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Abstract

Chemotherapy drugs have limited efficacy in breast cancer due to multidrug resistance gen-

erated by cancer cells against anticancer drugs. In this study, we developed a novel deriva-

tive, 2, 3, 5, 4‘-tetrahydroxystilbene (TG1) by modifying 2, 3, 5, 4‘-tetrahydroxystilbene-2-O-

beta-D-glucoside (THSG). In-vivo zebrafish embryo tests revealed that TG1 showed low

toxicity. The equitoxic combination of DOX or DTX with TG1 in MCF-7/Adr reduced the IC50

of DOX or DTX, and the combination index (CI) showed strong synergistic effects in the 1:3

molar ratio of DTX: TG1 and 1:5 molar ratio of DOX: TG1. Moreover, fluorescence images

confirmed the cellular uptake of DOX when combined with TG1 in MCF-7/Adr. Western blot-

ting analysis indicated downregulation of p-glycoprotein (P-gp) after MCF-7/Adr treated with

TG1. In conclusion, the combined therapy of DTX or DOX and TG1 increases drug efficacy

via suppressing the p-glycoprotein efflux pump. These results suggest that TG1 may have

potential use for breast cancer patients, especially those with multidrug resistance.

Introduction

Breast cancer is one of the most common cancers in the world, and has the highest mortality

rate among all cancers in women [1]. Previous reports have shown that approximately 12.3%

of women in the US will be diagnosed with breast cancer during their lifetime, and it was pre-

dicted that it will reach up to 22 million new cases worldwide in a decade [2–4]. Thus, treating

breast cancer efficiently is always an important issue for researchers. Surgery, chemotherapy

and radiation therapy are the major treatments for breast cancer patients currently. Chemo-

therapy is useful for treating various stages of breast cancer, and is used preoperatively to

shrink the tumor or postoperatively to eliminate residual tumor cells after surgical removal [5,

6]. Many chemotherapy drugs are used for breast cancer treatment, including doxorubicin

(DOX), paclitaxel, docetaxel (DTX) and others. However, anti-tumor efficacy is often limited

by the multidrug resistance (MDR), ultimately resulting in the failure of chemotherapy [7, 8].

Thus, MDR has become a significant problem for breast cancer treatment.
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MDR has affected more than 80% of breast cancer patients after chemotherapy [9, 10]. Upre-

gulation of ATP-binding cassette transporters (ABC transporters) on breast cancer cells is the

major mechanism of MDR. ABC transporters, including p-glycoprotein (P-gp), multidrug resis-

tance-associated protein (MRP) and breast cancer resistance protein (BCRP) are cell membrane

efflux pumps, and their role is to modulate intracellular drug concentrations [9, 11, 12]. However,

overexpression of ABC transporters pumps anticancer drugs out of cancer cells from intracellular

to extracellular, resulting in losing the anti-cancer ability and failure of chemotherapy.

In order to overcome the MDR effect, a chemosensitizer must be developed to inhibit over-

expression of ABC transporters. Different inhibitors, such as ribozymes, siRNA and antisense

oligonucleotides have been validated previously to successfully reduce the expression of ABC

transporters [13–15]. However, promising chemosensitizers are still lacking in clinical treat-

ment because of previously identified undesirable drawbacks such as low potency and high

toxicity [16, 17]. Recently, researchers are focusing on natural plants extraction and subse-

quent structural modification to develop chemosensitizers with versatile applications and low

toxicities [18, 19]. 2,3,5,4’-tetrahydroxystilbene (TG1) is a compound that was modified from

2,3,5,4’-tetrahydroxystilbene-2-O-β-D-glucoside (THSG), which is extracted from Agave sisa-

lana, Polygonum multiflorum and Fallopia japonica. The aim of this study was to demonstrate

the synergistic effects of a novel chemosensitizer, TG1, combined with an anti-cancer drug to

overcome multidrug resistance in breast cancer treatment.

