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Abstract: This study contrives a discrete-time adaptive decentralized control algorithm with input
quantization for interconnected multi-machine power systems with SVC. First, a dynamic surface
scheme is applied to the excitation controller design, in which first-order digital low-pass filters
are used to predict the next virtual control law, which overcomes the model conversion problem in
backstepping. Therefore, the controller design and structure are simplified. Further, an improved
hysteresis quantizer is utilized for amplitude quantization of control input signals; along with the
discretization of time, this achieves digital decentralized control. Finally, semi-global uniformly
ultimately boundedness (SGUUB) of the whole control system is demonstrated based on the Lya-
punov stability theory, and the effectiveness of the proposed control algorithm is verified on the
ModelingTech real-time simulation experimental platform for power electronics.

Keywords: multi-machine power systems; adaptive decentralized control; discrete-time; dynamic
surface control; hysteresis quantizer

1. Introduction

At the beginning of this century, power systems entered a new stage of development.
The integration of multiple new energy sources and the increase in load equipment types
make power system more complex (such as strong nonlinear characteristics, strong coupling
characteristics, etc.), which brings new challenges to power system stability control [1–6].
The effective way to deal with the stability of a large-scale power system is to use advanced
control theory to design controllers, such as generator excitation control, flexible AC
transmission technology control, steam turbine speed control, and so on [7,8]. Generator
excitation control has an excellent effect on improving the damping characteristics and
stability of power system and is the most frequently used method [9–13]. In [12], for a multi-
machine power system with unknown nonlinear dynamics, the author uses a nonlinear
recursive algorithm to design an excitation controller, which improves the robustness of
the system in the presence of measurement errors.

From the aspect of decentralized control theory, with the expansion of total installed
capacity and a large-area interconnected power grid, the traditional linear control method is
only effective for small external disturbances near the equilibrium point, and the feedback
signal of each subsystem is difficult to collect in time and accurately, which makes the
practical application of a centralized controller difficult [14]. To address these problems,
Ref. [15] proposed a decentralized adaptive control scheme for the first time. Following
the study of P. Ioannou, adaptive decentralized control strategy has been widely studied
and applied, such as in [16–22]. In [21], for interconnected power systems, a decentralized
robust load frequency controller was designed. In [23], time delays were considered.
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It should be noted that all the above works are almost always developed in continuous
time, and controller design based on continuous-time systems have made great progress
and achievements [24–28]. However, in modern industrial production processes, controllers
are almost always based on microprocessors to achieve digital control, such as single-chip
microcomputers, DSP, PLC, etc. This means that a controller based on a continuous-time
system must be converted into a digital signal through A/D and D/A to achieve control.
However, due to the impact of sampling time, when a continuous-time control algorithm is
implemented on a digital device, control performance is reduced or even invalid. Therefore,
it is necessary and feasible to construct a discrete-time model of the controlled system and
design a discrete-time controller [29–31].

In [29], for the first time, Yeh and Kokotovic designed an adaptive controller for a class
of SISO discrete-time systems to ensure tracking performance and avoid the shortcomings
of over-parameterization. Since then, by combining with fuzzy or neural networks, adap-
tive backstepping control schemes have been proposed for discrete-time systems, which
significantly simplifies the controller design process for nonlinear systems [32–35]. For
a class of single-input–single-output discrete-time systems with parameter uncertainties,
in [36], an adaptive controller is designed using the state prediction, which eliminates the
influence of parameter uncertainties and achieves accurate global output tracking. In order
to deal with the unknown functions in a controlled system, fuzzy logic systems and neural
networks are favored by scholars around the world because of their inherent universal
approximation characteristics, and they have been widely used in the intelligent controller
design process of discrete-time nonlinear systems [37–39].

Quantized control schemes, as an effective means to realize digital control, play an
important role in computer-based intelligent control systems and are widely used in modern
digital control and network control systems because they can produce sufficient accuracy
and reduce communication rate. In [40,41], a quantized backstepping control scheme
was designed for a class of nonlinear systems, in which both the quantized effect and
input nonlinearity were taken into consideration. In [42], by considering the quantization
of state measurement signals and the control input signal, a quantized output feedback
control strategy was designed for a class of discrete-time systems, and the prescribed H∞
performance of the closed-loop system was achieved. In [27,43], a novel hysteretic quantizer
was introduced to the control system design for a class of nonlinear systems which had
been introduced for its interconnectedness. The quantizer parameters are adjusted freely
with dynamic changes to the tracking error and communication burden, which significantly
improves the efficiency of the control system and the stability of he closed-loop system.
Because of its norm estimation, the number of adjustable parameters is reduced to two,
which simplifies controller design. One noteworthy fact is that the above-mentioned
research overcomes the non-causal problem by transforming the system into a special
form and makes it suitable for backstepping, which increases the complexity of controller
design and stability analysis of discrete-time systems. There is still a lot of research space
to be explored.

Motivated by the above discussion, in this paper, a discrete-time adaptive decentral-
ized neural excitation controller with input quantization for interconnected multi-machine
power systems is developed. Compared with existing related research work, the main
features are as follows:

(1) The original system model does not need to be converted into an unknown spe-
cial form, as we use dynamic surface control with a digital first-order low-pass filter at
each step. Compared with backstepping control, digital first-order low-pass filters have
been introduced to overcome the “explosion of complexity” in the proposed method and
to avoid system conversions. Further, RBFNNs are employed to approximate the un-
known nonlinear terms in the system. Therefore, the design and structure of the controller
are simplified.

(2) An improved hysteresis quantizer is employed to quantize the control input
signal amplitudes, which can reduce the number of transformations and reduce chattering
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compared to methods that do not use a hysteresis quantizer. Together with the discretization
of time, digital control is practically realized. The transmission of a digital signal can
effectively suppress noise, thus significantly improving the anti-interference ability of the
power system. Because of the transmission delay of the power system, it is easier to stabilize
by introducing sampling.

(3) The ModelingTech real-time simulation experiment platform for power electronics
is used in this study to verify the utility of the proposed control strategy with input quatiza-
tion. On the hardware-in-loop experimental platform, the controller and the model of the
two-machine power system can run on different devices, and the signals are transmitted
through the data transmission channel; the control of interconnected multi-machine power
systems with input quantization is solved. Thus, the power system is tested and verified
very similarly to the real situation.

2. System Description and Preliminaries
2.1. Multi-Machine Power System Model

The meanings of the main symbols are given in the Table 1.

Table 1. Notation for multi-machine power systems.

Symbol Nomenclature Symbol Nomenclature

δi Power angle of the ith generator, in rad ωi Relative speed of the ith generator, in rad/s
f0 Rated frequency, in Hz ω0 Synchronous machine speed, in rad/s
Di Per-unit damping constant Pmi Mechanical input power, in p.u.
Hi Inertia constant, in seconds Pei Electrical power, in p.u.
E′qi Q-axis internal transient electric potential, in p.u. Eqi EMF in the quadrature axis, in p.u.
E f i Equivalent EMF in the excitation coil, in p.u. kei Gain of the excitation amplifier, in p.u.

u f i Input of the SCR amplifier, in p.u. xadi
Mutual reactance between the excitation coil and the

stator coil, in p.u.

T′d0i
Direct axis transient short-circuit time constant, in

seconds Qei Reactive power, in p.u.

Iqi Quadrature axis current, in p.u. Idi Direct axis current, in p.u.

Bij

The ith row and jth column element of nodal
susceptance matrix at the internal nodes after

eliminating all physical buses, in p.u.
xdi Direct axis reactance, in p.u.

x′di Direct axis transient reactance, in p.u. Tci Time constant of adjusting system and SVC, in p.u.
uBi Input of SVC, in p.u. BLi Adjustable equivalent susceptance in SVC, in p.u.
BCi Initial value of adjustable susceptance, in p.u. Vmi Access point voltage of SVC, in p.u.

