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Thirty million of the 33.3 million infected with HIV live in 
low- and middle-income countries (WHO, 2010).  

HIV infection may be managed with antiretroviral (ARV) 
drugs usually in the form of highly active antiretroviral 
therapy (HAART), which comprises of a regimen of three 
drugs from at least two of the following five drug classes 
(Bartlett et al., 2004; Mitton, 2000; Pierret, 2007; Bartlett 
et al., 2004; Pierret, 2007): Reverse transcriptase inhi-
bitors (RTI), non-reverse transcriptase inhibitors (NRTI), 
protease inhibitors (PI), integrase inhibitors (II) and fusion 
inhibitors (FI). If untreated HIV-1 eventually develop into 
AIDS (Migueles and Connors, 2010). Several factors 
contribute to the success or failure of HAART including 
poor treatment, stage of the disease, drug potency, 
patient adherence, achievable drug levels, drug resis-
tance and toxic effects of the drug. Of these factors, drug 
resistance is arguably the most critical (Tang and Shafer, 
2012; Yashik and Maurice, 2012). The ability of HIV to 
mutate and reproduce itself in the presence of antire-
troviral drugs is called HIV drug resistance. The three 
common pathways that lead to the development of HIV 
anti-retroviral drug resistance are high replication rates, 
selective pressure and initial infection by resistant strains 
of HIV.  

These three pathways cause mutations in the HIV 
genome that render the ARV drugs less effective. These 
mutations in the HIV genome cause structural changes in 
the HIV genome resulting in the inability of the ARVS to 
stereotypically or chemically block binding sites required 
for the reproduction of HIV. Drug resistance not only 
results in the patient been more vulnerable to oppor-
tunistic infections, but may also increase the spread of 
resistant strains of HIV. 

Testing for HIV resistance may consist of wet or dry 
chemistry laboratory tests, or by employing electronic 
computerized algorithms (Jaideep et al., 2003). Computer 
based interpretation algorithms using genomes can also 
be used to predict HIV drug resistance. These inter-
pretation algorithms can be generally divided into one of 
two groups: those based on known domain knowledge, 
that is, they are based on the fact that certain combi-
nations of known genome mutations cause unequivocal 
resistance, and those not based on predefined domain 
knowledge. These algorithms include machine learning 
and statistical methods.  

Domain knowledge interpretation algorithms are based 
on scientific and published interactions between certain 
mutations and/or combination of mutations with resis-
tance. This means that all computational decisions con-
cerning resistance are based on known mutation-resis-
tance rules found in published scientific literature. REGA, 
Agence Nationale de Recherches sur le SIDA (ANRS) 
and Stanford’s HIV-db algorithm (de Oliveria et al., 
2005b) are three examples of publically available domain 
knowledge interpretation algorithms. These algorithms 
are used widely and are regarded as goal standards.  

REGA and ANRS classify ARV  resistance according to 
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three levels viz. susceptible, intermediate and resistant. 
Susceptible is indicative of the fact that a particular ARV 
drug will be effective against HIV. This means that the 
patient will respond to treatment with that particular ARV. 
Intermediate indicates that the ARV drug is partially 
effective.  

In this case, the patient will respond to treatment with 
that particular drug, but it will not suppress the growth of 
HIV effectively. It is classified as resistant, if the ARV is 
not effective at all and treatment with this ARV will lead to 
virological failure. HIV-db classifies HIV resistance accor-
ding to five levels: susceptible, potential low-level resis-
tance, low-level resistance, intermediate resistance and 
high-level resistance. These algorithms employ Boolean 
based rules, some with penalties, and predict resistance 
by determining which mutations are present and/or 
absent.  

Many different pattern recognition and machine learn-
ing algorithms have been applied to find a predicable 
correlation between genotypic and phenotypic data 
(called virtual phenotyping (Hales et al., 2006). Machine 
learning may be used to develop a model that predicts 
virological response. Machine learning is an artificial 
intelligence computer science technique that tries to find 
a mathematical model that maps between inputs and 
outputs of a domain problem. The efficiency of these 
algorithms are usually measured against REGA, ANRS 
and HIV-db. 

