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Abstract 
 

Over the years, the issues surrounding the division of zero by itself remained a mystery until year 2018 
when the mystery was solved in numerous ways. Afterwards, the same solutions provided opened many 
other doors in academic space and one of the applications is in sure probabilities. This research is all 
about the sure probabilities computed from the zero divided by itself point of view. The solutions 
obtained in the computations are in harmony with logic and basic knowledge. A wide range of already 
existing probability distribution functions has been applied in different scenarios to compute the sure 
probabilities unanimously and new findings have also been encountered along the way. Some of the 
discrete and continuous probability distribution functions involved are the binomial, hypergeometric, 
negative binomial, Poisson, normal and exponential among others. It has been found in this work that 
sure probabilities can be evaluated from the division of zero by itself perspective. Another new finding is 
that in case of combinatorial, if the numerator is smaller than the denominator, then the solutions tend to 
zero when knowledge in gamma functions, integrations and factorials is applied. Again, if the case of 
continuous pdf involves integration and random variable specified in the direction of the parameter, then 
indirect computation of such probabilities should be applied. Finally, it has been found that the expansion 
of the domains of some of the parameters in some existing probability distribution functions can be 
considered and the restriction in conditional probabilities can be revised. 
 

 
Keywords: Definite probability; division of zero by itself; probability distribution function. 
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1 Introduction 
 
Generally, probability is the percentage or proportion of times of our expectation of outcomes when it comes 
to happening of events; which is usually when the experiment has not yet been done [1]. Probability refers to 
the likelihood of the occurrence of an event and assigns a number between 0 ��� 1 to an event [2]. An 
example is when we have a coin being tossed once in which there are only 2 possible outcomes, head and 
tail, each with probability ½ or 50%. Here, there is 50% chances of each event happening (50% chances of 
getting a tail and 50% chances of getting a head if the coin is tossed). The expected probabilities can change 
when the actual experiment is conducted. E.g. there may be 10 boys and 10 girls in a class and experiment 
may show that when some eight students are chosen at random with replacement, there is always 3 boys and 
5 girls in the sample. This may lead to probability becoming 0.625 or 62.5% for girls from 50%. On the 
other hand, a random variable, say Y or X, is a real valued function defined on the sample space, S, of a 
random experiment; a random experiment is any experiment that can be performed in the same set of 
conditions repeatedly; a sample space is the set of all possible outcomes of a random experiment or elements 
of a set describing the outcomes of an experiment of interest and an event is a specific outcome that results 
when the experiment is performed, distinct outcomes in a set or subsets of a sample space S [1,2,3,4,5]. A 
sample point can be defined as each outcome in a sample space [6]. Most of the books used in probability 
and statistics have widely covered most of the axioms involved in probabilities such as the range of a 
probability value, addition and multiplication rules etc. [7]. 
 

2 Definite Probabilities 
 
Definite probabilities are chances that are certain or sure. They are sure probabilities in the sense that one is 
certain whether an even can or cannot occur/happen. When one is sure that the even under question must 
occur, then the definite probability is 1. Otherwise, the definite probability is 0 and when such a case occurs, 
then we have an impossible event [6]. The two limits in chances of events are 0 and 1 and are defined in this 
work as the definite/sure/certain probabilities or chances. 
 

2.1 Probability distribution functions 
 
There are many probability distributions functions (pdfs) each corresponding to unique characteristics. Each 
distribution may have one or many parameters. The probability distributions are classified as either 
continuous or discrete. Examples of probability distributions are Bernoulli, Normal, Gamma, Binomial, Chi-
Square, Binomial, Exponential, Negative Binomial, Poisson, Hypergeometric, geometric among others 
[4,5,8,9]. For the case of discrete pdfs, some of the functions involved in this work are: 
 
The binomial distribution [3,8,10]: 
 

�(�) = �
�

�

�
� ������, � = 0,1,2,… ,�

0, ��ℎ������

� 

 
The Bernoulli distribution [3,8,10]: 
 

�(�) = �
������, � = 0,1

0, ��ℎ������
� 

 
The Poisson distribution [2,3,9,10]: 
 

�(�) = �
��� ∗ ��

�!
, � = 0,1,2,3,… ,� > 0

0,�����ℎ���

� 
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The geometric distribution [3,8,10]: 
 

�(�) = �
���, � = 0,1,2,…

0, ��ℎ������
�                   ��                    �(�) = �

�����, � = 1,2,3,…
0, ��ℎ������

� 

 
The hypergeometric distribution [3,8,9,10]: 
 

�(�) = �

�� ��
���

���
�

�

��
�

�
, � = 0,1,2,…

0, ��ℎ������

� 

 
The negative binomial distribution [3,8,10]: 
 

�(�) = Pr (�� = �) = ��
� − 1

� − 1
�������, � = �,� + 1,� + 2,…

0, �����ℎ���

� 

 
The continuous distributions involved in this work are: 
 
The normal distribution [3,8,9,10]: 
 

�(�) = �

1

√2���
�

� (�� � )�

�� �  
; � > 0,− ∞ < �,� < ∞

0;  ��ℎ������

� 

 
The exponential distribution [3,8]: 
 

�(�) = �

1

�
�

��
�� , � > 0,� > 0

0, ��ℎ������

� 

 
The gamma distribution [3,8,11]: 
 

Γ(�) = � �� ��
�

�

��� �� ; � > 0 

 
There are many other distributions that have not been tackled in this work some of which are used widely in 
research and are encountered often. Such include the Chi-Square, F, Student t, multinomial, rectangular, 
bivariate, uniform, beta and Dirichlet distributions among others [12,13]. Given a pdf, it’s possible to 
compute probabilities of specified ranges of the random variables involved [7,14,15]. For examples; 
 
What is ��(� = 3) when � = 0.4,� = 1 − � = 0.6 and � = 15 in a binomial distribution? 
 

We can have ��(� = 3) = �(3) = ���
�

�0.4�0.6���� = 0.0634 

 
In hypergeometric distribution, what is the probability of finding 4 green balls in a sample of size 12 balls 
from a bucket that has 20 yellow and 30 green balls?  
 

We have �(� = 4) =
���� ��

��� � ����
� �

���
���

=  0.0284. 
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Supposing � = 8 ���  � = 20, what is ��(� < 6) in a normal distribution? In this case, ∅ �
����

�
� = 1 −

∅(1.75) = 1 − 0.960 = 0.04. 
 

2.2 Computations involving definite probabilities 
 
The computations in this work widely involve the division of zero by itself, 

�

�
, that can be represented in 

various forms as is indicated in [16] such as 0�, ��
�
� and  

�!

�!(���)!
, whose answer has been determined in many 

ways to be 1 (i.e. 
�

�
 = 0�= ��

�
� = 

�!

�!(���)!
 = 1). The work also applies the knowledge in limits.  

 
Case 1: 
 
Consider the case where the probability of a plastic cup becoming the sun is to be determined. Based on this, 
we can judge that the definite probability is 0, i.e. p = 0 while the definite probability of the plastic cup not 
becoming the sun is 1, i.e. q = 1 (1 – p = 1 – 0 = 1). By assuming the exponential distribution, then the 
average waiting time is ∞  �.�.� =  ∞ . This means that we can wait forever for the plastic cup to change into 
the sun. Let X be a random variable representing waiting time. The probability distribution function (pdf) of 
a random variable, say X, that follows exponential distribution is given by  
 

�(�) = �

1

�
�

��
�� , � > 0,� > 0

0, ��ℎ������

� 

 
Suppose we want to use this information to compute ��(� > 50) where X is the waiting time (continuous 
variable) for the plastic cup to turn into the sun. This is to say the probability that we will wait for more than 
50-unit time for the plastic cup to become the sun (more than 50-unit time will pass before the plastic cup 
becomes the sun). We can approach this as follows: 
 

��(� > 50) =  1 −  ��(� < 50) =  �(� > 50) = 1 − �
1

�
�

��
�� �� = 1 −

��

�

�
1

∞
�

��
�⁄ ��

��

�

=  1 − �
1

∞
∗

1

�− 1
∞� �

� ∗ ��
��

�⁄ �
�

��
= 1 − − �0 ∗

1

0
� ∗ ��

���
�� − �

��
�� �

= 1 + �
0

0
� ∗ (�� − ��) =  1 + 1(1 – 1) =  1 + 0 = 1. 

 
This means that the probability of waiting for more than 50-unit time for the change to occur is 1 which is in 
agreement with the definite probability that we must wait forever for the change to take place. 
 
Now suppose that we want ��(� < 50). This is the probability of waiting for less that 50-unit time before 
the plastic cup changes into the sun. But from the definite probability information is that this is not possible 
because we must wait forever (� =  ∞ ) for the change to happen (� =  0). Using the pdf of exponential 
distribution,  
 

Pr(X < 50) = �
1

�
�

��
�� �� =  

��

�

�
1

∞
�

��
�⁄ ��

��

�

= �
1

∞
∗

1

�− 1
∞� �

� ∗ ��
��

�⁄ �
�

��

=  − �0 ∗
1

0
� ∗ ��

���
�� − �

��
�� � = − �

0

0
� ∗ (�� − ��) = − (1)∗ (0) = 0. 
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This means that the probability of waiting for less than 50-unit time for the change to occur is 0 which is in 
agreement with the definite probability. 
 