Vre f i Reference of accessing point voltage of SVC, in p.u.

The mathematical model of multi-machine power systems with n generators intercon-
nected by a transmitted network and equipped with SVC is obtained using the method
shown in [10]:

δ̇i(t) = ωi,

ω̇i(t) =
ω0

2Hi
(Pmi − Pei)−

Di
2Hi

ωi(t) + di,

Ė′qi(t) =
1

T′d0i

[
E f i(t)− Eqi(t)

]
, (1)

where i = 1, · · · , n. After formula derivation, we obtain the equation as follows. Please see
the Appendix A for a detailed Proof.
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ẋi1 = xi2,

ẋi2 = θi2xi2 − gi2xi3 + di,

ẋi3 = θi3xi3 + gi3ui + γi(δ, ω),

yi1 = xi1. (2)

ẋi4 = gi4u′Bi + fi4(x̄i4),

yi2 = xi4. (3)

where yi1 and yi2 are the output signals, and θi2 = − Di
2Hi

, θi3 = − 1
T′d0i

, gi2 = ω0
2Hi

, gi3 = 1
T′d0i

,

gi4 = X1iX2i
TciX′dΣi

, u′Bi = −xi4uBi, fi4(x̄i4) = − sin xi1X1iX2i
(xi4+Vre f i)(X′dΣi)

2 xi2E′qi −
X1iX2i(xi4+Vre f i)

X′dΣiTci
(−BLi +

BCi) +
X2

2iE
′
qi+X1iX2i cos xi1

(xi4+Vre f i)(X′dΣi)
2 (− XdΣi

Td0iX′dΣi
E′qi +

1
Td0i

Xdi−X′di
X′dΣi

cos xi1) +
X2

2ixi3+X1iX2iVsi cos δi
Td0iVmi(X′dΣi)

2 ui.

Similar to [39], by using the Euler method, the interconnected multi-machine power
systems (2) and (3) are discretized, and the dynamic model in discrete-time form can be
obtained as follows:

xi1(k + 1) = xi1(k) + ∆txi2(k),

xi2(k + 1) = (1 + ∆tθi2)xi2(k)− ∆tgi2xi3(k) + ∆tdi(k),

xi3(k + 1) = (1 + ∆tθi3)xi3(k) + ∆tgi3Q(ui(k))

+ ∆t∑n
j=1δji(|xi1|, |xi2|),

yi1(k) = xi1(k). (4)

xi4(k + 1) = xi4(k) + ∆tgi4Q
(
u′Bi(k)

)
+ ∆t fi4(x̄i4),

yi2(k) = xi4(k). (5)

The control objective in this paper is to design a neural network-based decentral-
ized digital dynamic surface excitation control scheme for a multi-machine power system
with SVC (1), (A1), and (A2), and to ensure all the signals of the closed loop are ulti-
mately bounded and converge the tracking error into an arbitrarily small neighborhood of
the origin.

2.2. Hysteresis Quantizer Description

Similar to the literature [27], the description of the hysteresis quantizer we use is
as follows.

Qi(ui) =



pi,j,
if

pi,j
1+δi

< ui ≤ pi,j, Q−i ≥ pi,j,
or pi,j ≤ ui <

pi,j
1−δi

, Q−i ≤ pi,j,

(1 + δi)pi,j,
if

pi,j < ui ≤
pi,j

1−δi
,

Q−i ≥ (1 + δi)pi,j,

or
pi,j

1−δi
≤ ui < pi,j+1,

Q−i ≤ (1 + δi)pi,j,

0,
if 0 ≤ ui ≤

pi,1
1+δi

,
or pi,1

1+δi
< ui < pi,1, Q−i = 0,

−Qi(−ui), if ui < 0.

(6)

where δi = (1− εi(t))/(1 + εi(t)), 0 < εi(t) < 1, pi,j = ai(t)ε
1−j
i (t), ai(t) > 0, j = 1, 2, 3 · · · .

The parameter ai(t) determines the size of the dead-zone for Qi(ui), and εi(t) is a measure
of quantitative density. The smaller εi(t) is, the coarser the quantizer. In Formula (6),
Q−i (t) is the latest value of Qi, and Q−i (0) := 0. When t ∈ [0, Ti,1], there is Q−i (t) = 0,
and Q−i (t) = Qi(ui(Ti,h)) for t ∈ [Ti,h, Ti,h+1], where Ti,h(h = 1, 2, 3 · · · ), 0 < Ti,1 < Ti,2 <
Ti,3 < · · · < +∞ denotes the current time of Qi(ui) conversion. When u > 0, Formula (6)
is drawn as in Figure 1.
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Figure 1. Hysteresis quantizer.

Different from existing quantization methods, such as [14,44], the parameters of the
quantizer are assumed to be certain constants or parameters from the literature [45], and
the quantizer can be changed, but some included inequalities still need to be satisfied.

Remark 1. Figure 1 expresses the mathematical relation for Equation (6), and there are no units
on either axis. The hysteresis quantizer is introduced in this paper; it can decrease the number of
transitions and reduce the chattering phenomena.

In the entire operation program, let the maximum values of ai(t) and εi(t) be repre-
sented as āi and ε̄i, and the minimum values are represented as ai and εi; we can get

0 < ai ≤ ai(t) ≤ āi, 0 < εi ≤ εi(t) ≤ ε̄i < 1, ∀t ≥ 0. (7)

By use of the Euler method, as in the literature [39], the discrete-time dynamic model
of a multi-machine power system can be described as follows:

xi1(k + 1) = xi1(k) + ∆txi2(k),

xi2(k + 1) = (1 + ∆tθi2)xi2(k)− ∆tgi2xi3(k) + ∆tdi(k),

xi3(k + 1) = (1 + ∆tθi3)xi3(k) + ∆tgi3Q(ui(k))

+ ∆t∑n
j=1δji(|xi1|, |xi2|),

yi1(k) = xi1(k). (8)

xi4(k + 1) = xi4(k) + ∆tgi4Q
(
u′Bi(k)

)
+ ∆t fi4(x̄i4),

yi2(k) = xi4(k). (9)

2.3. RBF Neural Networks (RBFNNs)

In this paper, the approximation property of RBF neural networks is used to approxi-
mate the unknown continuous function hij(ξ j) with the following form [38]:

hij(ξij) = ηT
ij ψij(ξij), (10)
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where ξij =
[
ξ1

ij, ..., ξ
p
ij

]
∈ Rp is the input of the RBFNN, ηij =

[
η1

ij, ..., ηm
ij

]T
∈ Rm is the

weight vector, with m being the RBFNN node number, ψij(ξij) =
[
ψ1

ij(ξij), ..., ψm
ij
(
ξij
)]T
∈

Rm is the Gaussian basis function with the following form

ψl
ij(ξij(k)) = exp

−
∥∥∥ξij − cijl

∥∥∥
2b2

ijl

, l = 1, ..., m, (11)

with cijl =
[
c1

ijl , ..., cp
ijl

]T
the center of the Gaussian function, and bijl ∈ R is the width.

Then, (10) can be rewritten as

hij
(
ξij
)
= η∗Tij ψij

(
ξij
)
+ εij

(
ξij
)
, (12)

where η∗Tij , εij
(
ξij
)

are the ideal weight vector and the optimal approximation error, re-

spectively, and have the following property: define
∥∥ψij(ξij)

∥∥2 ≤ lij, and |εi2(ξi2(k))| ≤ ε̄ij,
with lij and ε̄ij positive constants when ξij belongs to a compact set Ωξij . For the controlled
(8) and (9), the following assumption are necessary [46].

