

Covering a Regular Tetrahedron with Diminished Copies

Fangyu Zhang¹ **, Yuqin Zhang**¹ **and Mei Han**¹ *∗*

1 *School of Mathematics, Tianjin University, China.*

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JAMCS/2021/v36i430354 *Editor(s):* (1) Dr. Sheng Zhang, Bohai University, China. *Reviewers:* (1) Cyprian Omukhwaya Sakwa, South Eastern Kenya University(SEKU), Kenya. (2) Elvis Kobina Donkoh, University of Energy & Natural Resources, Ghana. Complete Peer review History: http://www.sdiarticle4.com/review-history/67720

Original Research Article Published: 29 April 2021

[Received: 20 February 2021](http://www.sdiarticle4.com/review-history/67720) Accepted: 25 April 2021

Abstract

Let *T* be a unit regular tetrahedron. A diminished copy of *T* is the image of *T* under a homothety with positive ratio smaller than 1. Let *m* be a positive integer and let $\gamma_m(T)$ be the smallest positive number *r* such that *T* can be covered by *m* translates of *rT*. Zong gave the results of $\gamma_4(T) = \frac{3}{4}$ and $\gamma_5(T) = \frac{9}{13}$. However, the values of $\gamma_6(T)$, $\gamma_7(T)$ and $\gamma_8(T)$ were not given then. In this article we give the upper bounds of $\gamma_6(T)$, $\gamma_7(T)$ and $\gamma_8(T)$.

Keywords: Covering; tetrahedron; Hadwiger's conjecture.

2010 Mathematics Subject Classification: 53C25, 83C05, 57N16.

1 Introduction

In *n*-dimensional Euclidean space $Eⁿ$, let *K* be a convex body. We define $\text{int}(K)$ as the interior of *K* and $c(K)$ as the smallest number of translates of $int(K)$ that their union can cover *K*.

^{}Corresponding author: E-mail: ludy han@163.com;*

In 1955, Levi [1] studied $c(K)$ for the two-dimensional convex domains and proved that:

$$
c(K) = \begin{cases} 4, & if K is a parallelogram, \\ 3, & otherwise. \end{cases}
$$

Let *P* denote an *n*-dimensional parallelepiped. It's easy to see that any translates of $int(P)$ can not cover two vertices of *P*. Therefore, it can be deduced that $c(P) = 2^n$.

Based on these results and some other observations, in 1975, Hadwiger [2] made the following conjecture: For every *n*-dimensional convex body *K*, we have

$$
c(K) \le 2^n,
$$

where the equality holds if and only if K is a parallelepiped. Furthermore, $2ⁿ$ homothetic copies are required only if the body is an affine *n*-cube.

This conjecture has been studied by many mathematicians. They have found some other problems which are relative to Hadwiger's conjecture such as the illumination problem and the separation problem [3,4,5,6]. For example, Lassak [7] proved this conjecture in the three-dimensional centrally symmetric case; Rogers and Zong [8] obtained

$$
c(K) \le \binom{2n}{n} (n \ln n + n \ln \ln n + 5n)
$$

for general *n*-dimensional convex bodies, and

$$
c(K) \le 2^n (n \ln n + n \ln \ln n + 5n)
$$

for centrally symmetric ones. Nevertheless, we are still far away from the solution of the conjecture, even the three-dimensional case.

Let *T* be a unit regular tetrahedron. A diminished copy of *T* is the image of *T* under a homothety with positive ratio smaller than 1. Let *m* be a positive integer and let $\gamma_m(T)$ be the smallest positive number r such that T can be covered by m translates of rT. Zong [9] gave the results of $\gamma_4(T) = \frac{3}{4}$
and $\gamma_5(T) = \frac{9}{13}$. However, the values of $\gamma_6(T)$, $\gamma_7(T)$ and $\gamma_8(T)$ were not given then. In this article we give the upper bounds of $\gamma_6(T)$, $\gamma_7(T)$ and $\gamma_8(T)$.