Materials and methods

Production of TG1

THSG was extracted from Polygonummultiflorum as described in a previous study [20]. Briefly,

Polygonummultiflorum leaves, roots and rhizomes were pulverized and soaked in 60% metha-

nol for one day. After filtration, the residues were twice extracted with 60% methanol, and then

concentrated with a rotary evaporator. The aqueous solution was chromatographed on a Diaion

HP-20 column (30cm id×90cm) eluted with H2O, 50% MeOH and 100% MeOH. The 50%

MeOH eluate was chromatographed over a RH-18 column (10cm id×60cm) eluted with 0.05%

trifluoroacetic acid-CH3CN (82:18) to produce THSG. To form a THSG solution (2.06 g, 5.62

mmol) in EtOH (50 mL) was added 1.0 N HCl (70 mL), refluxed for 14 hours. The mixture was

cooled to room temperature and EtOH was removed under reduced pressure. The residue was

extracted with ether, and the organic layers were collected, dried over MgSO4, concentrated

under reduced pressure, and purified by column chromatography (silica gel; DCM/

MeOH = 16/1) to produce TG1 as a brown solid. After flash column purification, TG1 was dis-

solved in MeOH and recrystallized with CHCl3 to produce brown-green powder (400 mg, 32%

yield). The compound structure of TG1 was examined its 1H and 13C using nuclear magnetic

resonance (NMR), (Bruker Avance DRX 500MHz, Bruker Corp., Billerica, MA, USA).

Cells

Two different types of human breast cancer cell lines were used. The first was MCF-7 cells, a

model human breast cancer cell line, which was purchased from Bioresource Collection and

Research Center (BCRC, Taiwan), and the second was MCF-7/Adr cells, a human breast can-

cer multidrug resistant (MDR) cell line, which was kindly provided by Professor Jun-Jen Liu

(Taipei Medical University, Taiwan). In addition, L929 human fibroblast cell lines were pur-

chased from BCRC, Taiwan, for in-vitro toxicity examination.

MCF-7 cells were cultured in Minimum Essential Medium (Gibco; Invitrogen, Waltham,

MA, USA) containing L-Glutamine, 2.2g/L sodium bicarbonate, 0.1mM non-essential amino

acids solution, 1.0 mM sodium pyruvate, 10% fetal bovine serum (FBS), and 1% penicillin/
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streptomycin (PS). MCF-7/Adr cells were cultured in Dulbecco’s modified Eagle’s medium

(Gibco) containing 10% FBS and 1% PS. L929 cells were cultured in RPMI containing 10%

FBS and 1% PS. All cell lines were maintained in a humidified atmosphere with 5% CO2 in a

37˚C incubator and the culture medium was replaced every 2–3 days.

Cell viability examination

Cell viability was analyzed by Thiazolyl Blue Tetrazolium Bromide (MTT, Sigma- Aldrich,

St. Louis, MO, USA). The cells were first placed in 48-well plates (Nunc) at a density of 1x104

cells/well. After incubation for cells attached in the 48-well plates, each well would be placed

into different drug conditions for 24 hours. Since the drugs were insoluble in water, they were

dissolved in 0.1% dimethyl sulfoxide (DMSO, Sigma Aldrich, St. Louis, MO, USA). Then, each

well would be substituted by the culture medium containing 10% MTT solution, which were

made up in 5 mg/ml solution operated in dark place. After incubation for 4 hours, the super-

natants were removed and 500 μl DMSO was added into each well to solubilize the formazan

crystals. Finally, they were transferred into 96-well plates and then the absorption wavelength

was measured at 570 nm by ELISA reader (Sunrise). The IC50 value was calculated by the

GraphPad Prism programme.