Virtual phenotyping is growing in popularity and 
Kuritzkes et al. (2002) supports virtual phenotype as a 
tool for interpreting viral genotypes. The following are 
some of the algorithms that have been applied: least 
absolute shrinkage and selection operator (LASSO), 
ridge regression, neural networks like multilayer 
perceptron (MLP), principle component analysis, support 
vector machines (SVMs), linear regression models, 
hidden markov models, decision trees and multiple 
correspondence analysis (Tang et al., 2012).  

These interpretation algorithms were however 
developed using different datasets, subtypes, analysis on 
drug-naive and -experienced patients etc. All these 
differences have led to the creation of many different 
interpretation algorithms. Initially, studies suggested that 
the interpretation algorithms produce different resistance 
measures even if applied to the same resistance profile. 
However, after subsequent changes in interpretation 
rules, literature suggested low discordance between 
interpretation algorithms.  

Jaideep and others (2003) studied four interpretation 
algorithms (ANRS-3-02, TRUGENE VGI-6, Rega 5.5 and 
HIVdb-8-02) and concluded that there was a discrepancy 
in interpretations in 33% of all resistance profiles tested. 
The most discordant were NRTI’s. De Luca et al. (2004) 
concluded that discrepancies in the interpretation 
algorithms may influence the use of resistance testing 
over virological outcomes. De Luca et al. (2004) studied 
the  application  of 13  interpretation  algorithms  of  drug 
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Table 1. Chi-squared statistic calculated on the raw data between the 
interpretation algorithms.  
 

Sequence data  Interaction Chi-squared statistic 

Protease inhibitor 
ANRS- HIV-db 8110* 
ANRS-REGA 7832* 
HIV-db-REGA 1250559* 

   

Reverse transcriptase 
ANRS- HIV-db 8532* 
ANRS-REGA 8515* 
HIV-db-REGA 15169* 

 

*p < 0.0001. 
 
 
 

Table 2. Average percentage accuracy, S-error, I-error, R-error, OneDiff and TwoDiff. 
 

 Algorithm Accuracy S-error I-error R-error OneDiff TwoDiff 

ANRS 59 41 24 51 93 7 
HIV-db 59 41 39 34 87 13 
REGA 61 39 29 43 82 18 

 
 
 

Table 3. Chi squared statistic for comparing average percentage accuracy, S-error, I-error, 
R-error, OneDiff and TwoDiff between interpretation algorithms. 
 

 Test Accuracy S-error I-error R-error OneDiff TwoDiff 

Chi-squared 27# 573* 635* 1057* 328* 243* 
 

*p <0.0001, #p = 0.23. 
 
 
 

Table 4. Random block 
design F-score to 
determine difference 
between S-error, I-error 
and R-error. 
 

Algorithm F 

ANRS 28.4* 
HIV-db 27.6* 
REGA 29.6* 

 

*p <0.0001. 
 
 
 
in Table 1. 

The accuracies of the different algorithms as well as 
the errors associated with predicting susceptible, inter-
mediate and resistant measures are shown in Table 2. In 
order to determine if these differences are statically 
significant, Chi-squared tests were performed and the 
results are shown in Table 3. 

Table 4 shows the results of a RBD test to determine if 
there is a difference between the errors in predicting 
susceptible, intermediate and resistant measures. Table 
5 shows the sensitivity, specificity, positive predictive 
value and negative predictive values for each of the 
susceptible, intermediate and resistant measures. 

DISCUSSION 
 
The average accuracy for ANRS was 59%, HIV-db 59% 
and REGA 61%. An associated Chi-squared statistic of 
26.5 suggests that there is no difference between the 
three interpretation algorithms in terms of the accuracy 
obtained. This is also confirmed by p-score of 0.23. This 
result confirms previous studies findings (Poonpiriya et 
al., 2008; Snoeck et al., 2006; Vercauteren and 
Vandamme, 2006; Yebra et al., 2010) that there is very 
little difference when comparing the accuracies of ANRS, 
REGA and HIV-db. The difference in the accuracies 
between the three algorithms has decreased as 
compared to previous studies. Liu et al. (2008) reported 
an average discrepancy of 3%, as compared to an 
average of 0.75% reported in this study. Thus in terms of 
accuracy, the algorithms seem to be converging and the 
understanding of HIV resistance increases. However, 
accuracy should not be the only method used to 
determine if there is a discrepancy between the three 
algorithms.  

