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ABSTRACT 
 

The art of predicting crop production is done before the crop is harvested. Crop output forecasts will 
help people make timely judgments concerning food policy, prices in markets, import and export 
laws, and acceptable warehousing. It is possible to reduce the socioeconomic effects of crop loss 
brought on by a natural disaster, such as a flood or a drought, and to organize humanitarian food 
assistance. It has been suggested that deep learning, which lets the model to automatically 
extricate features and learn from the datasets, could be useful for predicting agricultural yields. This 
review helps to understand that how vegetation indices and environmental variables affect 
agricultural output by revealing gaps in our understanding of deep learning methodologies and 
remote sensing data in a specific area. Literature review of 2011-2022 has been collected from 
different databases and sites and analyzed to meet the aims of this review. The study mainly 
focused on the benefits of machine learning, agrarian factors and remote sensing for forecasting 
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crop yield. The most often employed form of remote sensing is satellite technology, namely the 
usage of the Moderate-Resolution Imaging Spectro radiometer. Vegetation indices referred to as 
the most often employed attribute for forecasting crop yield, according to the results. This review 
compares all these techniques and pros and cons related to them. 
 

 
Keywords:  Machine learning; artificial intelligence; yield prediction; algorithms; agriculture; remote 

sensing. 
 

1. INTRODUCTION 
 
Predicting crop yields is one of the most difficult 
problems in agriculture. It is crucial to decision-
making at the international, regional, and local 
levels. Crop, soil, climatic, environmental, and 
other characteristics are used to predict 
agricultural yield. Machine learning, a branch of 
artificial intelligence, allows computers to learn 
from data without having to be explicitly 
programmed. The use of machine learning has 
improved thanks to big data technology. A 
considerable amount of data that is produced 
quickly from multiple sources is simply referred to 
as big data [1-4]. For the production of food on a 
worldwide scale, crop yield prediction is crucial. 
Policymakers rely on accurate projections to 
quickly decide which foods to buy and export in 
order to improve national food security. To breed 
for superior types, seed firms must forecast how 
new hybrids will function in diverse conditions. 
The ability to estimate production helps farmers 
and growers make wise management and 
financial decisions [5-9]. The temperature, the 
soil, the crop, the use of fertilizer, and the type of 
seeds used are some of the factors that affect 
crop production [10,11]. For accurate agricultural 
yield estimation findings, a variety of crop 
simulation and yield estimation methods have 
been applied [11,12]. Researchers frequently use 
Deep Learning techniques to estimate 
agricultural yields based on the aforementioned 
variables [11]. 
 
Crop output forecasting is becoming increasingly 
important due to growing worries about food 
security. Early predictions of crop production, 
which foretell the availability of food for the 
expanding world population, can considerably 
reduce famine [13]. One of the most serious 
issues of our day, ending world hunger, may be 
accomplished by increasing food yields. Despite 
recent progress, the World Health Organization 
estimates that 820 million people still lack access 
to enough food globally [14]. By 2030, the 
Sustainable Development Goals of the UN with a 
focus on agriculture seek to eliminate hunger 
issues, achieve security of food, and promote 

more sustainable agriculture [15]. Crop output 
forecasts may provide essential data for creating 
a viable plan to attain the goal of ending hunger 
[16-18]. Many factors need be taken into account 
while forecasting agriculture yield, which makes 
difficult to create a reliable predicting model 
using conventional methods [19]. Yet, recent 
developments in computer technology have 
opened up the prospect of developing and 
honing a fresh approach to forecasting 
agricultural productivity. Since deep learning 
makes use of a wide variety of data technologies 
and can handle large amounts of information 
quickly, it finds widespread application in the 
agriculture industry [20]. The term "deep 
learning" refers to a kind of machine learning that 
makes use of numerous layers of neural 
networks and is capable of learning from inputs 
that are both unstructured and unlabeled. 
Depending on the learning environment, the 
learning may be supervised, semi-supervised, or 
unsupervised [21,22]. Sarker [23] pointed out 
that, in contrast to typical machine learning 
techniques, deep learning models focus on 
learning abstract properties from large datasets. 
It is essential to have a full grasp of the 
interactions that exist between functional 
qualities and interacting variables in order to 
accurately predict crop yield. Large datasets and 
high-efficiency algorithms are needed for such 
correlations; deep learning can be used to 
achieve both of these goals [24,25]. Since 
machine learning has been widely studied over 
the past 10 years, it is currently being applied 
globally to forecast and boost agricultural 
produce outputs [11,18,26]. Multivariate 
regression, decision trees, association rule 
mining, and artificial neural networks are only 
some of the machine learning methods that have 
been used to forecast agricultural yields in recent 
years. One defining feature of machine learning 
models is their implicit treatment of the output 
(crop yield) as a function of the input variables 
(genes and environmental factors), which may be 
a very intricate and non-linear function [27,28]. 
 