Zebrafish embryo-toxicity test

Zebrafish (Danio rerio) were maintained at 28˚C under continuous flow of air and with auto-

matic control of a 14-hour light/ 10-hour dark cycle. All zebrafish experiments were conducted

under the approval of the institutional animal care and use committee (IACUC). Zebrafish

embryo-toxicity test was performed according to guidelines of the Organization for Economic

Co-operation and Development. The day prior to fertilization, male and female fish were left in

mating tanks overnight. The next morning, the embryos were collected and transferred to a dish

with E3 solution (5mM NaCl, 0.17mM KCl, 0.33mM CaCl2 and 0.33mM MgSO4, pH 7.0) and

incubated at 28˚C for 6 hours. Thirty-five embryos were produced and each of the 35 embryos

were incubated and exposed to the range of concentrations between 12.5 μM and 1600 μM of

TG1 for 1 day and 2 days. The number of dead embryos/fish and normal fish were recorded.

Assessment of drug combination synergism and combination index. In 1984, Chou

and Talalay published a concept collaboratively addressing the term “Combination Index

(CI),” explaining that the value quantitatively symbolized and analyzed drug potencies [21,

22]. Since the term was introduced, CI has been extensively used in scientific articles interna-

tionally. CI more than 1 means antagonism of the drugs; CI equal to 1 points to additive effects

of the drugs; CI less than 1 implies synergistic effect of the drugs.

The mathematical formula for CI is as follows:

d1 ¼
a

aþ b

� �

ED50c

d2 ¼
a

aþ b

� �

ED50c

CI ¼
d1

ED50ð1Þ

þ
d2

ED50ð2Þ

¼
a

ðaþ bÞED50ð1Þ

þ
b

ðaþ bÞED50ð2Þ

( )

ED50c
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First, “d1” and “d2” signify doses of the drugs individually; second, “a” and “b” represent

the drug ratios, respectively; third, “ED50(1)” and “ED50(2)” indicate the median effect doses of

the drugs, respectively, while “ED50c” expresses the median effect dose of the drugs combined.

The principle and formula of CI can be applied to analysis and discussion of multiple drug

potencies for cancer treatment. Therefore, this study aimed to calculate CIs to evaluate

whether anticancer drugs and chemosensitizers exhibited synergistic effects or not.

Fluorescence examination of doxorubicin cellular uptake. Fluorescence images are used

to analyze and investigate the effects of the multidrug resistance drug efflux pump in vitro. Because

doxorubicin has a fluorescence signal, this property was used to detect and observe the images.

The breast cancer cells, MCF-7 and the multidrug resistance breast cancer cells, MCF-7/

Adr were first placed in 48-well plates (Nunc) at a density of 2x104 cells/well. After incubation

of cells in the 48-well plates, each well was placed into different drug conditions (DOX, DOX+-

TG1 = 1:5) for 24 hours. Subsequently, the medium was removed and cells were rinsed 3 times

with PBS. To fix the cells, 200μl 4% paraformaldehyde was added to each well for 15~20 min-

utes at room temperature. Then, the solution was removed and washed with PBS 3 times (4

minutes each). Finally, an excitation wavelength at 488 nm and emission wavelength at 520

nm were detected by inverted fluorescence microscope (Leica).

Drug resistance associated proteins expression analysis

In order to investigate the multidrug resistance pathways between the anticancer drugs and the

chemosensitizers, analysis of specific protein expression was conducted using western blotting.

Briefly, MCF7 or MCF7/Adr cells of the control group and drug of the experimental group

(DOX, TG1 or DOX+TG1) were incubated for 72 hours. The cells were harvested with lysis

solution (cell lysis buffer: Phosphatase Inhibitor Mix II: Protease Inhibitor Cocktail = 100:1:1)

for 30 minutes at 4˚C. The total protein levels were determined with a BCA assay (Bio-RAD,

CA, USA) depends on the Bradford method. Equal amounts of protein (20 μg) were separated

with 8%-15% SDS polyacrylamide gel electrophoresis and transferred to nitrocellulose mem-

branes. The membrane was blocked with 5% BSA in PBST for 1 hour. Then, the primary anti-

bodies included P-gp (1:500, mAb; Merck, MA, USA), MRP1(1:500, mAb; Merck, MA, USA),

BCRP (1:500, mAb; Merck, MA, USA) or β-actin (1:1000, polyclonal Ab; Cambridge, UK)

were incubated in 1% BSA dilution at 4˚C overnight. On the next day, the membrane was

washed for 1 hour with PBST. Then, HRP-conjugated secondary antibody solution in PBST

dilution (1:1000) was incubated for 2 hours at room temperature.