Assumption 1. The reference signal yri is smooth and bounded; for k > 0, [yri(k), yri(k + 1),
yri(k + 2)] belongs to a compact set Ωr.

Assumption 2. The composite interference signal di is bounded, and there is a positive constant d̄i
such that |di(k)| ≤ d̄i.

There exist two positive constants gij and ḡij such that gij ≤
∣∣gij
∣∣ ≤ ḡij, i = 1, 2, · · · , n,

j = 2, 3, and the disturbance di is bounded, which satisfies |di(k)| ≤ d̄i.

Remark 2. Since the reference signal yri is always bounded, and gij are unknown constants,
Assumptions 1 and 2 are reasonable, and they are common assumptions in dynamic surface control
methods [46].

The control objective in this paper is to design a neural network-based decentralized
digital dynamic surface excitation control scheme for multi-machine power systems with
SVC (1), (A1), and (A2), ensuring all the signals of the closed loop are ultimately bounded
and converge the tracking error into an arbitrarily small neighborhood of the origin.

Remark 3. In fact, in this paper, an RBFNN is used to estimate the unknown continuous function;
the weight vector of the RBFNN is updated by the adaptive laws during the simulation. The adaptive
laws are influenced by the inputs and states of the system. Thus, the RBFNN is learning online
instead of learning offline.

3. Discrete-Time Decentralized Controller Scheme

The discrete-time decentralized adaptive dynamic surface quantized control (DDAD-
SCQC) scheme for interconnected multi-machine systems with SVC is addressed. First,
due to the drawbacks of traditional backstepping, digital first-order low-pass filters are
introduced at the second and third steps to avoid coordinate transformation of the math-
ematical model. Next, the improved hysteresis quantizer is utilized to reduce chattering.
Finally, RBFNNs are employed to reconstruct the unknown nonlinear terms. The control
structure diagram is shown in Figure 2. Following is the detailed controller design.
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Discrete-time  
Quantized Controller

Digital first-order 
low-pass filter

  RBFNN Weights

Multi-machine 
Excitation Systems
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       1 2 3 4, , ,i i i ix k x k x k x k

-

Update

Figure 2. Structure diagram of the proposed control scheme.

Step 1: Define si1 as the first tracking error surface

si1(k) = xi1(k)− yri(k) (13)

where yri is the reference signal of the ith subsystem. From (8), we can obtain

si1(k + 1) = xi1(k + 1)− yri(k + 1)

= xi1(k) + ∆txi2(k)− yri(k + 1). (14)

Then, choose the virtual control xi2d(k) as

xi2d(k) =
ki1
∆t

[−xi1(k) + yri(k + 1)]. (15)

Let xi2d(k) pass through the following first-order filter to obtain a new state variable zi2(k):

τi2zi2(k + 1) + bi2zi2(k) = xi2d(k), zi2(0) = xi2d(0) (16)

where τi2 is the time constant, and bi2 is a positive parameter.
Step 2: The second error surface si2(k) is defined as

si2(k) = xinxi2(k)− zi2(k). (17)

From the second equation of (8), the first difference of si2(k) yields

si2(k + 1) = xi2(k + 1)− zi2(k + 1)

= (1 + ∆tθi2)xi2(k)− ∆tgi2xi3(k)

+ ∆tdi(k)− zi2(k + 1). (18)

Let:

hi2(k) = − 1
∆tgi2

[(1 + ∆tθi2)xi2(k) + ∆tdi(k)− zi2(k + 1)]. (19)

Noting that hi2(k) contains the external disturbance di(k) and uncertain parameters
gi2 and θi2, this increases the complexity of the controller structure and makes controller
design more difficult. Therefore, an RBF neural network is introduced to estimate the
unknown nonlinear term hi2(k) online:

hi2(k) = η∗Ti2 ψi2(ξi2(k)) + εi2(ξi2(k)), (20)
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which has characteristics such as ‖ψi2(ξi2(k))‖2 ≤ li2, |εi2(ξi2(k))| ≤ ε̄i2 and ξi2(k) =

[x̄i2(k), xi2d(k), zi2(k)]
T ∈ Ωξi2 and is the input vector of the RBFNN. Let η̂i2(k) be the

estimate of η∗i2, and η̃i2(k) = η̂i2(k)− η∗i2(k). Now, the second virtual control law xi3d(k)
and adaptive law η̂i2(k + 1) can be chosen as

xi3d(k) = ki2si2(k) + ki2η̂T
i2(k)ψi2(ξi2(k)), (21)

η̂i2(k + 1) = η̂i2(k)− λi2(ψi2(ξi2(k))si2(k + 1)

+ σi2η̂i2(k)), (22)

where ki2, λi2, and σi2 are the positive design parameters. Similar to [47], there are no rules
or limitations in the process of controller design, and the ultimate goal is to satisfy the
Lyapunov stability condition. According to (22), the following formula is available

η̃i2(k + 1) = η̃i2(k)− λi2(ψi2(ξi2(k))si2(k + 1)

+ σi2η̂i2(k)). (23)

Let xi3d(k) pass through a first-order filter to obtain a new state variable zi3(k),

τi3zi3(k + 1) + bi3zi3(k) = xi3d(k), zi3(0) = xi3d(0) (24)

where τi3 is the time constant, and bi3 is a positive parameter.
Step 3: Define the third error surface si3(k),

si3(k) = xi3(k)− zi3(k). (25)

According to (8), the first difference of si3(k) is

si3(k + 1) = xi3(k + 1)− zi3(k + 1)

= (1 + ∆tθi3)xi3(k) + ∆tgi3Q(ui(k))

+ ∆t ∑n
j=1 δji(|xi1|, |xi2|)− zi3(k + 1) (26)

where Q(ui(k)) has been described in (6); define

ιi1(k) =

{
Q(ui(k))

ui(k)
, if |ui(k)| ≥ a(k),

1, if |ui(k)| < a(k),
(27)

ιi2(k) =
{

0, if |ui(k)| ≥ a(k),
Q(ui(k))− ui(k), if |ui(k)| < a(k).

(28)

Then, the quantizer (6) can be rewritten as:

Q(ui(k)) = ιi1(k)ui(k) + ιi2(k). (29)

As described in [27], the following inequality can be obtained

1− δ ≤ Q(ui(k))
ui(k)

≤ 1 + δ, if |ui(k)| ≥ a(k), (30)

|Q(ui(k))− ui(k)| < a(k), if |ui(k)| < a(k). (31)

Using (27)–(31) and (6), we obtain

ιi1 ≤ ιi1(k) ≤ ῑi1, ιi2(k) ≤ ā(k), ∀k ≥ 0, (32)

ιi1 =
2εi

1 + εi
, ῑi1 =

2
1 + εi

. (33)
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Substituting (29) into (26) gives us

si3(k + 1) = (1 + ∆tθi3)xi3(k) + ∆tgi3(ιi1(k)ui(k) + ιi2(k))

+ ∆t∑n
j=1δji(|xi1|, |xi2|)− zi3(k + 1). (34)

Formula (34) can be reorganized into the following form:

si3(k + 1) = ∆tgi3ιi1(k)[ui(k) + 1
∆tgi3ιi1(k)

(∆tgi3ιi2(k)

+ (1 + ∆tθi3)xi3(k) + ∆t∑n
j=1δji(|xi1|, |xi2|)

− zi3(k + 1))]. (35)

Let

hi3(k) = − 1
∆tgi3ιi1(k)