A possible question can be, why not find ��(� > 50) directly without involving 1 −  ��(� < 50)? To 
answer this question, first, one can try to integrate the pdf for exponential distribution with the limits 

[50,∞ ]. You will discover that, the integral involves 
�

�
 and this has not yet been solved adequately and 

convincingly. Secondly, [16] has mentioned that the cases that involve 
�

�
 need to be evaluated carefully. The 

path to take when the scenario is encountered requires one to be very careful because diverse, awkward and 
contradicting results can be obtained depending on the path followed. To know the direction to take when 
working with continuous distributions’ pdfs involving definite probabilities with integrations, one rule to 
observe is to ensure that the integral should not be carried out directly when X is specified to be in the same 
direction as the parameter such as � in this case (i.e. ��(� > �) ��� � = ∞ ). In this case, X is specified to 
be in the direction of �. 
 
Case 2: 
 
Consider the case where the probability of a plastic cup not becoming the sun is to be determined. We can 
easily judge that the definite probability is 1, i.e. � =  1 while the definite probability of the plastic cup 

becoming the sun is 0, i.e. � =  0 (1 – � =  1 – 1 =  0). By assuming the exponential distribution, then 
the average waiting time is 0 �.�.� =  0. This means that we can wait for 0-unit time for the plastic cup not 
to change into the sun. Here, it means that, just as we start to wait for the plastic cup not to change into sun, 
the change does not occur. We can use the exponential distribution and violate the condition that � > 0. We 
are violating the condition because during the discovery of these functions and distributions till year 2017, a 

case where 
�

�
 occurs could not be defined. However, the 

�

�
= � and 0� = � have been previously defined in a 

wide range of methods in [16]. Let X be a random variable representing waiting time. If we are interested in 
��(� < 50), then we have 
 

Pr(X < 50) =  1 −  Pr(X > 50) = �(� < 50) = 1 − �
1

�
�

��
�� �� = 1 −

�

��

�
1

0
�

��
�� ��

�

��

=  1 −
1

0
∗

1

�− 1
0� �

∗ ��
��

�� �
��

�
= 1 − − �

0

0
� ∗ ��

��
�� − �

���
�� �

= 1 + 1(��� − ��� ) =  1 + (0 – 0) =  1 + 0 = 1. 
 
This means that the probability of waiting for less than 50-unit time for the change not to occur is 1 which is 
in agreement with the definite probability. 
 

Now suppose that we want ��(� > 50). This is the probability of waiting for more that 50-unit time before 
the plastic cup doesn’t change into the sun. But from the definite probability information is that this is not 
possible because we must wait for 0-unit time (� =  0) for the change not to happen (q = 0). Using the pdf of 
exponential distribution,  
 

Pr(X > 50) =  �(� > 50) = �
1

�
�

��
�� �� = 1 −

�

��

�
1

0
�

��
�� ��

�

��

=  
1

0
∗

1

�− 1
0� �

∗ ��
��

�� �
��

�

= − �
0

0
� ∗ ��

��
�� − �

���
�� � = − 1(��� − ��� ) =  − (0 – 0) =  0.  

 

This means that the probability of waiting for more than 50-unit time for the change not to occur is 0 which 
is in agreement with the definite probability. 
 

A possible question can be, why not find ��(� < 50) directly without involving 1 −  ��(� > 50)? Again, 
we answer like in case 1 that X is heading in the same direction as � (�.� ��(� < 50) ��� � = 0) and 
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hence, computing it directly leads to awkward and contradicting answers. We therefore need to be careful in 
evaluating such probabilities with integrations. So, the general rule is to avoid direct computations when X is 
specified to be in the same direction as the parameter �. 
 

Case 3: 
 

Consider driving a car in the streets of the capital city of your country. Suppose your village is about 300 km 
away from the capital city and your house is in that village. What is the probability that the car you are 
driving in the capital city will cause an accident in your house in the village? Here, the definite probability is 
0, i.e. � =  0 and the definite probability that that car won’t cause an accident in your house is 1, i.e. 
� =  1 = (1 − �). Suppose you are to perform ∞  trials (i.e. drive your car ∞   times where each drive has 
specified distance within the capital city) in the capital city. Performing the experiment as many times as 
possible would reveal that you can cause 0 accidents on average. Suppose we use a random variable X that 
follows the Poisson distribution to represent the number of accidents. Thus, the pdf of X is given by: 
 

�(�) = �
��� ∗ ��

�!
, � = 0,1,2,3,… , � > 0

0,�����ℎ���

� 

 

We may want to find ��(� = 0) as well as ��(� > 0). Before we embark on solving the puzzle, we need to 
define the parameter � from the information provided. Here, on average, you can cause 0 accidents in your 
house in the village while driving your car in the capital city. Repeating the experiment for so many number-
of-times would always yield � = 0. Having defined � = 0, then we can apply the Poisson distribution 

function and violate the condition that � > 0, because [16] defined 
�

�
= � and 0� = �. For ��(� = 0), we 

have 
 

��(� = 0) =  �(0) =  
��� ∗ ��

0!
=

��� ∗ 0�

0!
=

�� ∗ 0�

0!
=

1 ∗ 0�

1
= 0� = 1. 

 

This is the probability of causing no accident in your house in the village while driving your car in the 
capital city and is in agreement with the definite probability. 
 

For ��(� > 0), we can use the formula 
 

��(� > 0) =  1 −  ��(� = 0) =  1 – 1 =  0.  
 

This is the probability of causing an accident (or the probability of causing some accidents) in the house 
while in capital city driving. 
  
Alternatively, we can use the Poisson pdf to find  
 

Pr(X > 0) =  ��(� = 1) +  ��(� = 2) +  …  +  ��(� = ∞ )  
 

which would give us the probability of causing any number of accidents in the house that is in the village 
while driving in the capital city that is 300 km away. 
 

��(� = 1) =  �(1) =  
��� ∗ ��

1!
=

��� ∗ 0�

1!
=

�� ∗ 0�

1!
=

1 ∗ 0

1
= 0. 

��(� = 2) =  �(2) =  
��� ∗ ��

2!
=

��� ∗ 0�

2!
=

�� ∗ 0�

2!
=

1 ∗ 0

2
= 0. 

��(� = 3) =  �(3) =  
��� ∗ ��

3!
=

��� ∗ 0�

3!
=

�� ∗ 0�

3!
=

1 ∗ 0

6
= 0. 

…  

��(� = ∞ ) =  �(∞ ) =  
��� ∗ ��

∞ !
=

��� ∗ 0�

∞ !
=

�� ∗ 0�

∞ !
=

1 ∗ 0

∞
= 0. 
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Therefore; 
 

Pr(X > 0) =  ��(� = 1) +  ��(� = 2) +  …  +  ��(� = ∞ ) =  0 +  0 +  0 + ⋯  +  0 =  0. 
 
which in agreement with the definite probability. This generally means that there is no way (it’s not 
possible) you can cause an accident in the village that is about 300 km away from the capital city. 
 
What about a case of ��(� < 3)? Here we can find the probability by just applying the above computed 
probabilities as follows: 
 

��(� < 3) = Pr(x = 0)+  Pr(x = 1)+  Pr(X = 2) = 1 + 0 + 0 = 1. 
 
The probability of causing less than three accidents in the village when driving in the capital city is 1. Here, 
we learn that as long as we specify the probability of causing number of accidents less than a given value, 
then the probability will always be 1 because 0 accidents is always included in that specification and it is the 
one that carries the probability 1 while the other numbers in the range carry probability 0. I.e. (��(� < 1) =
1, ��(� < 2) = 1, ��(� < 20) = 1, …  ��(� < 500) = 1, ���. On the other hand, specifying the 
probability of number of accidents greater than a given value will always give probability 0. I.e. (��(� >
1=0,  ���>2 =0,  ���>20 =0,  … ���>500 =0,  ���. 
 
Case 4: 
 
Consider a case where right ‘now’ you are observing and recording whether or not you are alive at that 
time/moment. If you are observing and be able to record ‘now’, then the definite probability that you are 
alive at that time is 1, i.e. � =  1 while the definite probability that you are not alive at that time when 
making this observation and recording it ‘now’ is 0, i.e. � =  0. If you make 10 trials, then, this can be the 
binomial distribution with parameters � =  1 and � =  10. Let X be a random variable representing the 
number of recordings made ‘now’. In case � =  1  (making 1 trial), then this becomes the Bernoulli 
distribution.  
 
Starting with Bernoulli, the pdf of a random variable X following the Bernoulli distribution is given by: 
 

�(�) = �
������, � = 0,1

0, ��ℎ������
� 

 

If we are interested in ��(� = 0) as well as ��(� = 1), then we have; 
 

��(� = 0) =  �(0) = �� ∗ ���� = 1� ∗ 0��� = 1 ∗ 0� = 0. 
 