To detect chemiluminescent signal, chemiluminescent substrate of 1:1(v/v) was added to the

membrane. It was captured by BioSpectrum1 810 Imaging SystemTM (UVP). For image anal-

ysis, the band intensity of the target proteins was gained by software (N = 3 for each group).

Statistical analysis

Data are reported as mean and standard deviation. The significance of the data was analyzed

by Mann-Whitney U test between the control group and the experimental groups. Statistical

testing was performed using GraphPad Prism (GraphPad Software, Inc., San Diego, CA), and

a p-value < 0.01 was considered statistically significant.

Results

TG1 compound structure

The compound structure of TG1 is shown in Fig 1, and was identified by NMR. TG1 1H NMR

(200 MHz, MeOD) δ 7.31, 6.72 (dt, J = 8.5, 2.9, 1.8 Hz; J = 8.7, 2.8, 2.0 Hz 2H; 2H, H-2’, H-6’,
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H-3’, H-5’), 7.21, 6.90 (d, J = 16.5 Hz; J = 16.4 Hz, 1H; 1H, H-7, H-8), 6.45, 6.20 ppm (d, J = 2.7

Hz; J = 2.7 Hz, 1H; 1H, H-3, H-5); 13C NMR (50 MHz, MeOD) δ 157.1, 150.3, 146.5, 136.4(C2,

C4, C6, C4’), 130.1, 126.0(C1, C1’), 128.1, 120.7(C7, C8), 127.7, 115.4(C2’, C3’, C4’, C5’), 102.1,

101.9 ppm (C3, C5).

Toxicity of TG1

The zebrafish animal system is thought to be a cost-effective tool for anticancer drug develop-

ment [23, 24]. To evaluate the primary in-vivo toxicity of TG1, zebrafish embryos were

exposed to various drug concentration of TG1 (range of concentrations between 12.5 μM and

1600 μM) at time points 24 and 48 hours post fertilization (hpf) (Fig 2A–2C). The survival

rates were not significantly affected under 1600 μM of TG1 at 24 hpf. We found that zebrafish

embryos exhibited a significantly decreased survival rate only when they were exposed to high

concentration of TG1 (1600 μM) at 48 hpf.

L929 human fibroblast cells were used to analyze the cytotoxicity of TG1 invitro. Even if the

concentration of TG1 was over 100 μM (Fig 2D), the L929 cells still maintained high cell viabil-

ity, indicating the low toxicity of TG1 for fibroblast cells.

These results suggest no obvious in-vitro cellular toxicity or in-vivo developmental toxicity

for TG1, suggesting its potential for further clinical applications.

In-vitro antitumor effect of TG1

For the breast cancer cells viability test, MCF-7 cells were examined for TG1 cytotoxicity and

that of clinical drugs, docetaxel and doxorubicin. IC50 values of DTX and DOX were

1.43 ± 0.09 μM and 0.96 ± 0.08 μM, respectively (Fig 3A), while IC50 values of TG1 were

257.1 ± 1.79 μM (Fig 4A), indicating slight influence on the growth of breast cancer cells.