Another important technique to predict yield in 
agriculture is remote sensing. The science of 
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remote sensing is the non-intrusive method of 
learning about an object or phenomena without 
coming into close touch with it. It is employed in 
agriculture to keep an eye on the moisture, soil, 
and crop conditions. Remote sensing makes use 
of electromagnetic radiation emissions such 
radio waves, microwaves, infrared, visible light, 
and ultraviolet light. Crop growth conditions can 
be tracked over time via remote sensing of crops. 
Additionally, it offers details on the condition of 
crops at particular junctures in time and space. 
Crop yields may be calculated using this data, 

and it can also predict when the harvest will take 
place. Remote sensing data can be used to track 
changes in land usage, track agricultural 
production and growth, evaluate salinity and 
moisture levels in the soil, assess pest infestation 
levels, and more [29,30]. The study provides a 
review of the literature on various remote sensing 
methods, deep learning models and various 
techniques that are utilized with satellite data. 
Many models are created, and calculated results 
are contrasted with benchmark models that are 
also supplied. 

 

 
 

Fig. 1. How machine learning, deep learning and artificial intelligence are interlinked 
 
 

 
 

Fig. 2. Crop yield forecasting methods 
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2. Existing AL Techniques IN 
AGRICULTURE SECTOR 

 

2.1 Deep Learning 
 

Due to their limited applicability and 
unpredictability, traditional methodologies like the 
static regression approach and the mechanistic 
approach make it difficult to develop a crop 
production forecast model that is accurate 
[16,24,31]. For the prediction of crop yield, many 
researchers have employed ML approaches 
such as regression trees, random forests, 
multivariate regression, association rule mining, 
and artificial neural networks [12,32-35]. Machine 
learning models view the output, or crop 
production, as an implicit function of the input 
variables, which can include things like weather 
and soil conditions. Furthermore, the nonlinear 
link between input and output variables is lost on 
supervised learning methods employed in 
machine learning [36-39]. Yet, recent 
technological developments have made it 
possible to create a sophisticated model for 
predicting agricultural yields using deep learning 
[40]. Since deep learning can examine enormous 
datasets, discover correlations between different 
variables, and employ nonlinear functions, it is 
widely applied in the agriculture sector. In an 
unsupervised setting, these techniques can 
extract features for big datasets. Deep learning 
approaches outperform conventional machine 
learning methods in feature extraction [41-43]. 
Deep learning has a significant ability to extract 

features from the existing data because an 
effective agricultural yield prediction depends on 
the variables controlling crop growth. 
 
Each layer of a deep neural network's nonlinear 
processing transforms unseen input data into a 
usable form [44]. Finding the nonlinear 
association between the input and response 
variables requires the use of deep neural 
networks with a variety of hidden layers [45]. 
However, they are challenging to train and 
require cutting-edge technology and optimization 
techniques [46]. So, adding more hidden layers 
can be useful but comes with some limitations 
that can be overcome by using certain strategies. 
Deeper neural networks can avoid the vanishing 
gradient problem by making use of the network's 
remaining skip connections [47]. Furthermore, by 
implementing several techniques that includes 
stochastic gradient descent (SGD), batch 
normalization, and dropout, the performance of 
deep learning systems has been enhanced. The 
following list contains a few deep learning 
techniques. 
 
2.1.1 Deep Neural Networks (DNN)  
 
The DNN techniques are relatively comparable to 
the traditional artificial neural networks ANN 
procedures, with the number of hidden layers 
being the only difference. DNN networks             
feature many hidden layers that are virtually 
always fully connected, just like ANN techniques 
[48]. 