[∆tgi3ιi2(k) + (1 + ∆tθi3)xi3(k)

+ ∆t ∑n
j=1 δji(|xi1|, |xi2|)− zi3(k + 1)]. (36)

Noting that hi3(k) contains the nonlinear term ∑n
j=1 δji(|xi1|, |xi2|), hi3(k) can be approxi-

mated by RBFNNs
hi3(k) = η∗Ti3 ψi3(ξi3(k)) + εi3(ξi3(k)). (37)

Similar to (20), we have ‖ψi3(ξi3(k))‖2 ≤ li3, and |εi3(ξi3(k))| ≤ ε̄i3,ξi3(k) = [x̄i3(k),
|xi1|, |xi2|, zi3(k+ 1)]T ∈ Ωξi3 is the input vector of (37). The control law ui(k) is designed as

ui(k) = ki3η̂T
i3(k)ψi3(ξi3(k)), (38)

where ki3 > 0 is a design parameter, and we choose the adaptation law as

η̂i3(k + 1) = η̂i3(k)− λi3(ψi3(ξi3(k))si3(k + 1) + σi3η̂i3(k)), (39)

where λi3 and σi3 are the positive design parameters, The term η∗i3 can be subtracted from
each side of (39), and the following formula is available:

η̃i3(k + 1) = η̃i3(k)− λi3(ψi3(ξi3(k))si3(k + 1) + σi3η̂i3(k)). (40)

Step 4: Define
si4(k) = yi2(k)−Vre f i(k) (41)

as the fourth error surface; from (9), it yields

si4(k + 1) =yi2(k + 1)−Vre f i(k + 1)

=xi4(k) + ∆tgi4Q(u′Bi(k)) + ∆t fi4(x̄i4)

−Vre f i(k + 1). (42)

Similar to (27)–(33), one has:

Q(u′Bi(k)) = ιi3(k)u′Bi(k) + ιi4(k) (43)

where

ιi3(k) =

{
Q(u′Bi(k))

u′Bi(k)
, if
∣∣u′Bi(k)

∣∣ ≥ a(k),

1, if
∣∣u′Bi(k)

∣∣ < a(k),
(44)

ιi4(k) =
{

0, if
∣∣u′Bi(k)

∣∣ ≥ a(k),
Q(u′Bi(k))− u′Bi(k), if

∣∣u′Bi(k)
∣∣ < a(k).

(45)
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By (32) and (45), we have

1− δ ≤ Q(u′Bi(k))
u′Bi(k)

,≤ 1 + δ, if
∣∣u′Bi(k)

∣∣ ≥ a(k), (46)∣∣Q(u′Bi(k))− u′Bi(k)
∣∣ < a(k), if

∣∣u′Bi(k)
∣∣ < a(k). (47)

From (44)–(47) and (6), we have

ιi3 ≤ ιi3(k) ≤ ῑi3, ιi4(k) ≤ ā(k), ∀k ≥ 0, (48)

ιi3 = 2εi
1+εi

, ῑi3 = 2
1+εi

. (49)

Then, substituting (43) into (42) gives

si4(k + 1) = xi4(k) + ∆tgi4(ιi3(k)u′Bi(k) + ιi4(k))

+ ∆t fi4(x̄i4)−Vre f i(k + 1). (50)

Let

hi4(k) = 1
∆tgi4ιi3(k)

(∆tgi4ιi4(k) + xi4(k)

+ ∆t fi4(x̄i4)−Vre f i(k + 1)), (51)

then, (50) can be rewritten as

si4(k + 1) = ∆tgi4ιi3(k)[u′Bi(k) + hi4(k)]. (52)

Similarly, hi4(k) can be approximated by RBFNNs as

hi4(k) = η∗Ti4 ψi4(ξi4(k)) + εi4(ξi4(k)). (53)

Similar to (20) and (37), one has ‖ψi4(ξi4(k))‖2 ≤ li4 and |εi4(ξi4(k))| ≤ ε̄i4; the input
variable vector of (53) is ξi4(k) = [x̄i4(k), Vre f i(k + 1)]T ∈ Ωξi4 . Now the final controller
u′Bi(k) and adaptive law η̂i4(k) are constructed as

u′Bi(k) = ki4η̂T
i4(k)ψi4(ξi4(k)), (54)

η̂i4(k + 1) = η̂i4(k)− λi4(ψi4(ξi4(k))si4(k + 1) + σi4η̂i4(k)), (55)

where the design parameters ki4 > 0, λi4 > 0, and σi4 > 0.

4. Stability Analysis

The stability analysis for the decentralized discrete adaptive dynamic surface quan-
tized control scheme is presented. Define the filter error of (16) and (24) as

yi2(k) = zi2(k)− xi2d(k),

yi3(k) = zi3(k)− xi3d(k), (56)

where xi2d(k), zi2(k), xi3d(k) and zi3(k) are given by (15), (16), (21) and (24). In view of
(17) and (25), it follows that

xi2(k)− xi2d(k) = si2(k) + yi2(k),

xi3(k)− xi3d(k) = si3(k) + yi3(k). (57)

Considering the Lyapunov function candidate

Vi1(k) = s2
i1(k), (58)
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then the first forward difference of Vi1(k) is computed by

∆Vi1(k) = s2
i1(k + 1)− s2

i1(k)

= [xi1(k) + ∆txi2(k)− yri(k + 1)]2 − s2
i1(k). (59)

∆Vi1(k) can be rewritten as

∆Vi1(k) = [∆t(xi2(k)− xi2d(k)) + (1− ki1)xi1(k)

− (1− ki1)yri(k + 1)]2 − s2
i1(k). (60)

Define the second Lyapunov function candidate as

Vi2(k) = 1
∆t ḡi2

s2
i2(k) +

1
λi2

η̃T
i2(k)η̃i2(k). (61)

The first forward difference of Vi2(k) is computed by

∆Vi2(k) = 1
∆t ḡi2

[
s2

i2(k + 1)− s2
i2(k)

]
+ 1

λi2

[
η̃T

i2(k + 1)η̃i2(k + 1)− η̃T
i2(k)η̃i2(k)

]
. (62)

Define the third Lyapunov function candidate as

Vi3(k) = 1
∆t ḡi3 ῑi1

s2
i3(k) +

1
λi3

η̃T
i3(k)η̃i3(k). (63)

Similar to (60) and (62), we have

∆Vi3(k) = 1
∆t ḡi3 ῑi1

[
s2

i3(k + 1)− s2
i3(k)

]
+ 1

λi3

[
η̃T

i3(k + 1)η̃i3(k + 1)− η̃T
i3(k)η̃i3(k)

]
. (64)

Then, the Lyapunov function is chosen as

Vi(k) = ∑4
j=1Vij(k) + ∑3

j=2y2
ij(k). (65)

Therefore, from (56)–(63), we have

∆Vi(k) = ∑4
j=1 ∆Vij(k) + ∑3

j=2

[
y2

ji(k + 1)− y2
ij(k)

]
. (66)

Based on the above analysis, the main results are given in Theorem 1.