Chi squared tests on the raw output of each 
interpretation algorithm were performed in order to 
determine if a difference exists between ANRS and HIV-
db, ANRS and REGA, and HIV-db and REGA. As shown 
in Table 1, these tests were performed separately for the 
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Table 5. Random block design F-score to determine difference between 
sensitivity, specificity, positive predictive value (PPV) and negative predictive 
value (NPV). 
 

Parameter Sensitivity Specificity PPV NPV 

Susceptible     
ANRS 80.1 67.8 84.4 35.2 
REGA 84.1 73.3 82.0 57.0 
HIVDB 92.1 64.4 68.0 82.6 
RBD -F test <0.0001 <0.0001 <0.0001 <0.0001 
     
Intermediate 
ANRS 41.6 88.8 49.5 74.7 
REGA 49.2 61.4 52.7 79.5 
HIVDB 56.7 48.1 46.2 78.2 
RBD -F test <0.0001 <0.0001 <0.0001 <0.0001 
     
Resistant 
ANRS 89.5 53.5 89.5 92.7 
REGA 67.7 73.5 67.7 82.7 
HIVDB 58.8 75.7 58.8 90.1 
RBD -F test <0.0001 <0.0001 <0.0001 <0.0001 

 
 
 
protease inhibitor and reverse transcriptase sequences. 
All six Chi squared tests produced a p < 0.001. This 
indicates that for both the protease inhibitor and reverse 
transcriptase there is a difference between ANRS and 
HIV-db, ANRS and REGA, and HIV-db and REGA. This 
difference is in contrast with previous studies where they 
reported differences only in some reverse transcriptase 
sequences or no difference at all (Poonpiriya et al., 2008; 
Snoeck et al., 2006; Vercauteren and Vandamme, 2006; 
Yebra et al., 2010).  

The Chi-squared statistic shown in Table 3 for the 
associated S-error, I-error and R-error all indicate that 
there are differences in the three interpretation algorithms 
(p < 0.0001). REGA and ANRS are more accurate in 
predicting a susceptibility resistance measure than HIV-
db. The three interpretation algorithms all perform 
differently in terms of I-error. HIV-db more accurately 
predicts intermediate resistance than REGA, which is 
more accurate than ANRS. HIV-db and ANRS have 
similar accuracies in terms of predicting resistance 
measures and are both more accurate than REGA.  

Similar results were obtained for OneDiff and TwoDiff. 
The RBD analysis as shown in Table 4 indicates that for 
each interpretation algorithm, there is a difference 
between S-error, I-error and R-error. Post-hoc Kunkey 
and Bonfferoni statistics indicate that each interpretation 
algorithm predicts S-error-I-error, S-error-R-error and S-
error-R-error differently.  

Table 5 shows that there is a difference between the 
sensitivity, specificity, positive predictive value and 
negative predictive values of the three algorithms for 
each of the susceptible, intermediate and resistant 

measures. This indicates that there is a difference in the 
ability of ANRS, REGA and HIV-db to predict resistance 
measures.  

These results indicate that although the accuracy of 
REGA, ANRS and HIV-db are similar, the interpretation 
algorithms are in fact different. This difference in 
interpretations may lead to inconsistent treatment for 
patients failing ARV therapy. There thus needs to be a 
mechanism of providing a single interpretation of a 
genome, formed by collating the strengths of each of the 
interpretation algorithms. The gold standard algorithms 
may be collated by weighted output or applying machine 
learning on gold standard outputs. 

One limitation of the study is that it uses a limited 
dataset to perform the learning and testing. It will be of 
more value if the algorithms could have been tested on 
real-time data of patients currently being treated. This 
study however, has the benefit of describing the 
differences between the latest versions of REGA, ANRS 
and HIV-db in more depth than what has been done to 
date. Other papers only reported differences in accuracy. 
This paper goes on to discuss whether these differences 
are statistically significant and also discusses the 
distribution of the different types of errors. 
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