This is the probability that you will not make the observation and recording ‘now’ that you are alive at that 
time and is in harmony with the definite probability. It also means the probability of making 0 observations 
and recordings ‘now’ is 0 when you have made 1 trial. 
 

Pr(X = 1) =  �(1) = �� ∗ ���� = 1� ∗ 0��� = 1 ∗ 0� = 0�. 
 
This is the probability that you will make the observation and recording ‘now’ that you are alive at that time 
and is in harmony with the definite probability. It also means that, the probability of making 1 observation 
and recording ‘now’ is 1 when you have made 1 trial. A general explanation will be made in the case of 
many trials- binomial. 
 
Revisiting case 3, it is known that � =  0 is the definite probability of causing an accident in the house while 
� =  1 is the definite probability of not causing any accident in the house.  Suppose you make 1 drive/trial. 
Then for ��(� = 0) we get; 
 

Pr(X = 0) = �(0) = �� ∗ ���� = 0� ∗ 1��� = 0� ∗ 1� = 0� = 1. 
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This gives the probability of causing no accident (or the probability of causing 0 accidents) in the house and 
agrees with the definite probability. 
 
And for ��(� = 1) we get; 
 

Pr(X = 1) = �(1) = �� ∗ ���� = 0� ∗ 1��� = 0 ∗ 1� = 0. 
 
This gives the probability of causing an accident (or the probability of causing 1 accident) in the house and 
agrees with the definite probability. 
 
For binomial distribution, � > 1, the pdf of random variable X that follows the binomial distribution is given 
by: 
 

�(�) = �
�

�

�
� ������, � = 0,1,2,… ,�

0, ��ℎ������

� 

 
For case 4 and ��(� = 0), we can compute the value as follows: 
 

Pr(� = 0) = �(0) = �
�

0
� ������ = �

�

0
� 1�0��� = 1 ∗ 1 ∗ 0� = 0, �

�

0
� ≥ 1. 

 
This gives the probability that you won’t make any observation and recording ‘now’ that you are alive at that 
time and agrees with the definite probability. It also means the probability of making 0 observations and 
recordings ‘now’ that you are alive at that time when you have made � > 1 trials.  
 
For ��(� > 0), we can use the relation: 
 

��(� > 0) =  1 – ��(� = 0) =  1 – 0 = 1. 
 
Alternatively, 
 

��(� > 0) =  ��(� = 1) +  ��(� = 2) +  ��(� = 3) +  …  +  ��(� = �). 

Pr(� = 1) = �(1) = �
�

1
� ������ = �

�

1
� 1�0��� = � ∗ 1 ∗ 0��� = 0, �

�

1
� ≥ 1. 

Pr(� = 2) = �(2) = �
�

2
� ������ = �

�

2
� 1�0��� = �

�

2
� ∗ 1 ∗ 0��� = 0, �

�

2
� ≥ 1. 

Pr(� = 3) = �(3) = �
�

3
� ������ = �

�

3
� 1�0��� = �

�

3
� ∗ 1 ∗ 0��� = 0, �

�

3
� ≥ 1. 

…  

Pr(� = �) = �(�) = �
�

�
� ������ = �

�

�
� 1�0��� = 1 ∗1 ∗ 0� = 0� = 1,     �

�

�
� ≥ 1. 

 
Pr(X > 0) =  Pr(X = 1)+  Pr(X = 2)+  Pr(X = 3)+  …  +  Pr(X = n) = 0 + 0 + 0 + ⋯ + 1 = 1. 

 
And this gives the probability that you will make all observations and recordings in all ‘now’ that in all trials 
you are alive at that time and agrees with the definite probability.  
 
A possible question here can be, why are the probabilities for all the first � − 1 trials 0? 
 
The explanation is that this is a sure probability that if you are able to make, say k trials, then you are alive in 
all the trials hence the definite probability appears in the last trial you make. For example, if you make, say 5 
trials, then you are alive in all the trials and if you cannot make the 6th trial, then you are not alive after the 
5th trial. It is not possible to make, say only 3 observations and recordings, and still be alive to make a total 
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of 5 trials. That’s the reason why the sure probability accumulates until you make the last trial, and this 
applies also for the case of Bernoulli where � = 1. 
 

Revisiting case 3, the definite probability of the car in the city causing an accident in the village house is 0, 
i.e. p = 0 and the definite probability that that car won’t cause an accident in your house is 1, i.e. q = 1. 
Suppose you make � > 1 trials. We can have: 
 

Pr(� = 0) = �(0) = �
�

0
� ������ = �

�

0
� 0�1��� = 1 ∗ 0� ∗ 1� = 0� = 1,   �

�

0
� ≥ 1 

 

This is the probability of causing no accident (or the probability of causing 0 accidents) in the house while 
busy driving in capital city and confirms the definite probability. 
 
For ��(� > 0), we can use 
 

��(� > 0) =  1 – ��(� = 0) =  1 – 1 = 0. 
 
This is the probability of causing any number of accidents in the house. 
 
Alternatively, 
 

��(� > 0) =  ��(� = 1)+  ��(� = 2)+  ��(� = 3)+  …  +  ��(� = �). 

Pr(� = 1) = �(1) = �
�

1
� ������ = �

�

1
� 0�1��� = � ∗ 0 ∗ 1��� = 0,   �

�

1
� ≥ 1. 

Pr(� = 2) = �(2) = �
�

2
� ������ = �

�

2
� 0�1��� = �

�

2
� ∗ 0 ∗ 1��� = 0, �

�

2
� ≥ 1. 

Pr(� = 3) = �(3) = �
�

3
� ������ = �

�

3
� 0�1��� = �

�

3
� ∗ 0 ∗ 1��� = 0, �

�

3
� ≥ 1. 

…  

Pr(� = �) = �(�) = �
�

�
� ������ = �

�

�
� 0�1��� = 1 ∗0 ∗ 1� = 0,   �

�

�
� ≥ 1. 

 
Pr(X > 0) =  Pr(X = 1)+  Pr(X = 2)+  Pr(X = 3)+  …  +  Pr(X = n) = 0 + 0 + 0 + ⋯ + 0 = 0. 

 
This is the probability of causing any number of accidents in the house and agrees with the definite 
probability. It translates to the conclusion that it’s not possible to cause an accident in the house in the 
village while in the city driving. 
 

Consider the same case 3 using normal approximation to binomial [2]. We can use the continuous 
distributions to estimate probabilities involving discrete cases [17]. In such a case, the random variable say 
X is specified in a range such as ��(6 < � < 15) and not a point like ��(� = 6). Another condition is that 
the probability � should approach 0 as sample size �  tends to ∞  or �  becomes very large. The � =  0, 

� =  1 and fixing � =  100,000, we can find ��(� > 10). We first define � = �� as well as � = � ��� 

[17]. In this case, 
 

 � = �� = 100,000 ∗0 = 0 and � = � ��� = √100,000 ∗ 0 ∗ 1 = 0.  
 

Suppose we specify in the binomial case that we want to find Pr(� ≥ 10). Then, since � is very small, we 
can have the approximation of this probability using the normal distribution as follows; 
 

Pr(� > 10) = 1 − � �
10 − �

�
� = 1 − � �

10 − 0

0
� = 1 − � �

10

0
� = 1 − � (∞ ) = 1 − 1 = 0. 

 

This is the probability of causing more than 10 accidents in your house in the village while driving your car 
in the capital city that is about 300 km away. It’s in agreement with the definite probability. NB: Using the 

method of limits, one can verify that as 
��

�
→ ∞ . 
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For ��(� < 10), we can use the relationship  
 

��(� < 10) =  1 −  ��(� > 10) =  1 – 0 =  1. 
 

This is the probability of causing less than 10 accidents in the village while in the city. Alternatively,  
 

Pr(� < 10) = � �
10 − �

�
� = � �

10 − 0

0
� = � �

10

0
� = � (∞ ) = 1. 

 

This gives the chance of causing less than 10 accidents in the house in the village while driving in capital 
city that is about 300 km away. It’s in agreement with the definite probability. 
 
Consider case 3 and the geometric distribution where p = 0 (chances of causing an accident in the house 
while driving in the city, q = 1 (chances of not causing an accident in the house while driving in the city). 
We can find ��(� > ��������� �����) or ��(� <  ��������� �����). But wait! What is the pdf of a 
random variable X that follows geometric distribution? The pdf is of the form: 
 

�(�) = �
���, � = 0,1,2,…

0, ��ℎ������
� 

 

There is nothing wrong with this pdf but we find that the pdf cannot be used whenever p = 0. This is 
because, the multiplication of any value by 0 will always reduce the whole thing to 0. I.e. 
 

�(0) = 0 ∗ 1� = 0,     �(1) = 0 ∗ 1� = 0, �(2) = 0 ∗ 1� = 0,   … ,    �(∞ ) = 0 ∗ 1� = 0. 
 
This means that there is no way we can obtain the sure probability of 1. 
 