 
Fig. 3. Artificial Intelligence role in crop yielding 
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2.1.2 Convolutional neural network  
 
Compared to a network with all connections, 
CNN has fewer parameters to learn. Three 
different kinds of layers—convolutional, pooling, 
and fully connected—combine to form a CNN 
model. Convolutional layers are made up of 
filters and feature maps. The neurons of the layer 
are filters, which generate a value from weighted 
inputs. The output of a filter is occasionally 
referred to as a feature map. Pooling layers are 
used to down sample the feature map of the 
preceding layers, generalize feature 
representations, and reduce over fitting. At the 
network's edge, predictions are often performed 
using fully connected layers. In CNN models, a 
pooling layer is often followed by one or more 
convolutional layers, and this structure is 
repeatedly used. In most cases, a pooling layer 
comes after one or more convolutional layers, 
and before fully linked layers are employed in 
CNN models, this pattern is repeated several 
times [49,50].  

 
2.1.3 Long short term memory 
 
For problems with sequence prediction, LSTM 
networks were developed specifically. The 
stacked LSTM, CNN-LSTM, encoder-decoder 
LSTM, bidirectional LSTM, and generative LSTM 
architectures are only a few examples of the 
numerous LSTM designs. Statelessness, 
insensitivity to temporal structure, messy scaling, 
fixed sized inputs, and fixed sized outputs are 
only a few of the shortcomings of Multi-Layer 
Perceptron (MLP) feedforward ANN methods. 
LSTM can be viewed as the network's loop 
addition when compared to the MLP network. 
The LSTM is a distinct variant of the Recurrent 
Neural Network (RNN) method. In addition to 
having an internal state, being aware of the 
temporal structure of the inputs, being able to 
simulate parallel input series, and processing 
variable-length input to produce variable-length 
output, LSTMs differ significantly from MLP 
networks in several respects. The memory cell 
serves as the LSTM's computational unit. These 
cells are made up of gates and weights (such as 
internal state, input weights, and output weights) 
(i.e., forget gate, input gate, and output gate) 
[51]. 

 
2.1.4 3D-CNN 
 
The kernels in this network's variant of the CNN 
model travel through depth, height, and width. It 
consequently generates 3D activation maps. This 

kind of model was created to enhance the 
recognition of moving objects, such as in the 
case of security cameras and x-rays. In CNN's 
convolutional layers, 3D convolutions are 
conducted [52]. 

 
2.1.5 CNN-LSTM 
 
The strength of various deep learning algorithms 
can be combined. As a result, researchers 
integrate several algorithms in various ways. Chu 
and Yu [53] developed a model for predicting 
crop productivity by combining Back-Propagation 
Neural Networks (BPNNs) and Independently 
Recurrent Neural Networks (IndRNN). 
Convolutional Neural Networks and Long-Short 
Term Memory Networks (CNN-LSTM) were 
integrated by Sun et al. [54] to predict soybean 
yield. Convolutional and recurrent neural 
networks were integrated (CNN-RNN) by                  
Khaki et al. [42] to forecast yield. Wang et al.        
[55] merged CNN and LSTM networks (CNN-
LSTM) to solve the challenge of predicting wheat 
yield. 

 
2.1.6 Multi-Task Learning (MTL) 
 
To enhance the performance of our models 
created for various tasks, we share 
representations between tasks in multi-task 
learning. It has been used in a variety of fields, 
including speech recognition, drug development, 
and natural language processing. Instead of 
focusing on enhancing the performance of just 
one task, the goal is to increase performance 
across the board. In their evaluation of several 
multi-task learning strategies for supervised 
learning tasks, Zhang and Yang also provided an 
explanation of how multi-task learning can be 
combined with other learning types, such as 
semi-supervised learning and reinforcement 
learning. The supervised MTL approaches were 
split into the following groups: decomposition 
approach, task relation learning approach, task 
clustering approach, feature learning approach, 
and low-rank approach [56,57]. 

 
2.1.7 Deep recurrent Q-Network (DQN) 
 
In reinforcement learning, agents examine their 
surroundings and take appropriate action in 
accordance with the rules and information at 
hand. Agents work to maximize their benefits, 
which might be favorable or bad depending on 
their activities. Environment and agents are 
always interacting with one another. Researchers 
at Deep Mind, which Google purchased in 2014, 
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created the DQN algorithm in 2015. In 2015, 
multiple Atari games were solved using the DQN 
technique, which combines the strength of 
reinforcement learning and deep neural 
networks. Deep neural networks were added to 
the traditional Q-learning algorithm, and the 
experience replay method was also included 
[58,59]. 
 

