.5. Non-Adjacent Three-Phase Open Circuit Condition

It is assumed that phase A, phase B, and phase D are open circuited for the non-
adjacent three-phase open-circuit (NATPOC) condition. The resultant MMFs after the
NATPOC condition and the 1st, 2nd, and the 64th iteration can be seen in Figure 11a–d,
respectively. The number of iterations for the smooth resultant MMF is 64, which is very
high compared to the previous open-circuit fault conditions. The resultant currents for the
ATPOC fault-tolerant control are shown in Figure 12.
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3. MATLAB/Simulink Simulation of the Proposed Method

In this section, MATLAB/Simulink simulation results have been presented. For
the simulations, a d-q modelled five-phase sinusoidal PM machine has been used. The
parameters belonging to the modelled five-phase permanent magnet synchronous machine
(PMSM) can be seen in Table 1.

Table 1. MATLAB/Simulink d-q modelled five-phase permanent magnet synchronous machine
(PMSM) parameters.

D-q Modelled Machine Parameters. Values

Stator resistance (Rs) 1.55 Ω
Number of poles (P) 8

q-axis inductance (Lq) 3.88 mH
d-axis inductance (Ld) 3.88 mH

Rotor PM Flux (λm) 0.108 Wb
Rotational inertia (J) 0.00128 kg·m2

Viscous friction coefficient (B) 0.000217 Nm·s/rad

A control block has been developed to simulate the open-circuit fault-tolerant elements
of the five-phase machine on the MATLAB/Simulink software. The block diagram of the
control system can be seen in Figure 13. A vector control method has been used to control
the machine. The obtained open-circuit fault-tolerant control currents have been stored
in a lookup table. The required theta information comes from the machine to produce
the remaining healthy phases. The amplitude of the phase currents for both healthy and
open-circuit fault conditions is determined according the mechanical speed of the machine
by using a PI controller.Energies 2020, 13, x FOR PEER REVIEW 12 of 19 
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Simulations have been done for the five open-circuit fault-tolerant controls. These
are SPOC, ADPOC, NADPOC, ATPOC, and NATPOC conditions. The duration of the
simulations is 1.5 s. The starting mechanical speed is 10 rad/s and the reference torque is
5 Nm. It is assumed that, for the five different fault-tolerant conditions, the open-circuit
fault condition has occurred at 0.5 s and speed has been increased to 20 rad/s at 1 s. The
phase voltages, mechanical speed, and the torque output of the machine can be seen in
Figures 14–18 for all the five different open-circuit fault conditions. The simulation of the
proposed open-circuit fault-tolerant control currents has been performed successfully, as
seen in Figures 14–18 for the PMSM machine.
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4. Simulation on an FEA Model

The simulation using MagNet, a finite element electromagnetic (EM) modelling soft-
ware package with a motion solver for five-phase machines, has been undertaken to
examine the torque of the five-phase PMSM for the five different open-circuit fault-tolerant
control currents. The output torques have been obtained from a two-dimensional (2D)
FEA model.

The rated current of the five-phase machine model has been used as the reference
current for healthy and open-circuit fault-tolerant conditions, and the other parameters
that belongs to the machine are presented in Table 2. The FEA model and the back-EMF
waveform of the five-phase PM machine can be seen in Figure 19.

Table 2. Parameters of the Finite Element Analysis (FEA) Model of the Five-Phase Machine.

Parameters. Values

Rated Power 1 kW
Rated Speed 2000 rpm

Rated Current 3.39 A (peak)
Rated Torque 6.6966 Nm

Number of Poles 8
Number of slots 10
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The simulated model five-phase machine shown in Figure 19 is a fractional slot
concentrated winding machine with 10 slots and 8 poles. The back-EMF waveform of the
FEA model of the five-phase machine can also be seen in Figure 19. The harmonic content
of back-EMF includes 100% fundamental, the 3rd harmonic: 9.6%, the 5th: 0%, the 7th:
3.23%, the 9th: 3.01%, and the 11th: 0.52%. Because the developed theory is for a sinusoidal
back-EMF or sinusoidally distributed winding five-phase machine, the ripple in the torque
is inevitable under the fault-tolerant conditions.

The current waveforms of the healthy and the five open-circuit fault-tolerant condi-
tions are shown in Figure 20. These current waveforms are input into the ports of the
healthy windings under healthy and open-circuit fault-tolerant conditions. The torque re-
sults for the healthy condition can be seen in Figure 21a. The average torque of the healthy
condition is 6.6966 Nm, and the torque has ripple due to cogging torque and higher order
back-EMF harmonics. In particular, the 9th and 11th harmonics cause this small ripple
under the healthy condition because supplied sinusoidal five-phase balanced currents
interact with the fundamental, the 9th, and the 11th harmonic components of the back-EMF.
The interaction between the five-phase balanced currents and the fundamental component
of the back-EMF produces smooth torque. However, the interaction between balanced
five-phase currents and the 9th and the 11th harmonic will cause ripple in the torque.