However, if we reverse the situation and have � =  1 (probability of not causing an accident in the house in 
village when driving in the city) and � =  0 (probability of causing an accident in the house in the village 
while driving in the city), here we can apply the geometric distribution pdf as follows: 
 

Pr(� = 0) = �(0) = 1 ∗ 0� = 0� = 1,                                 Pr(� = 1) = �(1) = 1 ∗ 0� = 0� = 0, 
Pr(� = 2) = �(2) = 1 ∗ 0� = 0� = 0,           … ,             Pr(� = ∞ ) = �(∞ ) = 1 ∗ 0� = 0� = 0. 

 
If the pdf was of the form; 
 

�(�) = �
�����, � = 1,2,3,…

0, ��ℎ������
� 

 
The we would have; 
 

Pr(� = 1) = �(1) = 1 ∗ 0��� = 0� = 1,                       Pr(� = 2) = �(1) = 1 ∗ 0��� = 0� = 0, 
Pr(� = 3) = �(3) = 1 ∗ 0��� = 0� = 0,      … ,       Pr(� = ∞ ) = �(∞ ) = 1 ∗ 0� �� = 0� = 0. 

 
This means that the probability of being successful in ‘causing no accident’ in 1st trial/drive is 1 while that of 
being successful in ‘causing no accident’ in any other trial/drive is 0. And this make sense because we 
expect you to be successful in ‘causing no accident’ in the first trial/drive. Therefore, the probability of 
causing 0 accidents is 1 while that of causing any other number of accidents is 0. All these agrees with the 
case when the pdf is of the form �(�)= ���. For both forms, the probability 1 occurs only in the first case 
where �� = ���� = 0� = 1 and probability 0 occurs in the rest of all values of �� ��� ����. 
 
Case 5: 
 
Consider a bag containing, say, ‘N’ marbles. Suppose we have ‘m’ marbles that have traits of interest and we 
sample ‘n’ marbles from that bag. We can select the marbles randomly without replacement. A sampled 
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marble is either having the trait of interest or not. Let X denote the number of marbles in the sample that 
have the traits of interest. Hypergeometric distribution takes care of random variables like X where selection 
is done without replacement. If the selection is with replacement, then binomial distribution can take care of 
that. Let us go to the way of hypergeometric distribution where selection is without replacement. A random 
variable X that follows hypergeometric distribution has pdf given by: 
 

�(�) = �

�� ��
���

���
�

�

��
�

�
, � = 0,1,2,…

0, ��ℎ������

� 

 
N is the total number of items in the lot, m is the number of items in the lot with desired traits, n is the 
sample size while X is the number of items desired from the sample. The conditions to be satisfied are: 
 

� ≥ 0, � ≥ (�− ���ℎ��� �� ��������� �������), � ≥ �  and � ≥ � .  
 
Consider case 5 such that there are � = 100 marbles in total in a bag, � = 100 marbles with traits of 
interest in the bag, � = 20 marbles are sampled randomly from the bag and �  is the number of marbles in 
the sample with desired traits. Suppose the trait of interest is the colour ‘red’ hence there are � = 100 ‘red’ 
marbles in the bag. But do not forget that the � = 100 marbles hence all the marbles in the bag have trait of 
interest; they are all ‘red’ (i.e. � = � = 100 ‘red’ marbles). This further means that the sample has ‘red’ 
marbles only (i.e. � = 20 ‘red’ marbles). Let’s classify marbles that are in the bag with different colour as 
‘other’ marbles. This means that, the ‘other’ marbles are not red and hence have undesired trait. From the 
information provided, there are 0 ‘other’ marbles in the bag, 0 ‘other’ marbles can be sampled from the bag 
and 0 ‘other’ marbles are in the sample. The sure/definite probability can inform us in advance that the 
probability of finding 0 ‘other’ marbles from the sample is 1 i.e. 
 

 Pr(′other′ =  0 marbles) =  1.  
 
while the sure/definite probability of finding more than 0 ‘other’ marbles from the sample is 0 i.e. 
 

Pr(′other′ >  0 �������) =  0 = 1 − Pr(′other′ =  0 marbles)  
 
Similarly, the definite probability of having 0 ‘red’ marbles in the sample is 0 i.e. 
 

 Pr(′red′=  0 marbles) =  0  
 
while the definite probability of having more than 0 ‘red’ marbles from the sample is 1 i.e. 
 

Pr(′red� >  0 �������) =  1 = 1 −  Pr(′red′=  0 marbles)  
 
Here, we can start with the marbles in the bag to find the successive probabilities when selection is done 
without replacement as follows: 
 

���� =
������ �� ′���′ ������� ���� �� �ℎ� ��� �� ��� ���������

����� ������ �� ������� �� �ℎ� ���
 

 
hence 
 

���� =
100

100
= 1,���� =

99

99
= 1,���� =

98

98
= 1,...,����� =

81

81
= 1 = ���� 

 
Here, we find that, at any level of selection of a marble from the bag, the probability is constant and is a 
definite probability. For the case of the ‘red’ marbles in the sample, we have: 



 
 
 

Mwangi; AJPAS, 6(2): 1-26, 2020; Article no.AJPAS.53235 
 
 
 

12 
 
 

���� =
������ �� ′���′ ������� �� �ℎ� ������

����� ������ �� ������� �� �ℎ� ������
=

20

20
= 1 

 
Again, here we end up with a definite probability of red marbles in the sample. Both sequential sampling 
from the bag and the computations using the sampled marbles give the same definite probability as 1. For the 
‘other’ marbles, we can use the same idea and procedure to compute probabilities as follows: 
 

������ =
������ �� ′��ℎ��′ ������� ���� �� �ℎ� ��� �� ��� ���������

����� ������ �� ������� �� �ℎ� ���
 

 
hence 
 

���� =
0

100
= 0,���� =

0

99
= 0,���� =

0

98
= 0,...,����� =

0

81
= 0 = ������ 

 
For the case of the ‘other’ marbles in the sample, we have: 
 

������ =
������ �� ′��ℎ��′ ������� �� �ℎ� ������

����� ������ �� ������� �� �ℎ� ������
=

0

20
= 0 

 
Both agree that the probability of selecting an ‘other’ marble from the bag as well as finding an ‘other’ 
marble in the sample is 0. 
 
Before we embark on the application of the hypergeometric distribution, it can be noted that, [16] has shown 

the solutions to 
�

�
 = ��

�
� = 

�!

�!(���)!
 = 0� and by definition, ��

�
� = � �

���
� = n�� = n�� =

�!

�!(���)!
 [6,18]. Let’s now 

use the hypergeometric distribution function to find the ��(′��ℎ��′ =  0). Here, 
 

� =  100, � =  0, � =  20    ���     �  =  0 
 

��(′��ℎ��′ =  0) = �(0) =
�� ��

���
���

�
�

��
�

�
=

������
����

���
�
�

����
��

�
=

����
��

���
�
�

����
��

�
= �

0

0
� = 1 

 
Therefore, the chances of having 0 ‘other’ marbles from the sample is 1, agreeing with the definite 
probability stated initially.  
 
We can use this to find the ��(′��ℎ��′>  0) as follows: 
 

��(′��ℎ��′>  0) = �(′��ℎ��′> 0) = 1 − ��(′��ℎ��′ =  0) = 1 − 1 = 0 
 
Since there are no ‘other’ marbles in the bag and in the sample, then the chances of getting more than 0 
‘other’ marbles in the selected sample is 0, and this is in agreement with the definite probability.  
 
There is need to note that, if we use some other notations other than ��(��ℎ�� >  0), then the probability 
cannot be computed directly (but can be evaluated indirectly), and if one tries to compute, the probability 
becomes ‘awkward’. I.e. suppose we try 
 

��(′��ℎ��′ =  1) = �(1) =
�� ��

���
���

�
�

��
�

�
=

������
����

���
�
�

����
��

�
=

����
��

���
�
�

����
��

�
= 0.2469 ∗ �

0

1
� 

 

��(′��ℎ��′ =  2) = �(2) =
�� ��

���
���

�
�

��
�

�
=

������
����

���
�
�

����
��

�
=

����
��

���
�
�

����
��

�
= 0.0572 ∗ �

0

2
� 
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…  

��(′��ℎ��′ =  20) = �(20) =
�� ��

���
���

�
�

��
�

�
=

������
�����

�� �
��

�

����
��

�
=

����
�

�� �
��

�

����
��

�
= (1.8657 ∗10���)∗ �

0

20
� 

 

As can be seen from the computations, we cannot find the exact values of ��
�
�,��

�
� ��� � �

��
�. However, 

indirectly, if we try to solve any of ��
�
�,��

�
�,…  ��� � �

��
� using gamma functions, integrations and factorials 

[11,15], we find that the value tends to 0 for all cases leading the solutions to tend to 0. Therefore,  
 

��(′��ℎ��′ =  1)= �(1)=
�� ��

���
���

�
�

��
�

�
=

������
����

���
�
�

����
��

�
=

����
��

���
�
�

����
��

�
= 0.2469 ∗ �

0

1
� = 0.2469 ∗ 0 = 0 

 

��(′��ℎ��′ =  2)= �(2)=
�� ��

���
���

�
�

��

�
�

=
������

����
���

�
�

����

��
�

=
����

��
���

�
�

����

��
�

= 0.0572 ∗ �
0

2
� = 0.0572 ∗ 0 = 0 

…  

��(′��ℎ��′ =  20) = �(20)=
�� ��

���
���

�
�

��
�

�
=

������
�����

�� �
��

�

����
��

�
=

����
�

�� �
��

�

����
��

�
= (1.8657 ∗ 10���)∗ �

0

20
�

= (1.8657 ∗ 10���)∗ 0 = 0 
 
This means that the probability of having any number of ‘other’ marbles in the sample apart from 0 ‘other’ 
marbles is 0. This indeed agrees with the definite probability.  
 