MCF-7/Adr cells and human breast cancer MDR cells were also examined for cellular cytotox-

icity of DTX, DOX and TG1. IC50 values of DTX and DOX were 8.98 ± 0.81 μM and

5.49 ± 0.49 μM, respectively (Fig 3B), which were higher than the IC50 values of MCF-7,

Fig 1. (A) Structure of TG1. (B) 1H NMR analysis of TG1. (C) 13C NMR analysis of TG1.

https://doi.org/10.1371/journal.pone.0260533.g001
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indicating drug resistance effects of the breast cancer cells. IC50 of TG1 treated with MCF-7/

Adr was 260.8 ± 1.79 μM (Fig 4B), which was similar to TG1 on MCF-7.

Combination effect of TG1 and clinical drugs

For evaluation of cell cytotoxicity efficiency of anticancer drugs combined with TG1 for drug-

resistant MCF-7/Adr cells, MTT assay was tested using the molar ratio of 1:1, 1:2, 1:3, 1:5 and

1:10 (DTX or DOX: TG1) (Figs 5A and 6A). TG1 was shown to effectively enhance the anti-

cancer ability regardless of the molar ratio. Based on cell viability results, the combination

index (CI) was calculated to ascertain the drug potencies of clinical drugs combined with TG1.

As the CI value was less than 1, the drug combination exhibited synergistic effects (Fig 5B).

The CI value of 1:1 (DTX: TG1) was 0.86, indicating weak synergistic effects. However, strong

synergistic effects were shown with the molar ratio 1:3, and the CI value was lower than 0.2.

For DOX and TG1 combination treatment, molar ratio 1:5 had strong synergistic effects and

the CI value was 0.18 (Fig 6B). Thus, the 1:5 molar ratio of drugs and TG1 combination

appears to be the most effective formulation against drug resistant breast cancer cells, suggest-

ing their potential for further clinical application.

In vitro cellular uptake for breast cancer cells

To visualize MDR effects, the fluorescence signal of DOX was evaluated to detect cellular

uptake of breast cancer cells (Fig 7). In MCF-7 cells, both DOX treatment and DOX/TG1 treat-

ment were found in breast cancer cells, however, distinct images were seen in MCF-7/Adr.

Fig 2. The effects of TG1 on the development of zebrafish embryos. (A) Representative images of zebrafish embryos

exposed to TG1 at 48h. Survival rate after exposure to 12.5uM to 1600uM TG1 at (B) 24 and (C) 48 hpf. (D) Inhibition

of TG1 on cell viability of L929 cells. (E3: E3 medium, for zebrafish embryos; EtOH: ethanol; hpf: hours post

fertilisation) Data were shown by mean ± SD (standard deviation), n = 3. �p< 0.01, which indicated the groups had

significant difference as comparing to control group.

https://doi.org/10.1371/journal.pone.0260533.g002
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MCF-7/Adr images showed that the fluorescence signal of the DOX was found in the outer

part of nucleus and cytoplasm because of the action of the drug efflux pump; however, the

DOX fluorescence signal of DOX/TG1 treatment was detected in the cell nucleus, indicating

good internalization by TG1.

Fig 3. Inhibition of DOX or DTX on proliferation of (A) MCF-7 and (B) MCF-7/Adr cells. The IC50 values of DOX or

DTX were calculated and showed on table. Data were shown by mean ± SD, n = 3.

https://doi.org/10.1371/journal.pone.0260533.g003

Fig 4. Inhibition of TG1 on proliferation of (A) MCF-7 and (B) MCF-7/Adr cells. The IC50 values of TG1 were

calculated and showed on table. Data were shown by mean ± SD, n = 3.

https://doi.org/10.1371/journal.pone.0260533.g004
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Presentation of MDR related transporters

Western blotting was used to assess multidrug resistance by ABC transporters, by analyzing

the expression of different drug efflux pumps. Comparisons of the expression of P-gp, MRP1,

and BCRP in MCF-7 and MCF-7/Adr are shown in Fig 8. P-gp expression in MCF-7/Adr was

much higher than MCF-7, but the expression of MRP1 and BCRP in MCF-7/Adr was similar

to MCF-7. However, when MCF-7 and MCF-7/Adr were treated with TG1 for 72 hours, P-gp

expressions were also suppressed in both (Fig 8), with highly intense P-gp inhibitory effects in

MCF-7/Adr. Nevertheless, neither MRP1 nor BCRP expression was affected after TG1

treatment.