In this study, the aim was that the same torque found in the healthy condition is
obtained under open circuit fault-tolerant conditions for the FEA simulations. The torque
waveform that is obtained using the developed method is compared with torque waveforms
that belong to two existing methods, as seen in Figure 21. One of the existing methods
(Existing method-1) was developed in [8,14]. In this method, the authors tried to control
the machine without changing the hardware. However, this method limits the number of
open-circuit fault conditions. The other method (Existing method-2) for the open-circuit
fault-tolerant condition was developed in [12]. In this method, the authors kept the phase
current amplitude equal to each other under open-circuit fault-tolerant conditions. For
this method, a neutral connection is required, as in the developed method in this study.
Because of the neutral connection, the five-phase machine can operate smoothly up to the
three-phase open-circuit fault condition. It is useful to stress that the developed method,
existing method-1, and existing method-2 were developed for the sinusoidal back-EMF
or sinusoidal distributed winding PM machines. Therefore, using these methods for the
non-sinusoidal back-EMF machines causes ripple in the torque.

The torque results of the five different open-circuit fault-tolerant conditions with the
existing methods are shown in Figure 21b–f. As can be seen in Figure 21, approximately
the same torque waveform and the same average torque has been obtained for the SPOC
and ADPOC fault-tolerant control conditions, with only a small ripple. A similar torque
has been obtained under the developed method when compared to the existing methods.
The torque ripple for the NADPOC, ATPOC, and NATPOC conditions are a bit higher than
for the SPOC and ADPOC fault-tolerant conditions for all methods. This ripple, which
is caused by higher order back-EMF harmonics, can be ignored compared to the ripple
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without control conditions. Under the healthy conditions, there are no interactions between
certain harmonics (3rd, 5th, 7th, 13th, etc.). However, the open-circuit fault-tolerant control
currents interact with certain harmonics (3rd, 5th, 7th, 9th, etc.) under fault-tolerant
conditions. The new obtained currents for the fault-tolerant conditions will have new
amplitude and phase angles. Because of these changes, there will be unwanted interactions
between the new obtained phase currents and the higher order harmonics (3rd, 5th, 7th,
9th, etc.) of back-EMF for the fault tolerant control. These interactions cause ripples in the
torque. As the amplitude of the back-EMF harmonics increases, percentage (amplitude) of
the ripple in the torque also increases. In particular, the third harmonic of back-EMF of the
five-phase machine produces higher ripples for these FEA simulations for the fault-tolerant
control due to having higher amplitude compared to the other higher order back-EMF
harmonics.
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A comparison has been made between the developed method and the existing meth-
ods in Table 3 according to their total ohmic losses. The developed method has better
ohmic loss performance compared to the existing methods.

Table 3. Comparison of total ohmic losses in a five-phase machine under open-circuit fault-tolerant
conditions for the per unit phase current (rms) of the phases (when phase resistance Rs = 1).

Ohmic Losses (W)

SPOC ADPOC NADOPC ATPOC NATPOC

Developed Method 3.3346 4.3521 5.5593 6.9116 18.0625

Existing Method-1 3.4553 4.6924 6.8604 6.9116 18.0625

Existing Method-2 3.8198 11.5338 5.9547 - -
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5. Conclusions

In this paper, a new method has been developed to run machines under open-circuit
fault conditions. Fault-tolerant control currents have been obtained for the five-different
open-circuit fault conditions. These are SPOC, ADPOC, NADPOC, TPOC, and NTPOC
fault conditions.

The d-q axes currents have been compensated to obtain the open-circuit fault-tolerant
control currents by using an iterative method. For this purpose, the d-q axis currents
that are in the healthy condition have been used as reference currents by assuming these
currents are positioned for the maximum torque. Iterations to obtain the remaining healthy
phase currents for the faulty conditions have been repeated until a smooth rotating MMF for
a sinusoidal distributed winding five-phase machine is obtained. The number of iterations
increases as the number of faulty phases increases. Additionally, the number of iterations
increases when the faulty condition moves from the adjacent to the non-adjacent faulty
phases. As a result, fault-tolerant control currents have been obtained for the five-different
open-circuit fault conditions.

In Section 3, the obtained fault-tolerant currents for the faulty conditions have been
simulated in MATLAB/Simulink. The developed method has been tested by using a d-q
model of five-phase PMSM. For this purpose, a vector control block diagram has been built
to simulate the fault-tolerant control currents. The d-q model of the five-phase machine has
been run successfully under five open-circuit fault conditions by using the obtained fault-
tolerant currents. In Section 4, the FEA simulation of a fractional slot five-phase machine
has been undertaken to test the obtained open-circuit fault-tolerant currents for the five
conditions. According to the FEA simulation results, satisfactory torques are obtained for
all five open-circuit fault conditions, apart from a small ripple due to higher order (3rd, 5th,
7th, 9th, etc.) back-EMF harmonics.

As a result, this developed method for open-circuit fault conditions is for a sinusoidal
winding distributed or sinusoidal back-EMF five-phase machine. This developed method
can be applied to any sinusoidally distributed winding or sinusoidal back-EMF multi-phase
and three-phase machine. A method can be developed for concentrated or non-sinusoidal
back-EMF multi-phase machines.
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