Coming back to the ‘red’ marbles that are in the bag, we might be interested also in determining the 
probability of finding a specified number of red marbles in the sample. Without difficulties, one can 
compute the 
  

��(′���′ ������� = 20) =  1 – ��(′��ℎ��′> 0) = 1 − 0 = 1 
 
This means that the probability of finding all the sampled marbles as ‘red’ marbles is 1. Similarly,  
 

��(′���′ ������� = 0) =  1 – ��(′��ℎ��′= 0) = 1 − 1 = 0 
 
which is the probability of finding no ‘red’ marble in the sample. 
 
Alternatively, we can use the hypergeometric function- where 
� = 100,� = 100,� = 20 ��� � �� ��������� �� ������ �� ‘���’ ������� �� �ℎ� ������ - as well as 
the gamma functions, factorials and integrations [11,15] where necessary to compute some of the 
probabilities as follows: 
 

��(′���′ =  0) = �(0) =
�� ��

���
���

�
�

��
�

�
=

��������
����

�����
�

�

����
��

�
=

� �
��

�����
�

�

����
��

�
= �

0

20
� ∗ (1.8657 ∗ 10���)

= 0 ∗ (1.8657 ∗ 10���) = 0 
 

��(′���′ =  20) = �(20) =
�� ��

���
���

�
�

��
�

�
=

��������
�����

�����
��

�

����
��

�
=

��
�
�����

��
�

����
��

�
= �

0

0
� = 1 

 
These two agree with the definite probability.  
 
Other probabilities for specified number of ‘red’ marbles can be computed as follows: 
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��(′���′ =  1) = �(1) =
�� ��

���
���

�
�

��
�

�
=

��������
����

�����
�

�

����
��

�
=

� �
��

�����
�

�

����
��

�
= �

0

19
� ∗ (1.8657 ∗ 10���)

= 0 ∗ (1.8657 ∗ 10���) = 0 
 

��(′���′ =  2) = �(2) =
�� ��

���
���

�
�

��
�

�
=

��������
����

�����
�

�

����
��

�
=

� �
��

�����
�

�

����
��

�
= �

0

18
� ∗ (9.2354 ∗ 10���)

= 0 ∗ (9.2354 ∗ 10���) = 0 
…  

��(′���′ =  19) = �(19) =
�� ��

���
���

�
�

��
�

�
=

��������
�����

�����
��

�

����
��

�
=

��
�
�����

��
�

����
��

�
= �

0

1
� ∗ 0.2469

= 0 ∗ 0.2469 = 0. 
 
Here we find that, all the probabilities of finding less than 20 ‘red’ marbles in the sample are 0. Therefore, 
whenever the number of ‘red’ marbles is specified as less than what is sampled, then the probability of 
finding such number of ‘red’ marbles in the sample is 0. This is because, there is no way we can find fewer 
‘red’ marbles in the sample than what was sampled since all the sampled marbles were from the bag with 
only ‘red’ marbles. If we want ‘red’ marbles that are fewer than what was sampled, then it means that there 
are other marbles in the bag with different colours. But in our case, the marbles in the bag with ‘other’ 
colours were 0. Therefore, if we want to find ‘red’ marbles in the sample which are less than the number 
sampled, this would be misleading and the probability of getting such marbles in the sample is always 0. For 
example, suppose we want ��(‘���’= 6). Here, we imply that the remaining 20 − 6 = 14 marbles are of 
‘other’ colours apart from being ‘red’. Similarly, with the ‘other’ marbles, there is only one possibility of 
getting ‘other’ marbles in the sample- this is the possibility of finding 0 ‘other’ marbles in the sample 
because there were 0 ‘other’ marbles in the bag hence there can only be 0 ‘other’ marbles in the sample. 
Therefore, specifying the number of ‘other’ marbles to be greater than 0 means that there were ‘other’ 
marbles in the bag initially, which is not true. This is why the probability of finding more than 0 ‘other’ 
marbles in the sample is always 0, but that of finding 0 ‘other’ marbles in the sample is a sure probability of 
1. 
 
Case 6: 
 
Revisit case 3 where the definite probability of causing an accident in the house in the village when driving 
in capital city that is 300 km away is � =  0 while � =  1 is the definite probability of causing no accident 
in the same setting. The probability of getting ���  accident in ���  drive/trial can be computed in a negative 
binomial distribution. A random variable X that follows the negative binomial distribution has pdf given by: 
 

�(�) = Pr (�� = �) = ��
� − 1

� − 1
�������, � = �,� + 1,� + 2,…

0, �����ℎ���

� 

 
Computing some probabilities of causing accidents in the house while driving in the capital city, we can use 
this negative binomial distribution pdf as follows: 
 
i) Use of the pdf when � =  0 and � =  1. 
 
Probability of causing 1st accident in 1st drive/trial is 
 

Pr(�� = 1) = �(1) = �
1 − 1

1 − 1
�0�1��� = �

0

0
�0�1� = 1 ∗ 0 ∗1 = 0. 

 
Probability of causing 1st accident in 2nd drive/trial is 
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Pr(�� = 2) = �(2) = �
2 − 1

1 − 1
�0�1��� = �

1

0
�0�1� = 1 ∗ 0 ∗1 = 0. 

…  
 
Probability of causing 1st accident in 10th drive/trial is 
 

Pr(�� = 10) = �(10) = �
10 − 1

1 − 1
�0�1���� = �

9

0
�0�1� = 1 ∗ 0 ∗ 1 = 0. 

 
Probability of causing 10th accident in 10th drive/trial is 
 

Pr(��� = 10) = �(10) = �
10 − 1

10 − 1
�0��1����� = �

9

9
�0��1� = 1 ∗ 0 ∗ 1 = 0. 

 
From the above calculations, we find that the probabilities are 0 for all specified successes. This reflects 
what was reflected in the geometric distribution case in which if � =  0, then all the probabilities computed 
are also 0 hence the two pdfs are not used when � = 0 but can be applied when � ≠ 0. When � =  0, then 
the whole equation reduces to 0 in all computations. 
 
ii) Use of the pdf when � =  1 and � =  0. 
 
Suppose � =  1 is the definite probability of ‘not causing’ (failure to cause) an accident in the house while 
� =  0 is the definite probability of causing an accident in the house while driving in the capital city that is 
about 300 km away. We can repeat the computations of probabilities as follows: 
 
Probability of not causing (failure to cause) 1st accident in 1st drive/trial is 
 

Pr(�� = 1) = �(1) = �
1 − 1

1 − 1
�1�0��� = �

0

0
�1�0� = 1 ∗ 1 ∗0� = 1 ∗ 1 ∗ 1 = 1. 

 
The probability of 1st failure occurring in 1st trial/drive is 1, which agrees with definite probability. 
 
Probability of not causing 1st accident (1st failure to cause an accident) in 2nd drive/trial is 
 

Pr(�� = 2) = �(2) = �
2 − 1

1 − 1
�1�0��� = �

1

0
�1�0� = 1 ∗ 1 ∗0 = 0. 

 
The probability of 1st failure occurring in 2nd trial/drive is 0. This agrees with definite probability. 
 

…  
 

Probability of not causing 1st accident (1st failure occurring) in 10th drive/trial is 
 

Pr(�� = 10) = �(10) = �
10 − 1

1 − 1
�1�0���� = �

9

0
�1�0� = 1 ∗ 1 ∗ 0 = 0. 

 
Probability of not causing 5th accident (5th failure occurring) in 10th drive/trial is 
 

Pr(�� = 10) = �(10) = �
10 − 1

5 − 1
�1�0���� = �

9

4
�1�0� = 126 ∗ 1 ∗ 0 = 0. 

 
Probability of not causing 8th accident (8th failure occurring) in 10th drive/trial is 
 

Pr(�� = 10) = �(10) = �
10 − 1

8 − 1
�1�0���� = �

9

7
�1�0� = 36 ∗ 1 ∗ 0 = 0. 
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Probability of not causing 9th accident (9th failure occurring) in 10th drive/trial is 
 

Pr(�� = 10) = �(10) = �
10 − 1

9 − 1
�1�0���� = �

9

8
�1�0� = 9 ∗ 1 ∗ 0 = 0. 