Theorem 1. Consider multi-machine power system (8) and (9) with hysteresis quantizer (6),
first-order filters (16) and (24), virtual control laws (15) and (21), adaptive laws (22), (39), and
(55), final controllers (38) and (54), and positive definite Lyapunonv function (65). The control
system initial values satisfy V(0) ≤ P, (P > 0); then, by selecting the appropriate sampling time
∆t, and design parameters such as kij, τij, λij, and σij such that all the signals of the closed-loop
system are semi-globally uniformly ultimately bounded, and the tracking error will converge to a
sufficiently small neighborhood of zero for ∀k > 0. The details of the proof are given in Appendix A.
Regarding stability of the closed-loop system, the closed-loop system structure is shown in Figure 2.
Under the designed virtual speed of the generator signals (T2.2) and electrical power signals (T2.5),
the final controller signals are (T2.9) and (T2.12) by selecting the appropriate sampling time and
design parameters such as τij, λij, σij such that the semi-globally uniformly ultimately boundedness
(SUUB) of all the signals, including the states xij(k), (i = 1, · · · , n, j = 1, · · · , 4), the NN
weight estimates η̂ij(i = 1, · · · , n, j = 2, · · · , 4), the control input ui(k), u′Bi(k), and the tracking

errors, converge to a bounded compact set Ω = {∑n
i=1(si1(k) +

1
∆t ḡi2

si2(k) +
1

∆t ḡi3 ῑi1
si3(k) +
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1
∆t ḡi4 ῑi3

si4(k) +
4
∑

j=2
η̃ᵀ

ij(k)η̃ij(k)/λij +
3
∑

j=2
y2

ij(k)) ≤ P}, with P being a given arbitrarily positive

number. The Proof is available in the Appendix A.

5. Experimental Verification

A two-machine power system model with SVC is used in this experimental process, as
shown in Figure 3. The parameters of the system (1) and (A2) are given in Table 2. In order
to illustrate the effectiveness of the proposed control scheme, the experiments are completed
on the ModelingTech real-time simulation experimental platform of power electronics,
which is shown in Figure 4. Figure 5 shows the experimental system architecture.

Figure 3. Structure diagram of two-machine excitation system with SVC.

NI PXIe-1082

Model Real-Time Simulator

Host Computer Real-Time

Waveform Display 

NI PXIe-1071

Rapid Prototype Controller

Terminal Block TB-60

Adapter Board

Figure 4. Experimental environment of power electronics.

Table 2. Parameters of the two-machine excitation system with SVC equipment.

Head G#1 Transmission Line G#2

xd(p.u.) 1.863 2.36
x′d(p.u.) 0.257 0.319
xT(p.u.) 0.129 0.11
xad(p.u.) 1.712 1.712
T′d0(p.u.) 6.9 7.96

H(s) 4 5.1
D(p.u.) 5 3

ω0(rad/s) 314.15 314.12
x12(p.u.) 0.55
x13(p.u.) 0.53
x23(p.u.) 0.6
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In these experiments, the operation point is selected as δ10 = 60.07 degree,
ω10 = 314.15 degree/s, Pm10 = 1.03 p.u., Vre f 1 = 0.96 p.u., δ20 = 60.06 degree, ω20 =
314.12 degree/s, Pm20 = 1.02 p.u., and Vre f 2 = 0.94 p.u., and we assume that a three-phase
short-circuit fault occurs and lasts for 0.2 s at t = 5.92 s of the experiment. The control
objective is to design the control laws (38) and (54) to achieve the predetermined tracking
performance of power angle and access point voltage of SVC. After eliminating the three-
phase short-circuit fault, the power angle, speed, and electric power can be kept in a small
range near the working point.

Hardware Platform

StarSim HIL

StarSim RCP

MATLAB

Host Computer Real-Time 

Simulation Software Platform

System 

Model

(.dll)

Control 

Algorithm

(.dll)

System 

Model/ 

Control

(.slx/mdl)

NI PXIe-1082 Chassis

NI PXIe-1071 Chassis

NI PXIe-8821

Rapid Prototype 

Controller

NI PXIe-8840

Model Real-Time 

Simulation 

Terminal Block TB-60

Control Signals

Adapter Board

State Signals

 Download

Wave 

Observation

 Download

Wave 

Observation

Figure 5. Experimental system architecture.

To achieve the desired tracking error performance, a suitable sampling period ∆t
is a critical issue for a discrete-time control system; in this paper, when considering the
model precision, control performance, and computer burden, we choose ∆t = 0.001 s,
k11 = 0.01, k12 = 0.0014, k13 = 1.34, k14 = 1.2, k112 = 0.215, k21 = 0.01, k22 = 0.0015,
k23 = 1.35, and k24 = 1.3, k222 = 0.262. The parameters of the RBFNN regulation law
are as follows: λ12 = 0.015, σ12 = 0.3, λ13 = 0.07, σ13 = 0.25, λ14 = 0.04, σ14 = 0.6,
λ22 = 0.015, σ22 = 0.3, λ23 = 0.08, σ23 = 0.2, λ24 = 0.04, and σ24 = 0.8. For the
RBFNN Gaussian basis function, we select ψ12(ξ12(k)) and ψ22(ξ22(k)) with 21 nodes and
the centers c12l ∈ R3, c22l ∈ R3 evenly spaced in [−60,+60] × [−314,+314] × [−1,+1],
and width b12l = b22l = 1, (l = 1, ..., 21). For NN Gaussian basis function, we select
ψ13(ξ13(k)) and ψ23(ξ23(k)) with 17 nodes and centers c13l ∈ R4, c23l ∈ R4, evenly spaced in
[−60,+60]× [−314,+314]× [−2,+2]× [−1,+1], and width b13l = b23l = 1, (l = 1, ..., 15).
For the last RBFNNs Gaussian basis function, we select ψ14(ξ14(k)) and ψ24(ξ24(k)) with
15 nodes and centers c14l ∈ R5, c24l ∈ R5, evenly spaced in [−60,+60]× [−314,+314]×
[−2,+2]× [−1,+1]× [−1,+1], and width b14l = b24l = 1, (l = 1, ..., 21).

Remark 4. It is should be noted that the there is no fixed parameter design method for controller
parameter selection. It is usually selected according to Equations (A41)–(A47), personal experience,
and characteristics of the control system. According to the actual results of the data obtained from the
experiment with multiple sets of parameters, we get the optimal solution after repeated comparison
and testing.

Comparison of the proposed control strategy in this paper with traditional discrete-
time backstepping (BC) methods are conducted in this experimental. The maximum value of
the steady tracking error (MVTE), Emax = max|si1(k)|, k > 8000, i = 1, 2 and the root mean
square values of steady tracking error ( RMSVTE), ERMSVTE =

√
(∑n

k=m si1(k)/(m− n)),
m = 8000, n = 20,000, i = 1, 2, are shown in Table 3.
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Remark 5. According to [48], the control law of the BC method is:

u = Tci{−ki sin(x1 + δ0)e2} −
e3

γ2 (
c2+m2+θ̂

ki sin(x1 + δ0)
)2 − c1x2

− e3

2γ2 +
1

Tci
(x3 + Bci)−

1
ki sin(x1 + δ0)

[c2c1x2 + θ̂x2

+ m1x2 + (c2 + m2θ̂)(θ̂x2 + a0 + ki sin(x1 + δ0)(x3

+ Bci))] +
cos(x1 + δ0)x2

ki sin2(x1 + δ0)
[m1x1 + m2x2 + θ̂x2 + a0

+ c2e2]− βe3}

(67)

θ̂ = ρ[e2 +
e3(c2 + m2 + θ̂)

ki sin(x1 + δ0)
]x2 (68)

with ki = ωi0/E
′
qi HiDi, m1 = c1/γ2 − 1/2c1q2

2 + σ, m2 = 1/γ2 + 1/2q2
2 + c1, m3 = ε1/γ2 −

1/2q2
2ε1 + ε1. The parameters of the BC control method are: c1 = c2 = 2.6, ρ = 1, β = 95,

γ = 1,ε1 = ε2 = 25, σ = 30, q1 = q2 = 0.45; otherwise, δ0, ωi0, Tci, Bci, E
′
qi, Hi, Di are same as

the original version.