In the following proofs, we get the upper bounds of $\gamma_m(T)$ for $m = 6, 7, 8$ mainly depending on giving particular configurations. Assume tT is a diminished copy of T for some positive number $t(0 < t < 1)$, *m* is a positive integer, and T_1 , T_2 , T_3 , T_4 are used to denote four translates of tT . Firstly, we put T_1, T_2, T_3, T_4 at four corners of *T*, satisfying one of $T_i's$ corners coincides with the corresponding corner of *T* for i = 1, 2, 3, 4. Then, we put $m-4$ translates of tT to cover the rest of *T* which is uncovered in the first step exactly right. Finally, we get an equation about *t* by analysing the structural properties of this configuration, such as the figure formed by the projections of all translates of *tT* in the configuration in one of *T ′ s* side face and the bottom faces of some of all translates of *tT*. Thus, we get a precise value for *t* in this given configuration, which is an upper bound of $\gamma_m(T)$ *.*

2 Main Results

Theorem 2.1. $\gamma_6(T) \leq \frac{27}{40}$ $\frac{21}{40}$.

Proof. We denote the six small congruent tetrahedra by *A*, *B*, *C*, *D*, *E*, *F*. We put *A*, *B*, *C*, *D* at each corner of the unit regular tetrahedron, and assume the side length of *A* is *t*. We can see that there is a small tetrahedron *K*¹ formed by the intersection of *A*, *B* and *C*. Its side length is:

$$
1 - 6 \times \frac{(1 - t)}{2} = 3t - 2.
$$

On each face of the unit regular tetrahedron, there is a small tetrahedron just the same size as *K*¹ on the center of the face respectively and we call them K_2 , K_3 and K_4 .

So, to give an appropriate configuration, we first put *E* above K_1 such that K_1 's top vertex *p* is just on the bottom face of E and p is also the centroid of the bottom face of E . See Fig. 1(*a*).

Fig. 2. case for m=6

Fig. 2(a) shows the bottom face of *E*. Since *p* is the centroid of the face, we can get that $mn = \frac{t}{c}$ $\frac{6}{3}$. From our observation, the space that still be uncovered is three small tetrahedra *L*1, *L*2, *L*³ which are cling to K_2 , K_3 and K_4 respectively and its side length is:

$$
(2t-1) - 2 \times (3t - 2) - \frac{t}{3} = 3 - \frac{13}{3}t.
$$

So the place of *F* must satisfy that 2 vertices of *L*¹ (*L*² and *L*³) are just on the bottom face and the side face respectively. The picture of Fig. 2(b) shows the bottom face of *D*, the dotted regular triangle is the intersection part of *F* and the bottom face of *D*. Since the 3 small triangles are the faces of *K*2, *K*³ and *K*4, we can get that the side length of the dotted regular triangle is:

$$
t - 3 \times (3t - 2) = 6 - 8t.
$$

Finally, from the side faces of *D* and *F* ,we can get:

$$
t - (6 - 8t) = 3 - \frac{13}{3}t
$$

$$
t = \frac{27}{40}.
$$

So, A, B, C, D, E, F of side length $\frac{27}{40}$ can cover T by the configuration in Figure 1(a), then we have $\gamma_6(T) \leq \frac{27}{40}$ \Box $\frac{21}{40}$.

Theorem 2.2. $\gamma_7(T) \leq \frac{81}{12}$ $\frac{01}{121}$.

Proof. We denote the seven small congruent tetrahedra by *A*, *B*, *C*, *D*, *E*, *F*, *G*.

Fig. 3. case for m=7

Here, to give an appropriate configuration, the placements of *A*, *B*, *C*, *D* and *E* are the same as the case $m = 6$. The difference is that, since $\gamma_7(T) \leq \gamma_6(T)$, in the case for m=6, when *t* gets smaller, *F* can no more cover the three small regular tetrahedra *L*1, *L*2, *L*3. We need another tetrahedron *G* to cover the uncovered space. In other words, in the case of *m* = 7, *F* and *G* do the job just as *F* does in case for $m = 6$. Thus G covers three small regular tetrahedra of side length 9t-6, denoted by *M*1, *M*2, *M*3, *M*⁴ (See Fig. 3(a)). By observation and conventional calculation, we can get the part of a side of E which is covered by F but not by G in Fig. 3 has length $9 - \frac{40}{3}$ $\frac{16}{3}t$.

Fig. 4. case for m=7

Fig. 4 shows the bottom of *D*. The dotted regular triangle is the intersection part of *F* and the bottom face of *D*. Since the 3 small triangles are the faces of *K*2, *K*³ and *K*4, we can get that the side length of the dotted regular triangle is 24 *−* 35*t*.

Finally, from the side faces of *D* and *F* in Figure 3(b), we have:

$$
24 - 35t = t - (9t - 6) - (9 - \frac{40}{3}t)
$$

$$
t = \frac{81}{121}.
$$

Similar to Theorem 2.1, we get $\gamma_7(T) \leq \frac{81}{12}$ $\frac{01}{121}$.