 
Probability of not causing 10th accident (10th failure occurring) in 10th drive/trial is 
 

Pr(��� = 10) = �(10) = �
10 − 1

10 − 1
�1��0����� = �

9

9
�1��0� = 1 ∗ 1 ∗ 0� = 0� = 1. 

 
The probability of 10th failure occurring in 10th trial/drive is 1. This agrees with definite probability. 
 
Probability of not causing 6th accident (6th failure occurring) in 6th drive/trial is 
 

Pr(�� = 6) = �(6) = �
6 − 1

6 − 1
�1�0��� = �

5

5
�1�0� = 1 ∗ 1 ∗ 0� = 0� = 1. 

 
Probability of not causing 17th accident (17th failure occurring) in 17th drive/trial is 
 

Pr(��� = 17) = �(17) = �
17 − 1

17 − 1
�1��0����� = �

16

16
�1��0� = 1 ∗ 1 ∗ 0� = 0� = 1. 

 
All these probabilities confirm the definite probabilities stated at the beginning. Looking at these results 
keenly, we are able to see that all the probabilities corresponding to situations where the number of failures 
is specified as different from number of trials/drives performed are 0. Otherwise, the probabilities are all 1. 
This is true because you cannot fail to cause an accident fewer number of times than the number of times 
you try. For example, you cannot fail to cause an accident for the 1st time when driving the 10th time because 
you are bound to fail to cause accidents all the times you drive. If you get the 1st failure to cause an accident 
in 5th trial/drive, then it means that for the first 4 trials, you had caused 4 accidents, which is not true. If you 
try 10 times to drive, you will fail to cause an accident 10 times, if you try 2 times, you will fail to cause an 
accident 2 times, etc. So, when driving the 10th time, you are bound to fail to cause an accident the 10th time; 
when driving the 5th time, you are bound to fail to cause an accident the 5th time, etc. It is not possible to fail 
to cause an accident for the 1st time in 2nd trial/drive because if it were possible, it would mean that during 
the 1st trial, you had actually caused an accident, which is not true; it is not possible to fail to cause an 
accident for the 1st time in 10th trial/drive because if it were possible, it would mean that during the first 9 
trials, you had actually caused 9 accidents, which is not true; it is not possible to fail to cause an accident for 
the 5th time in 10th trial/drive because if it were possible, it would mean that during the first 9 trials, you had 
already caused 5 accidents, which is not true; it is not possible to fail to cause an accident for the 3rd time in 
7th trial/drive because if it were possible, it would mean that during the first 6 trials, you had already caused 
4 accidents, which is not true; etc. In general, the probability of failing to cause an accident ‘n’ times when 
you make ‘n’ trials/drives is always 1 while the probability of failing to cause an accident ‘k’ times when 
you make ‘n’ trial/drives where � ≠ � �� � < � is always 0. 
 
Revisiting case 4, we have ‘you’ observing and recording ‘now’, that you are alive at that time and then the 
definite probability that you are alive at that time is 1, i.e. � =  1 while the definite probability that you are 
not alive at that time when making this observation and recording it ‘now’ is 0, i.e. � =  0. 
 
Making some trials, we can use the negative binomial pdf to compute the probabilities for some specified 
values of successes and trials. Suppose you make 10 trials. Then, 
 
Probability of making 1st recording in 1st trial is 
 

Pr(�� = 1) = �(1) = �
1 − 1

1 − 1
�1�0��� = �

0

0
�1�0� = 1 ∗ 1 ∗0� = 1 ∗ 1 ∗ 1 = 1. 
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The probability of making 1st recording in 1st trial is 1 which is in agreement with definite probability. 
 
Probability of making 1st recording in 2nd trial is 
 

Pr(�� = 2) = �(2) = �
2 − 1

1 − 1
�1�0��� = �

1

0
�1�0� = 1 ∗ 1 ∗0 = 0. 

 
The probability of making 1st recording in 2nd trial is 0. This agrees with definite probability. 
 
Probability of making 1st recording in 10th trial is 
 

Pr(�� = 10) = �(10) = �
10 − 1

1 − 1
�1�0���� = �

9

0
�1�0� = 1 ∗ 1 ∗ 0 = 0. 

 
Probability of making 5th recording in 10th trial is 
 

Pr(�� = 10) = �(10) = �
10 − 1

5 − 1
�1�0���� = �

9

4
�1�0� = 126 ∗ 1 ∗ 0 = 0. 

 
Probability of making 8th recording in 10th trial is 
 

Pr(�� = 10) = �(10) = �
10 − 1

8 − 1
�1�0���� = �

9

7
�1�0� = 36 ∗ 1 ∗ 0 = 0. 

 
Probability of making 9th recording in 10th trial is 
 

Pr(�� = 10) = �(10) = �
10 − 1

9 − 1
�1�0���� = �

9

8
�1�0� = 9 ∗ 1 ∗ 0 = 0. 

 
Probability of making 10th recording in 10th trial is 
 

Pr(��� = 10) = �(10) = �
10 − 1

10 − 1
�1��0����� = �

9

9
�1��0� = 1 ∗ 1 ∗ 0� = 1 ∗ 1 ∗ 1 = 1. 

 
The probability of making 10th recording in 10th trial is 1. This agrees with definite probability.  
 
Here, we see what had been observed with binomial distribution that it is not possible to observe and record 
‘now’ that you are alive at that time fewer number of times than the trials you make. Therefore, any situation 
where it is specified that you make fewer number of observations and recordings than the number of trials 
you make has probability equal to 0 while observations and recordings equal to the trials go with probability 
1.  
 
Case 7: 
 
Consider a jug with, say 10, blue marbles only. Suppose that, each time a marble is selected from the jug at 
random and its colour noted. Whether the selection is with replacement or without replacement, the definite 
probability of selecting a blue marble from the jug is always 1 (i.e. � = 1) while the definite probability of 
selecting a marble that has other colours apart from colour blue is 0 (i.e. � = 0). These sure probabilities can 
be verified very easily as follows: 
 
a) Selection without replacement 
 

����� =
������ �� ′����′ ������� ���� �� �ℎ� ��� �� ��� ���������

����� ������ �� ������� �� �ℎ� ���
= � 



 
 
 

Mwangi; AJPAS, 6(2): 1-26, 2020; Article no.AJPAS.53235 
 
 
 

18 
 
 

hence 
 

���� =
10

10
= 1,���� =

9

9
= 1,���� =

8

8
= 1,...,����� =

1

1
= 1 = ����� = � 

 
b) Selection with replacement 
 

����� =
������ �� ′����′ ������� �� �ℎ� ��� �� ��� ���������

����� ������ �� ������� �� �ℎ� ���
= � 

 
hence 
 

���� =
10

10
= 1,���� =

10

10
= 1,���� =

10

10
= 1,...,����� =

10

10
= 1 = ����� = � 

 
Letting all the other marbles in the jug that are not blue be labelled as ‘others’, we have their definite 
probabilities given as  
 

������� = 1 − ����� = 1 − � = 1 − 1 = 0 = � 
 
If we use the binomial pdf, we can compute probabilities of interest at any selection/trial we make. We had 
the binomial pdf given by 
 

�(�) = �
�

�

�
� ������, � = 0,1,2,… ,�

0, ��ℎ������

� 

 
Suppose from the jug with 10 blue marbles, 6 marbles are selected at random. Since � =  1 and � =  0 are 
the definite probabilities of selecting a blue marble and a marble of other colours respectively, then we can 
have: 
 
Our sample size is � =  6, � =  1 ��� � =  0.  
 
Probability of getting 0 blue marble in the sample is 
 

��(� = 0) = �
�

�
� ������ = �

6

0
�1�0��� = 1 ∗ 1 ∗ 0� = 0 

 
Probability of getting 1 blue marble in the sample is 
 

��(� = 1) = �
�

�
� ������ = �

6

1
�1�0��� = 6 ∗ 1 ∗ 0� = 0 

 
Probability of getting 2 blue marbles in the sample is 
 

��(� = 2) = �
�

�
� ������ = �

6

2
�1�0��� = 15 ∗ 1 ∗0� = 0 

…  
 
Probability of getting 5 blue marbles in the sample is 
 

��(� = 5) = �
�

�
� ������ = �

6

5
�1�0��� = 6 ∗ 1 ∗ 0� = 0 

 



 
 
 

Mwangi; AJPAS, 6(2): 1-26, 2020; Article no.AJPAS.53235 
 
 
 

19 
 
 

Probability of getting 6 blue marbles in the sample is 
 

��(� = 6) = �
�

�
� ������ = �

6

6
�1�0��� = 1 ∗ 1 ∗ 0� = 1 ∗ 1 ∗ 1 = 1 

 
The computations with the binomial distribution pdf confirm the definite probabilities. In this case, it’s only 
at ��(� = 6) = �� (� = �) we have probability equal to 1. Any other probability like Pr (� < �) gives 
probabilities equal to 0 always. The reason is that there are only blue marbles in the jug and hence, 
specifying blue marbles to be less than the number of marbles in the sample means that some other marbles 
of different colours exist in the jug and hence there is possibility of those other marbles to appear in the 
sample too, which is not the case. In general, 
 