To evaluate the chemosensitizing effects of TG1, cancer drugs were combined for treat-

ment. After DOX treatment in MCF-7/Adr, P-gp expression was higher than the groups with-

out any drug treatment. However, no increases were shown in MRP1 and BCRP expression

after the treatment. Next, when DOX and TG1 were treated together in MCF-7 and MCF-7/

Fig 5. Combined effects of TG1 and DTX on inhibiting cell proliferation of MCF-7/Adr for 24 hours. (A)The cells

were treated to different concentrations of DTX or combined with the chemosensitizer, TG1, in molar ratios of 1:1,

1:2, 1:3, 1:4 1:5 and 1:10. (B) Combination index of DTX and TG1 on different molar ratios for treating MCF-7/Adr

cells. Data are shown as mean ± SD, n = 5. �p< 0.01, indicating significant differences between experimental and

control groups.

https://doi.org/10.1371/journal.pone.0260533.g005

Fig 6. Combined effects of TG1 and DOX on inhibiting cell proliferation of MCF-7/Adr for 24 hours. (A)The cells

were treated to different concentrations of DOX or combined with the chemosensitizer, TG1, in molar ratios of 1:1,

1:2, 1:3, 1:4 1:5 and 1:10. (B) Combination index of DOX and TG1 on different molar ratio for treating MCF-7/Adr

cells. Data are shown by mean ± SD, n = 5. �p< 0.01, indicating significant differences between experimental and

control groups.

https://doi.org/10.1371/journal.pone.0260533.g006
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Adr, P-gp expression was suppressed in both, especially in MCF-7/Adr (Fig 9). These results

indicate that TG1 may play an important role in inhibiting the P-gp drug efflux pump expres-

sion, which prevents anticancer drugs from being pumped out to the extracellular region.

Discussion

The present study attempted to find a safe and effective way to solve chemotherapy failure due

to severe side effects of anticancer drugs and the difficulty of sustaining clinical treatment. In

particular, chemotherapy drugs have limited efficacy in breast cancer due to multidrug resis-

tance generated by cancer cells against anticancer drugs. In this study, the novel compound,

TG1, showed low toxicity and potential application for breast cancer patients, especially those

with multidrug resistance.

Many scientists have tried various means to ameliorate chemotherapy effects, including the

use of non-toxic drug carriers or using new herbal compounds [25, 26]. In the present study,

the properties of cytotoxicity, combination index, and drug efflux pump expression of TG1

were investigated. TG1 was derived from THSG deglucosylation, and it has a chemical

Fig 7. Fluorescence images of cellular uptake of DOX or DOX combined with TG1 in MCF-7 and MCF-7/Adr by inverted fluorescence microscope. (A)

20x images (B) 40x images.

https://doi.org/10.1371/journal.pone.0260533.g007
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structure with multiple hydroxyl groups. Previous study indicated that hydrogen bonds were

formed between the hydroxyl groups of inhibitors and the R site of drug efflux pump, P-gp

[27]. Thus, the modification of THSG may have improved the reduction of drug efflux effect

via P-gp.

Zebrafish are a model vertebrate that has been useful in human drug screening because

humans and zebrafish have many of the same orthologous genes [28], and its advantages as a

material for drug development are rapid development, high fecundity and relatively inexpen-

sive [29]. Therefore, it is a beneficial model for drug safety assessment. Previous studies have

revealed that the drug of the atractylodin induced the mortality with the LC50 52 μM [30].

However, zebrafish embryos exposed to TG1 under concentration of 800 μM showed a great

in-vivo survival rate.