Theorem 2.3. $\gamma_8(T) \leq \frac{5}{8}$ $\frac{6}{8}$.

Proof. We denote the eight small congruent tetrahedra by *A*, *B*, *C*, *D*, *E*, *F*, *G*, *H*.

The case for $m = 8$ is different from the case when $m = 6$ or $m = 7$. Since when $m \le 7$, there must be $t \geq \frac{2}{3}$ $\frac{2}{3}$.

Fig. 5. case for m=4

Just as Fig. 5 shows: when $t = \frac{2}{3}$ $\frac{2}{3}$ on one face of *T*, the intersection of 3 side faces of different 3 small translates of *T* is just a point. So when $t < \frac{2}{3}$ $\frac{2}{3}$, there will be an uncovered small regular triangle on the middle of each face of *T*.

We first put *A*, *B*, *C* and *D* on each corner of *T*. Then we put *E*, *F*, *G* and *H* on each face of *T*. In Fig. $6(a)$, we just draw E instead of F , G and H .

Fig. 6. case for m=8

 \Box

Fig. 7. shows the bottom face of *D*. The dotted regular triangle is the intersection part of *E* and the bottom face of *D*. To give an appropriate configuration, we need to satisfy that the vertices p_1 , p_2 and p_3 of the dotted triangle $p_1p_2p_3$ are just on m_1n_1 , m_2n_2 and m_3n_3 respectively. So we can get the side length of $p_1p_2p_3$ is: $2 \times (2 - 3t) = 4 - 6t$.

Fig. 7. case for m=8

Finally, from the side faces of *D* and *E* in Fig. 6(b), we have:

$$
(4 - 6t) + (1 - t) = t
$$

$$
t = \frac{5}{8}.
$$

Similar to Theorem 2.1, we get $\gamma_8(T) \leq \frac{5}{8}$ $\frac{8}{8}$.

3 Conclusions

In this paper, based on Zong's work of $\gamma_4(T) = \frac{3}{4}$ and $\gamma_5(T) = \frac{9}{13}$, we get the upper bounds of $\gamma_6(T)$, $\gamma_7(T)$ and $\gamma_8(T)$ by giving some particular configurations and analysing their structural properties. Nevertheless, we are still not sure of their exact values and try to look for a better way to solve this problem completely. Furthermore, according to the results of $\gamma_4(T)$ and $\gamma_8(T)$, we consider if there is a general formula for $\gamma_{2m}(T)$ for all integers $m \geq 2$. We think it's a good question to think about in the future.

Acknowledgement

This work was supported by National Natural Science Foundation of China (11971346) and the National Natural Science Foundation of China (11801410).

Competing Interests

Authors have declared that no competing interests exist.

References

- [1] Levi FW. Ein geometrisches Uberdeckungsproblem, Arch Math. 1954;5: 476-478. ¨
- [2] Hadwiger H. Ungeläte Problem No. 20, Elem Math. 1957;12:121.
- [3] Bezdek K. The illumination conjecture and its extensions. Period Math Hungar. 2006;53:59-69.

 \Box

- [4] Boltyanski VG, Martini H, Soltan PS. Excursions into combinatorial geometry. Berlin: Springer-Verlag; 1997.
- [5] Brass P, Moser W, Pach J. Research problems in discrete geometry. New York: Springer-Verlag; 2005.
- [6] Zong C. The kissing number, blocking number and covering number of a convex body. Contemp Math. 2008;453:529-548.
- [7] Lassak M. Solution of Hadwiger's covering problem for centrally symmetric convex bodies in *E* 3 . J London Math Soc. 1984;30:501-511.
- [8] Rogers CA, Zong C. Covering convex bodies by translates of convex bodies. Mathematika. 1997;44:215-218.
- [9] Zong CM. A quantitative program for Hadwiger's covering conjecture. Science China Mathematics. 2010;53:2551-2560.

 $\mathcal{L}=\{1,2,3,4\}$, we can consider the constant of the constant $\mathcal{L}=\{1,2,3,4\}$ *⃝*c *2021 Zhang et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.*

Peer-review history:

The peer review his[tory for this paper can be accessed here \(Please](http://creativecommons.org/licenses/by/4.0) copy paste the total link in your browser address bar)

http://www.sdiarticle4.com/review-history/67720