Table 3. The MVTE of the power angle.

Type of Error (Degree) MVTE RMSVTE

Backstepping G#1 0.0277 0.0164
Scheme G#2 0.0501 0.0157

Proposed G#1 0.0150 0.0066
Scheme G#2 0.0118 0.0036

Remark 6. In Figure 6, to be more consistent with the actual situation, the initial speed parameters
of the two machines in this paper are different, so there will be phase offset in the two machines.
When the three-phase short circuit is triggered, if the two motors are not in the same phase, there
will be different results.

0 2 4 6 8 10 12 14 16 18 20
314.144

314.149

314.154

314.157

0 2 4 6 8 10 12 14 16 18 20
314.11

314.115

314.12

314.125

314.13

Figure 6. Response curves of rotated speed.
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The results of the experiment are shown in Figures 7–14. Figure 7 shows the power
angle output error performance comparison of the two control strategies. It can be seen
that under the actions of the proposed controller (38) and (54), there is smaller steady
output error and better transient response performance. Figure 8 presents response curves
of the power angles by using the proposed control algorithm. Figures 6–12, respectively,
introduce the rotating speed, electric power, control signals, access point voltage of SVC,
and the control input of SVC for G#1 and G#2. Figures 13 and 14 show weight-norm
estimation of the RBFNNs.

0 5 10 15 20
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Figure 7. Tracking error of power angle.

0 2 4 6 8 10 12 14 16 18 20
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60

60.05

60.1

60.15

60.2

Figure 8. Tracking performance of power angle.
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Figure 9. Response curves of electrical power Pe.
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Figure 10. Control input of Generator 1.
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Figure 11. Accessing voltage of SVC.
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Figure 12. Control input of SVC Generator 1.
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Figure 13. Weight-norm estimation of RBFNNs.
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Figure 14. Weight-norm estimation of RBFNNs for Generator 2.
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6. Results and Discussions

In this article, a discrete-time adaptive decentralized control scheme is developed
to deal with the stability of multi-machine power systems. An external disturbance and
subsystem interconnection are considered. By utilizing a digital first-order low-pass filter,
the adaptation laws and controller are designed based on discrete-time control theory, and
the non-causal problems that lead to the complex structure of the controller are effectively
avoided. The improved hysteresis quantizer realizes quantization of amplitude of the
control input signal while discretizing in time, which can improve the stability of the
power system and reduce the chattering phenomena, so a digital adaptive controller of the
multi-machine power system is designed. Stability analysis based on Lyapunov’s method
shows that all signals of the whole closed-loop system are SUUB, and the proposed control
algorithm is verified through the ModelingTech real-time experiment platform of power
electronics, which shows that the control strategy achieves the expected control effect. The
proposed method provides 0.0127 and 0.0383 less MVTE, as well as 0.0098 and 0.0121 less
RMSVTE compared to BC in G#1 and G#2, respectively.
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Appendix A

Appendix A.1. Problem Statement

From (1), the electrical equations are:

E f i(t) = keiu f i,
Iqi(t) = ∑n

j=1E′qj(t)Bij sin(δi − δj),
Eqi(t) = xadi I f i(t) = E′qi(t) + (xdi − x′di)Idi(t),
Idi(t) = −∑n

j=1E′qj(t)Bij cos(δi − δj),
Pei(t) = ∑n

j=1E′qi(t)E′qj(t)Bij sin(δi − δj),
Qei(t) = −∑n

j=1E′qi(t)E′qj(t)Bij cos(δi − δj).

(A1)

According to [49,50], the SVC model is expressed as:

ḂLi =
1

Tci
(−BLi + BCi + uBi), (A2)

where i represents the ith generator of n-interconnected generators, di is a composite
disturbance signal that includes continuous changes in input mechanical power and load,
unknown system interference, etc.
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According to [4], defining Pmi = Pmi0 as a positive constant, the dynamic model (1),
(A1), and (A2) can be transformed into the following form:

δ̇i(t) = ωi,

ω̇i(t) = − Di
2Hi

ωi(t)− ω0
2Hi

∆Pei + di,

∆Ṗei(t) = − 1
T′d0i

∆Pei(t) + 1
T′d0i

ui + γi(δ, ω). (A3)

where ui and γi(δ, ω) represent the control input and interconnection items, respectively,
and can be expressed as

ui = IqiE f i − (xdi − x′di)Idi Iqi − Pmi − T′d0iQeiωi (A4)

γi(δ, ω) = E′qi

n

∑
j=1

Ė′qj(t)Bij sin(δi − δj)− E′qi

n

∑
j=1

E′qj(t)Bij cos(δi − δj)ωj, (A5)

and γi(δ, ω) satisfies

|γi(δ, ω)| ≤∑n
j=1

(
γi1j
∣∣δj
∣∣+ γi2

∣∣ωj
∣∣), (A6)

where γi1j = ∑n
j=1,j 6=i

4P1ij∣∣∣T′d0j

∣∣∣
min

|Pei|max, when j = i or γi1j =
4P1ij∣∣∣T′d0j

∣∣∣
min

|Pei|max, when j 6= i,

γi2 = P2ij|Qei|max, with P1ij and P2ij being either 1 or 0, and (•)min and (•)max represent
the minimum and maximum values of (•). Then, the last two equations in (A1) can be
rewritten as:

Pei = E′qi Iqi, Qei = E′qi Idi. (A7)

Let the ith system state vector x̄i4 = [xi1, xi2, xi3, xi4]
T = [δi, ωi, ∆Pei, ∆Vmi]

T , where ∆Pei =
Pei − Pmi, ∆Vmi = Vmi −Vre f i with

Vmi =

√
(X2iE′qi)

2+(X1i)2+2X1iX2iE′qi cos xi1

X′dΣi
, (A8)

where X1i = x′di +XTi, X′dΣi = X1i +X2i +X1iX2i(BLi− BCi), with X2i and XTi the reactance
of the transmission line and the transformer, respectively. Then, (A3) and (A2) can be
converted into (2) and (3).

Appendix A.2. Proof of Theorem 1

Substituting (57) into (60) gives us

∆Vi1(k) = [∆t(si2(k) + yi2(k)) + (1− ki1)xi1(k)

− (1− ki1)yri(k + 1)]2 − s2
i1(k),

= [∆t(si2(k) + yi2(k)) + B1i(·)]2 − s2
i1(k), (A9)

where B1i(·) = (1− ki1)xi1(k)− (1− ki1)yri(k + 1). Then, according to Young’s inequality,
(A9) can be rewritten as

∆Vi1(k) ≤ 3∆2
t s2

i2(k) + 3∆2
t y2

i2(k) + 3B2
1i − s2

i1(k). (A10)
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Substituting (23) into (62) can yield

∆Vi2(k) = 1
∆t ḡi2

[
s2

i2(k + 1)− s2
i2(k)

]
− 2η̃T

i2(k)ψi2(ξi2(k))si2(k + 1)− 2σi2η̃T
i2(k)η̂i2(k)

+ λi2ψT
i2(ξi2(k))ψi2(ξi2(k))s2

i2(k + 1)

+ 2λi2σi2η̂T
i2(k)ψi2(ξi2(k))si2(k + 1)

+ λi2σ2
i2η̂T

i2(k)η̂i2(k), (A11)

where

− 2σi2η̃T
i2(k)η̂i2(k)

= −σi2‖η̃i2(k)‖2 − σi2‖η̂i2(k)‖2 + σi2‖η∗i2(k)‖
2. (A12)

From (18)–(20) and (21), we can obtain

η̃T
i2(k)ψi2(ξi2(k)) =

si2(k+1)
∆tgi2

+ (si3(k) + yi3(k)) + εi2(ξi2(k))