Based on results of previous studies, resveratrol acted as a fine chemosensitizer to support

the anti-cancer efficacy when combined with clinical drugs, DOX or DTX [31–33]. The

authors pointed out that the combination of resveratrol with DTX or DOX in the molar ratio

of 1:15000 or 1:1 to 1:6 produced moderate synergistic effects (CI< 0.7~0.85) and slightly

antagonistic (CI> 1), respectively. Xiong Guo et al. also showed the CI of DTX combined with

resveratrol in the ratio of 2:1, 1:1, and 1:2 was 0.92, 0.64, and 1.2, which indicated that in the

ratio of 1:2 had an antagonistic effect [25]. In the present study, the combination indexes had

better synergistic effects than resveratrol. The combination treatment of anticancer drugs and

Fig 8. Effect of TG1 on expression of MDR related transporter in MCF or MCF-7/Adr cells. (A) Expression of P-

gp, MRP1 and BCRP using western blot on MCF-7 or MCF-7/Adr cells. (B) Quantitative data are shown as

mean ± SD, n = 3. �p< 0.01, which indicates significant differences between the experimental and control groups.

https://doi.org/10.1371/journal.pone.0260533.g008
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TG1 may have the highest effectiveness in the molar ratio of 1:3 (DTX: TG1, CI = 0.19) and 1:5

(DOX: TG1, CI = 0.18).

One of the important pathways was the drug efflux pumps located on the cell membrane,

called ABC transporters [34]. Among these multiple transporters, P-gp was shown to play a

vital role in developing resistance to anticancer drugs by overexpression in breast cancer cells

[35–37]. Therefore, in the present study, two cell lines were used to compare the effects; MCF-

7, and MDR cancer cells, MCF-7/Adr, which was a P-gp overexpressing derivative cells [38]. A

better synergistic effect was shown in the present study than resveratrol according to the com-

bination indexes. The combination treatment of anticancer drugs-DOX and TG1 appear to

have the most effectiveness in the molar ratio of 1:5, indicating that the anticancer drugs can

be reduced and maintained their effects at the same time.

In addition, TG1 also inhibits P-gp expression when the anticancer drugs were reacted

against cancer cells, which demonstrated better effects than resveratrol [39]. Therefore, it

would result in assisting anticancer drugs to exert the cytotoxicity via downregulating the drug

efflux pump expression, especially performed on multidrug resistance cancer cells. Xue et al.

determined metformin was an inhibitor rather than substrate of P-gp by bidirectional trans-

port assay in MDR1-MDCK cells [40]. Resveratrol had a similar bi directional transport result

with metformin [41]. Furthermore, many researches were investigated resveratrol as a P-gp

inhibitor on cancer cells overexpressing P-gp [42–44]. Since TG1 has similar chemical struc-

ture with resveratrol, and the potential P-gp inhibitor could be predicted by structure [27].

Fig 9. Effects of DOX combined with TG1 on expression of MDR related transporter in MCF-7 or MCF-7/Adr

cells. (A) Expression of P-gp, MRP1 and BCRP using western blot on MCF-7 or MCF-7/Adr cells. (B) Quantitative

data are shown as mean ± SD, n = 3. �p< 0.01, which indicates significant differences between experimental and

control groups.

https://doi.org/10.1371/journal.pone.0260533.g009
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TG1 might be a P-gp inhibitor to modulate DTX/DOX resistance effects, but it needs more

investigation in the future.

Conclusion

The novel derivative TG1 exhibits no obvious in-vitro cellular toxicity or in-vivo developmen-

tal toxicity. The combination of anticancer drugs and TG1 promotes cytotoxicity against

breast cancer cells because of its inhibitory effects on multidrug resistance, especially for p-gly-

coprotein drug efflux pump suppression. Therefore, this novel combinational therapy exhibits

potential synergistic effects on treating breast cancer cells, especially those with multidrug

resistance.
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