��� � = 2,��(� = 2) = 1 ��� Pr(� < 2) = 0 
��� � = 3,��(� = 3) = 1 ��� Pr(� < 3) = 0 
��� � = 4,��(� = 4) = 1 ��� Pr(� < 4) = 0 

…  
��� � = ℎ,��(� = ℎ) = 1 ��� Pr(� < ℎ) = 0 

 
In the same case, since we had a jug with 10 marbles that were all of blue colour, and selected say 6 marbles 
randomly from the jug, we can apply the hypergeometric distribution pdf to compute some probabilities for 
some specified marbles. In this case, � = 10,� = 10,� = 6 ��� � ��� �� ��������� �ℎ���  
 

�(�) = �

�� ��
���

���
�

�

��
�

�
, � = 0,1,2,…

0, ��ℎ������

�  

 
We compute some probabilities as follows: 
 

��(′����′ =  0) = �(0) =
�� ��

���
���

�
�

��
�

�
=

������
���

����
�

�

���
�

�
=

��
�
����

�
�

���
�

�
= �

0

6
� ∗ (4.7619 ∗ 10��)

= 0 ∗ (4.7619 ∗ 10��) = 0 
 

��(′����′ =  6) = �(6) =
�� ��

���
���

�
�

��
�

�
=

������
���

����
�

�

���
�

�
=

��
�
����

�
�

���
�

�
= �

0

0
� = 1 

 

Other probabilities for specified number of ‘blue’ marbles can be computed as follows: 
 

��(′����′ =  1)= �(1) =
�� ��

���
���

�
�

��
�

�
=

������
���

����
�

�

���
�

�
=

��
�
����

�
�

���
�

�
= �

0

5
� ∗ 0.0476 = 0 ∗ 0.0476 = 0 

 

��(′����′ =  2)= �(2) =
�� ��

���
���

�
�

��
�

�
=

������
���

����
�

�

���
�

�
=

��
�
����

�
�

���
�

�
= �

0

5
� ∗ 0.2143 = 0 ∗ 0.2143 = 0 

…  

��(′����′ =  5) = �(5) =
�� ��

���
���

�
�

��
�

�
=

������
���

����
�

�

���
�

�
=

��
�
����

�
�

���
�

�
= �

0

1
� ∗ 1.2 = 0 ∗ 1.2 = 0 

 

All these probabilities agree with definite probabilities. Such a scenario had been observed in case 5. The 
probabilities of obtaining all the blue marbles equal to the number of trials are always 1 while anything 
contrary has probability 0.  
 

Reconsider case 7 and let the jug have 1,000,000 blue marbles only. Suppose 100,000 marbles are selected at 
random from the jug, p = 0 is the definite probability of selecting a ‘red’ marble from the jug, whether the 
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selection is with replacement or without replacement. On the other hand, q = 1 is the definite probability of 
selecting (with or without replacement) a marble of other colours apart from ‘red’. Suppose that, each time a 
marble is selected from the jug at random and its colour noted. We had the binomial pdf given by 
 

�(�) = �
�

�

�
� ������, � = 0,1,2,… ,�

0, ��ℎ������

� 

 
Probability of getting 0 ‘red’ marble in the sample is 
 

��(� = 0) = �
�

�
� ������ = �

100000

0
�0�1�������� = 1 ∗ 0� ∗ 1 = 1 ∗1 ∗ 1 = 1 

 
Probability of getting 1 ‘red’ marble in the sample is 
 

��(� = 1) = �
�

�
� ������ = �

100000

1
�0�1�������� = 100000 ∗ 0 ∗ 1 = 0 

 
Probability of getting 2 ‘red’ marbles in the sample is 
 

��(� = 2) = �
�

�
� ������ = �

100000

2
�0�1�������� = 4999950000∗ 0 ∗ 1 = 0 

…  
 
Probability of getting 100,000 ‘red’ marbles in the sample is 
 

��(� = 100000) = �
�

�
� ������ = �

100000

100000
�0������1������������� = 1 ∗ 0 ∗ 1 = 0 

 
All these agree with the definite probabilities that since there are 0 ‘red’ marbles in the jug, then the 
probability of selecting 0 ‘red’ marbles is 1 while that of selecting more than 0 ‘red’ marbles is 0. 
 
Consider using Poisson approximation to this binomial [17] because � is very large and � is very small, 
where � =  0 is the definite probability of selecting a ‘red’ marble from the jug while � =  1 is the definite 
probability of selecting (with or without replacement) a marble of other colours apart from ‘red’ from the 
same jug. In Poisson distribution, we have the pdf as  
 

�(�) = �
��� ∗ ��

�!
, � = 0,1,2,3,… ,� > 0

0,�����ℎ���

� 

 
We can use the parameters � = 100000 and � = 0 from the binomial distribution to estimate the parameter 
� in Poisson distribution. The relationship used is � = �� [6] [17] and in this case, � = �� = 100000 ∗ 0 =
0. We can note that, since �(�) = ���(�) = � in Poisson distribution, it is only when � = 0 (very small 
value) do we have the equality satisfied when estimated from binomial parameters. I.e. � = �� = ��� =
100000 ∗ 0 = 100000 ∗ 0 ∗ 1 = 0. Using this, we can estimate the probabilities computed using binomial 
pdf and compare the results as follows: 
 
Probability of getting 0 ‘red’ marble in the sample is 
 

��(� = 0) =  �(0) =  
��� ∗ ��

0!
=

��� ∗ 0�

0!
=

�� ∗ 0�

0!
=

1 ∗ 0�

1
=

1 ∗ 1

1
= 1 

 
Probability of getting 1 ‘red’ marble in the sample is 
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��(� = 1) =  �(1) =  
��� ∗ ��

1!
=

��� ∗ 0�

1!
=

�� ∗ 0�

1!
=

1 ∗ 0

1
= 0 

 
Probability of getting 2 ‘red’ marbles in the sample is 
 

��(� = 2) =  �(2) =  
��� ∗ ��

2!
=

��� ∗ 0�

2!
=

�� ∗ 0�

2!
=

1 ∗ 0

2
= 0 

…  
 
Probability of getting 100,000 ‘red’ marbles in the sample is 
 

��(� = 100000) =  �(100000) =  
��� ∗ �������

100000!
=

��� ∗ 0������

100000!
=

�� ∗ 0������

100000!
=

1 ∗ 0

100000!
= 0 

 
All these results confirm the findings gotten using the binomial pdf as well as the definite probabilities. 
Therefore, it’s only when you want 0 ‘red’ marbles from the sample do you have a sure probability, 1. Any 
other number of ‘red’ marbles from the sample is an impossible event with a sure probability 0. And the 
reason? There are no ‘red’ marbles in the jug and hence no ‘red’ marbles in the sample. 
 

3 Simple Conditional Probabilities 
 
Conditional probabilities involve computation of chances of events happening based on some past 
knowledge [1,3,7] such as the happening of another event. E.g. the probability of a person drinking water 
given that he has eaten some food. In conditional probability, suppose we have two events, A and B, each 
with probability �(�) and �(�) of happening respectively. Then, the probability of event A happening 
given that event B has happened, denoted as ��(�\�), is defined as [1,3,7]: 
 

��(�\�) =
Pr (� ∩ �)

Pr (�)
=

Pr (� ��� �)

Pr (�)
,Pr(�) ≠ 0 �� Pr(�) > 0. 

 
This can be converted to the multiplication rule for probabilities by making Pr (� ∩ �) subject of the 
formula as follows: 

 
Pr(� ∩ �) = ��(�\�)∗ Pr (�) 

 
Suppose the two events of interest are 

 
(i) � =  Event that you observe and be able to record ‘now’, that you are alive at that time/moment. 
(ii) � =  Event that you cause an accident in your house in the village while driving a car in the capital 

city that is about 300 km away. 
 
It was seen that ��(�) = 1 while ��(�) = 0 in case 4 and 3 respectively. We may want to compute the 
probability of event A happening given that event B has occurred, i.e. 
 

��(�\�) =
Pr (� ∩ �)

Pr (�)
=

Pr (� ��� �)

Pr (�)
. 

 
Two things to note are:  
 

(i) that these two events are independent and hence, 
Pr(� ∩ �) = Pr(� ��� �) = ��(�)∗ Pr(�). 
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and 
 

(ii) the conditional probability is equal to probability of A hence, 
��(�\�) = Pr(�) = 1. 

 
From the usual definition of conditional probabilities, the denominator should not be equal to zero (Pr(�) >
0)) but we want to violate this condition because the division of zero by itself has a unique solution (i.e. 
�

�
= 1). Going with this result, we can compute the 

 

��(�\�) =
Pr (� ∩ �)

Pr (�)
=

Pr (� ��� �)

Pr (�)
; Pr(�) = 0 

 
as follows: 
 

��(�\�) =
Pr (� ��� �)

Pr (�)
= �

Pr(�)∗ Pr (�)

Pr (�)
� �� �Pr(�)∗

Pr(�)

Pr(�)
� = �

1 ∗ 0

0
�  �� �1 ∗

0

0
�

= �
0

0
�  �� [1 ∗ 1]= 1. 