+ kii2si2(k) + (1 + ki2)η̂
ᵀ
i2(k)ψi2(ξi2(k)) (A13)

− 2η̃T
i2(k)ψi2(ξi2(k))si2(k + 1)

= −2 s2
i2(k+1)
∆tgi2

− 2εi2(ξi2(k))si2(k + 1)− 2si3(k)si2(k + 1)

− 2yi3(k)si2(k + 1)− 2kii2si2(k)si2(k + 1)

− 2(1 + ki2)η̂
T
i2(k)ψi2(ξi2(k))si2(k + 1). (A14)

By Young’s inequality and |εi2(ξi2(k))| ≤ ε̄i2, we have

− 2εi2(ξi2(k))si2(k + 1) ≤ ∆t ḡi2
λi2

ε̄2
i2 +

λi2
∆t ḡi2

s2
i2(k + 1), (A15)

− 2si3(k)si2(k + 1) ≤ ∆t ḡi2
λi2

s2
i3(k) +

λi2
∆t ḡi2

s2
i2(k + 1), (A16)

− 2yi3(k)si2(k + 1) ≤ 1
2

y2
i3(k) + 2s2

i2(k + 1), (A17)

− 2kii2si2(k)si2(k + 1) ≤ ∆t ḡi2k2
ii2

λi2
s2

i2(k) +
λi2

∆t ḡi2
s2

i2(k + 1). (A18)

Similarly, we have

λi2ψT
i2(ξi2(k))ψi2(ξi2(k))s2

i2(k + 1) ≤ λi2li2s2
i2(k + 1), (A19)

2λi2σi2η̂T
i2(k)ψi2(ξi2(k))si2(k + 1)

≤ λi2li2
∆t ḡi2

s2
i2(k + 1) + ∆t ḡi2λi2σ2

i2‖η̂i2(k)‖2, (A20)

− 2(1 + ki2)η̂
T
i2(k)ψi2(ξi2(k))si2(k + 1)

≤ 2li2s2
i2(k + 1) + 1

2 (1 + ki2)
2‖η̂i2(k)‖2, (A21)

λi2σ2
i2η̂T

i2(k)η̂i2(k) ≤ λi2σ2
i2‖η̂i2(k)‖2. (A22)
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Substituting (A12)–(A22) into (A11) yields

∆Vi2(k)

≤ [− 1
∆t ḡi2

+ λi2li2 + 2li2 + 2 + λi2li2
∆t ḡi2

+ 3 λi2
∆t ḡi2

]s2
i2(k + 1)

+ [
∆t ḡi2k2

ii2
λi2

− 1
∆t ḡi2

]s2
i2(k) + [σi2(λi2σi2 + ∆t ḡi2λi2σi2 − 1)

+ (1+ki2)
2

2 ]‖η̂i2(k)‖2 − σi2‖η̃i2(k)‖2 + σi2‖η∗i2(k)‖
2

+ ∆t ḡi2
λi2

ε̄2
i2 +

∆t ḡi2
λi2

s2
i3(k) +

1
2 y2

i3(k). (A23)

Substituting (40) into (64) can yield

∆Vi3(k)

= 1
∆t ḡi3 ῑi1

[
s2

i3(k + 1)− s2
i3(k)

]
− 2η̃T

i3(k)ψi3(ξi3(k))si3(k + 1)

− 2σi3η̃T
i3(k)η̂i3(k) + λi3ψT

i3(ξi3(k))ψi3(ξi3(k))s2
i3(k + 1)

+ 2λi3σi3η̂T
i3(k)ψi3(ξi3(k))si3(k + 1)

+ λi3σ2
i3η̂T

i3(k)η̂i3(k), (A24)

where

− 2σi3η̃T
i3(k)η̂i3(k)

= −σi3‖η̃i3(k)‖2 − σi3‖η̂i3(k)‖2 + σi3‖η∗i3(k)‖
2. (A25)

From (35)–(37) and (T2.9), we can obtain

η̃T
i3(k)ψi3(ξi3(k)) =

si3(k+1)
∆tgi3ιi1(k)

+ εi3(ξi3(k))

+ (1− ki3)η̂
T
i3(k)ψi3(ξi3(k)) (A26)

− 2η̃T
i3(k)ψi3(ξi3(k))si3(k + 1)

= − 2
∆tgi3ιi1(k)

s2
i3(k + 1)− 2εi3(ξi3(k))si3(k + 1)

− 2(1− ki3)η̂
T
i3(k)ψi3(ξi3(k))si3(k + 1). (A27)

Then, according to Young’s inequality and |εi3(ξi3(k))| ≤ ε̄i3, we have

− 2εi3(ξi3(k))si3(k + 1) ≤ ∆t ḡi3 ῑi1
λi3

ε̄2
i3 +

λi3
∆t ḡi3 ῑi1

s2
i3(k + 1). (A28)

According to Young’s inequality and ‖ψi3(ξi3(k))‖2 ≤ li3, we have

λi3ψT
i3(ξi3(k))ψi3(ξi3(k))s2

i3(k + 1) ≤ λi3li3s2
i3(k + 1), (A29)

2λi3σi3η̂T
i3(k)ψi3(ξi3(k))si3(k + 1)

≤ λi3li3
∆t ḡi3 ῑi1

s2
i3(k + 1) + ∆t ḡi3 ῑi1λi3σ2

i3‖η̂i3(k)‖2, (A30)

− 2(1− ki3)η̂
T
i3(k)ψi3(ξi3(k))si3(k + 1)

≤ li3s2
i3(k + 1) + (1− ki3)

2‖η̂i3(k)‖2, (A31)

λi3σ2
i3η̂T

i3(k)η̂i3(k) ≤ λi3σ2
i3‖η̂i3(k)‖2. (A32)
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Substituting (A25)–(A32) into (A24) can obtain

∆Vi3(k)

≤ [− 1
∆t ḡi3 ῑi1

+ λi3li3 + li3 +
λi3li3

∆t ḡi3 ῑi1
+ λi3

∆t ḡi3 ῑi1
]s2

i3(k + 1)

− 1
∆t ḡi3 ῑi1

s2
i3(k) +

∆t ḡi3 ῑi1
λi3

ε̄2
i3 − σi3‖η̃i3(k)‖2 + σi3‖η∗i3(k)‖

2

+ [σi3(λi3σi3 + ∆t ḡi3 ῑi1λi3σi3 − 1) + (1− ki3)
2]‖η̂i3(k)‖2. (A33)

Similarly, we obtain

∆Vi4(k)

≤
[
− 1

∆t ḡi4 ῑi3
+ λi4li4 + li4 +

λi4li4
∆t ḡi4 ῑi3

+ λi4
∆t ḡi4 ῑi3(k)

]
s2

i4(k + 1)

− 1
∆t ḡi4 ῑi3(k)

s2
i4(k) +

∆t ḡi4 ῑi3
λi4

ε̄2
i4 − σi4‖η̃i4(k)‖2 + σi4‖η∗i4(k)‖

2

+
[
σi4(λi4σi4 + ∆t ḡi4 ῑi3λi4σi4 − 1) + (1− ki4)

2
]
‖η̂i4(k)‖2. (A34)

On the basis of (15), (16), and (56), we have

y2
i2(k + 1)− y2

i2(k) = [zi2(k + 1)− xi2d(k + 1)]2 − y2
i2(k)

=
[
−bi2yi2(k)

τi2
+ B2i(·)

]2
− y2

i2(k)

=
b2

i2y2
i2(k)

τ2
i2
− 2 bi2yi2(k)

τi2
B2i + B2

2i − y2
i2(k). (A35)

where B2i(·) = (1−bi2)xi2d(k)
τi2

− ki1
∆t
[−xi1(k + 1) + yri(k + 2)]. By Young’s inequality, we have

− 2 bi2yi2(k)
τi2

B2i ≤ 1
υ2i

b2
i2y2

i2(k)
τ2

i2
+ υ2iB2

2i, (A36)

where υ2i > 0 is a design parameter. Then, (A35) can be rewritten as

y2
i2(k + 1)− y2

i2(k) ≤
(

υ2ib2
i2+b2

i2
υ2iτ

2
i2
− 1
)

y2
i2(k) + (υ2i + 1)B2

2i. (A37)

Similarly,

y2
i3(k + 1)− y2

i3(k) ≤
(

υ3ib2
i3+b2

i3
υ3iτ

2
i3
− 1
)

y2
i3(k) + (υ3i + 1)B2

3i. (A38)

Note that Ωr is compact due to the definition of compact sets Ωr in Theorem 1. Therefore,
|B1i|, |B2i|, |B3i|(i = 1, ..., n) have the maximum values M1i, M2i, M3i on the compact Ωr×Ω.
Substituting (A10), (A23), (A33), (A34), (A37), and (A38) into (66), we obtain

∆Vi(k) ≤ −s2
i1(k)− ( 1

∆t ḡi2
− 3∆2

t −
∆t ḡi2k2

ii2
λi2

)s2
i2(k)

− ( 1
∆t ḡi3 ῑi1

− ∆t ḡi2
λi2

)s2
i3(k)− 1

∆t ḡi4 ῑi3
s2

i4(k)

+ (
υ2ib2

i2+b2
i2

υ2iτ
2
i2
− 1 + 3∆2

t )y
2
i2(k) + (

υ3ib2
i3+b2

i3
υ3iτ

2
i3
− 1

2
)y2

i3(k)
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+
[
− 1

∆t ḡi2
+ λi2li2 + 2li2 + 2 + λi2li2

∆t ḡi2
+ 3 λi2

∆t ḡi2

]
s2

i2(k + 1)

+
[
σi2(λi2σi2 + ∆t ḡi2λi2σi2 − 1) + (1 + ki2)

2/2
]
‖η̂i2(k)‖2

+
[
− 1

∆t ḡi3 ῑi1
+ λi3li3 + li3 +

λi3li3
∆t ḡi3 ῑi1

+ λi3
∆t ḡi3 ῑi1

]
s2

i3(k + 1)

+
[
σi3(λi3σi3 + ∆t ḡi3 ῑi1λi3σi3 − 1) + (1− ki3)

2
]
‖η̂i3(k)‖2

+
[
− 1

∆t ḡi4 ῑi3
+ λi4li4 + li4 +

λi4li4
∆t ḡi4 ῑi3

+ λi4
∆t ḡi4 ῑi3

]
s2

i4(k + 1)

+
[
σi4(λi4σi4 + ∆t ḡi4 ῑi3λi4σi4 − 1) + (1− ki4)

2
]
‖η̂i4(k)‖2

−∑4
j=2σij

∥∥η̃ij(k)
∥∥2

+
4
∑

j=2
σij

∥∥∥η∗ij(k)
∥∥∥2

+ ∆t ḡi2
λi2

ε̄2
i2 +

∆t ḡi3 ῑi1
λi3

ε̄2
i3 +

∆t ḡi4 ῑi3
λi4

ε̄2
i4

+ 3M2
1i + (υ2i + 1)M2

2i + (υ3i + 1)M2
3i. (A39)

According to (32) and (48), Equation (A39) can be rewritten as:

∆Vi(k) ≤ −s2
i1(k)−

(
1

∆t ḡi2
− 3∆2

t −
∆t ḡi2k2

ii2
λi2

)
s2

i2(k)

−
(

1
∆t ḡi3 ῑi1

− ∆t ḡi2
λi2

)
s2

i3(k) +
(

υ3ib2
i3+b2

i3
υ3iτ

2
3i
− 1

2

)
y2

i3(k)

− 1
∆t ḡi4 ῑi3

s2
i4(k) +

(
υ2ib2

i2+b2
i2

υ2iτ
2
2i
− 1 + 3∆2

t

)
y2

i2(k)

− [1− 3λi2 − λi2li2 − ∆t ḡi2(λi2li2 + 2li2 + 2)] s2
i2(k+1)
∆t ḡi2

−
[
σi2(1− λi2σi2 − ∆t ḡi2λi2σi2)− (1 + ki2)

2/2
]
‖η̂i2(k)‖2

− [1− λi3 − λi3li3 − ∆t ḡi3 ῑi1(λi3 + 1)li3]
s2

i3(k + 1)
∆t ḡi3 ῑi1

−
[
σi3(1− λi3σi3 − ∆t ḡi3 ῑi1λi3σi3)− (1− ki3)

2
]
‖η̂i3(k)‖2

− [1− λi4 − λi4li4 − ∆t ḡi4 ῑi3(λi4 + 1)li4]
s2

i4(k+1)
∆t ḡi4 ῑi3

−
[
σi4(1− λi4σi4 − ∆t ḡi4 ῑi3λi4σi4)− (1− ki4)

2
]
‖η̂i4(k)‖2

+ βi1 + βi2 + βi3 + βi4, (A40)

with: βi1 = 3M2
1i, βi2 = −σi2‖η̃i2(k)‖2 + σi2

∥∥η∗i2(k)
∥∥2

+ ∆t ḡi2
λi2

ε̄2
i2 + (υ2i + 1)M2

2i, βi3 = −σi3

‖η̃i3(k)‖2 + σi3
∥∥η∗i3(k)

∥∥2
+ ∆t ḡi3 ῑi1

λi3
ε̄2

i3 + (υ3i + 1)M2
3i, βi4 = −σi4‖η̃i4(k)‖2 + σi4

∥∥η∗i4(k)
∥∥2

+∆t ḡi4 ῑi3
λi4

ε̄2
i4.

1− 3λi2 − λi2li2 − ∆t ḡi2(λi2li2 + 2li2 + 2) ≥ 0, (A41)

1− λi3 − λi3li3 − ∆t ḡi3 ῑi1(λi3 + 1)li3 ≥ 0, (A42)

1− λi4 − λi4li4 − ∆t ḡi4 ῑi3(λi4 + 1)li4 ≥ 0, (A43)

σi2(1− λi2σi2 − ∆t ḡi2λi2σi2)− (1 + ki2)
2/2 ≥ 0, (A44)

σi3(1− λi3σi3 − ∆t ḡi3 ῑi1λi3σi3)− (1− ki3)
2 ≥ 0, (A45)

σi4(1− λi4σi4 − ∆t ḡi4 ῑi3λi4σi4)− (1− ki4)
2 ≥ 0, (A46)

υ2ib2
i2+b2

i2
υ2iτ

2
i2
− 1 + 3∆2

t ≤ 0, υ3ib2
i3+b2

i3
υ3iτ

2
i3
− 1

2
≤ 0 (A47)
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By selecting the appropriate ∆t and design parameters, the inequalities (A41)–(A47)
hold, which implies that s2

i1(k) > βi1, s2
i2(k) >

∆t ḡi2λi2βi2
λi2−3∆3

t ḡi2λi2−∆2
t ḡ2

i2k2
ii2

, s2
i3(k) >

∆t ḡi3 ῑi1βi3λi2
λi2−∆t ḡi3 ῑi1∆t ḡi2

,

s2
i4(k) > ∆t ḡi4 ῑi3βi4; then, ∆Vi(k) ≤ 0. The proof of Theorem 1 is complete.
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