 
This shows that ��(�\�) = 1 = Pr(�) and agrees with the rule that ��(�\�) = Pr(�) when events are 
independent. 
 
Similarly,  

 

��(�\�) =
Pr (� ∩ �)

Pr (�)
= �

Pr(�)∗ Pr (�)

Pr (�)
� �� �

Pr(�)

Pr(�)
∗ Pr(�)� = �

1 ∗ 0

1
�  �� �

1

1
∗ 0�

= �
0

1
�  �� [1 ∗ 0]= 0. 

 
Thus ��(�\�) = 0 = Pr(�) and agrees with the rule that ��(�\�) = Pr(�) when events are independent. 
 
Again, suppose that  
 

(i) � =  Event that you select a blue marble from a jug that has only red marbles. 
(ii) � =  Event that you cause an accident in your house in the village while driving a car in the capital 

city that is about 300 km away.  
 
In this case, ��(�)= 0 ��� ��(�) = 0. Again, the events C and D are independent and hence 
 

��(�\�) =
Pr (� ∩ �)

Pr (�)
=

Pr (� ��� �)

Pr (�)
; Pr(�) = 0. 

 
Therefore, the conditional probabilities are as follows: 
 

��(�\�) =
Pr (� ∩ �)

Pr (�)
= �

Pr(�)∗ Pr (�)

Pr (�)
� �� �Pr(�)∗

Pr(�)

Pr(�)
� = �

0 ∗ 0

0
�  �� �0 ∗

0

0
� = �

0�

0�
�  �� [0 ∗ 1]

= [0���] �� [0 ∗ 1]= [0�] �� [0 ∗ 1]= 0. 
 
Therefore, ��(�\�) = 0 = Pr(�)  and agrees with the rule that ��(�\�) = Pr(�)  when events are 
independent. 
 
In a similar way, it can be shown that, ��(�\�) = 0 = Pr(�). 
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Let’s now turn to a case of dependent events. 
 
Turning to the case of a bag that has, say 10, red marbles only, we see that the ��(���) = 1  and 
��(��ℎ�� �������) = 0, whether selection is with or without replacement, at whatever level of selection. 
This was demonstrated in case 5. We can let “R” be red marbles and assume the bag has 10 red marbles and 
0 blue marbles that are represented by “B”, hence  
 

��(�) = Pr(��)= Pr(��)= Pr(��)= Pr(��)= 1 ��� ��(�) = Pr(��)= Pr(��)= Pr(��)= Pr(��) = 0 
 
and this is the case for all selections from that bag.  
 
Let events R and B be defined as follows: 
 

(i) � =  event that a red marble is selected. 
(ii) � =  event that a blue marble is selected. 

 
Suppose we are interested in selecting 4 marbles from that bag, one marble after the other with or without 
replacement. If we do it with replacement, then the events R and B are independent. Otherwise, the events 
are dependent. Going the way of ‘without replacement’, the events are dependent and the following are the 
results one can get using a tree diagram or other ways:  
 

��(��������)= 1,��(��������) = 0,��(��������) = 0,��(��������) = 0,��(��������)
= 0,��(��������) = 0,��(��������) = 0,��(��������) = 0,��(��������)
= 0,��(��������) = 0,��(��������) = 0,��(��������) = 0,��(��������)
= 0,��(��������) = 0,��(��������)= 0,��(��������) = 0. 

 
Here, the subscripts 1, 2, 3 and 4 indicate the rounds/stages of selection 1st, 2nd, 3rd and 4th selection 
respectively. These outcomes show that all the intersections involving event B have probability 0 because 
blue marbles are not present in the bag hence no way to select a blue marble at any stage of selection. The 
only case that has a probability different from 0 is the case of (�� ∩ �� ∩ �� ∩ ��) �ℎ��� ��(�� ∩ �� ∩
�� ∩ ��)= 1. Computing the conditional probabilities in this case needs one to think soberly because some 
specifications will make sense while others won’t. For example: the specifications ��(��\��) ��� ��(��\
��) make a lot of sense while ��(��\��) ��� ��(��\��) won’t make any sense. Why? The case of  
��(��\��) means the chances of getting a blue marble in the 4th selection given that you got a red marble in 
the first round/selection, which is fine because there are red marbles in the bag hence it is possible to have a 
red marble in the 1st round. However, the case of ��(��\��) is misplaced because it means the chances of 
getting a red marble in 4th round when you have gotten a blue marble in 1st round. This is not possible 
because there are no blue marbles in the bag hence one cannot get a blue marble in the 1st round. So, the only 
computations that are doable and are logical involve computing chances of getting a blue marble (the absent 
marbles/items/objects) in any round given a red one (the present marbles/items/objects)was gotten in a 
specified round as well as a red one in a specified round given that a red one was gotten in another round 
without the chain involving the blue (absent) marble. Examples include:  
 

��(��\��) =
Pr (�� ∩ ��)

Pr (�)
=

��(��������)

Pr (�)
+

��(��������)

Pr (�)
+

��(��������)

Pr (�)
+

��(��������)

Pr (�)

=
0

1
+

0

1
+

0

1
+

0

1
= 0. 

 
Therefore, it’s not possible have a blue marble in the 4th round. Others such as ��(��\��),��(��\
�1, ���7\�3, ���8\�6, ���. can be computed in a similar manner. For ����\�� �ℎ��� �≥ � ��� ���ℎ��� 
��������� �, we have examples like: 

 

��(��\��) = ��(��\��) = ��(��\��) = ��(��\��) = ��(��\��) = ��(��\��) =
1

1
= 1. 
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This makes sense because the chances of getting a red marble in any selection is ever 1 since there are only 
red marbles in the bag. The other sets of ��(��\��);� > �  and ��(��\��);� ≥ �  don’t make sense 
hence no need to bother with them. 
 
One thing to note here is that the cases of conditional probabilities present scenarios that need one to be 
careful in evaluating the equations involving 0 in both numerator and denominator as was noted in [16]. 
Computing the probabilities in a “hurry” might cause “chaos” and confusion but a careful evaluation that 
involves critical thinking will always lead to that unique path that leads you “home” and doesn’t kill logic. 
 

4 Conclusion 
 
Probability is the measure assigned to the chance of happening of an event. A definite probability is simply a 
sure or certain probability. The definite probability is either 1 �� 0  and, in this work, the probabilities 
� ��� � were always assigned 1 �� 0 depending on the problem at hand. The definite probabilities were first 
always provided through logic and healthy reasoning before embarking on computations of the same using 

various ways such as involvement of pdfs and basic knowledge. The combined equations � =
�

�
= 0� =

��
�
� =

�!

�!(���)!
 have been encountered in almost all the computations in this work. Using the solution provided 

in [16], where the solution is 1, it was possible to evaluate exact solutions in computing sure probabilities 
using the various probability distribution functions. The solutions provided actually can never contradict the 
logic behind what we know in reality. For example, if the probability of selecting 0 red marbles from a bag 
that has only blue marbles is 1 while that of selecting any other number of red marbles from the same bag of 
blue marbles is 0, then, logic tells us that this is indeed true and computations just reinforce the same. The 

case of ��
�

� �ℎ��� � > 0  was encountered too, and a way out was made using some knowledge in 

definitions of gamma functions, factorials as well as integrations to arrive at the conclusion that such 
evaluations have solutions tending to 0, which confirmed that the sure probabilities were never contradicted 
in the computations. In other cases, violations were made in setting the domains of some parameters such as 
� > 0, � > 0. This happened because, [16] solved what could hinder ancient computations when scenarios 
such as � = 0 ���  � = 0 are encountered. In some cases, it was found that when using the exponential pdf, 
the probabilities of X that are specified to be in the same direction as the parameter �  should not be 
evaluated directly, due to contradictions, numerous and awkward solutions, but indirectly. Indirectly means 
using the computations involved when X is not in the direction of � and then subtracting the results from 1 
to arrive at the desired destinations. In the cases of conditional probabilities, the restriction of the 
denominator to be a positive value can be revisited to have is include the 0 scenario. Therefore, the final 
comment is that there is a great deal of harmony between this work on definite probabilities and [16] work 

on division of zero by itself and there is a lot that can be done based on 
�

�
= 1 findings. 

 

5 Recommendations 
 

1. Some of the distributions existing to date need some reviewing to ensure they cope and are in line 
with modern/current/recent findings. Such a case can be the expansion of the domains of parameter 
� in Poisson to have � = 0, the revision of the restrictions in conditional probabilities such as 
Pr(�) > 0 when Pr(�) is the denominator.  

2. Review of the definition of expression ��
�

� �ℎ��� � > 0. Such a case was encountered many times 

in this work and needs to be defined officially from academic angle.  
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