3. USING REMOTE SENSING TO 
PREDICT CROP YIELD 

 

Agricultural output can change depending on the 
environment, weather, disease, and other 
factors. These aforementioned elements have an 
impact on crop growth at various stages, which 
has an impact on crop production. With the use 
of a range of instruments and methods, such as 
on-site surveying, ground observation, remote 
sensing, and global positioning systems, it is 
feasible to keep an eye on environmental 

conditions, other features, and crop growth. It is 
difficult to manually collect data for a big area 
using ground observation and other conventional 
methods, and the results will be less precise and 
unreliable. Remote sensing is currently being 
used more often for crop monitoring to overcome 
this constraint [64-66]. Remote sensing methods 
use spectral signatures to provide information on 
the status of crops at different growth levels that 
is comparable to thorough on-field surveying. 
Remote sensing technology is the non-contact, 
instrumental collection and analysis of data about 
the physical environment and its objects using a 
satellite or device put in the atmosphere. When 
compared to other methods of data acquisition, 
such as field surveying, remote sensing has the 
capacity to create a sufficient amount of data. It 
is the technique of seeing and identifying 
locations on Earth by utilizing sensors to 
measure the radiation that is emitted and 
reflected [67-72]. 

  

 
 

Fig. 4. Percentage distribution of DL techniques 
 

Table 1. Examples of some AL/ML techniques used in crop yield prediction 
 

Machine Learning techniques used Year Crops that were predicted Reference 

Long Short-Term Memory + Recurrent 
Neural Network   

2021 Wheat [60] 

Gradient Boosting + k-Nearest Neighbors + 
Support Vector Regression  

2021 1. Sunflower 
2. Sugar beet 
3. Potatoes 
4. wheat 
5.  barley 

[61] 

Recurrent Neural Network + Long Short-
Term Memory 

2021 Wheat [60] 

Support Vector Regression, k-Nearest 
Neighbor, linear regression and Elastic net 

2020 Potato [40] 

RNN and CNN 2020 Corn  [62] 

Deep Neural Network 2019 Corn Hybrids [63] 

30% 

22% 21% 

12% 

3% 3% 3% 3% 3% 

Percentage Distribution of deep learning algorithms. 
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Fig. 5. Uses of Remote sensing technology 
 

Table 2. List of remote index used in forecasting of crop yield [76] 
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An important justification for using optical     
remote sensing to obtain agricultural data is       
the measurement of vegetation indices. 
Combinations of spectral observations at multiple 
wavelengths are known as "spectral indices." 
They are used to calculate biophysical 
parameters and derive vegetation phenology 
[73]. Of the several spectral indices, vegetation 
indices are the ideal indices that are frequently 
utilized in crop yield prediction. Healthy crops 
exhibit high red and near-infrared band 
absorption and reflection [74]. Many quantitative 
measures of the vegetative environment can be 
built using the stark contrast between the red and 
near-infrared bands' levels of absorption and 
reflection. Vegetation indices (VI) are the names 
for these linear or nonlinear combinational 
processes [75]. Green vegetation index (GVI), 
chlorophyll absorption ratio index (CARI), and 
normalized difference vegetation index (NDVI) 
are a few examples of the VI. 

 

4. AGRARIAN FACTORS AND YIELD 
FORECASTING 

 
Various factors affect the yield of crops including 
biotic and Abiotic factors. The hybrid system 
used for agricultural dynamic monitoring 
illustrates the key elements influencing crop yield 
in below Fig. In general, crop output is forecast 
by keeping an eye on a variety of elements, 
including water usage, plantation size, soil 
quality, weather, disease incidences, and more. 

There are several variables that affect                       
crop productivity and the inherent risks of 
farming. All the factors mentioned in above                   
Fig. are he most important while predicting                   
crop yield. When these factors are not 
adequately evaluated and managed, they                    
can pose a significant risk to farmers. Also,                    
it is crucial to understand precisely what effects 
crop productivity and the liabilities involved                  
in order to increase crop yield and reduce risk 
[77]. 
 
Ml and remote sensing helps to access these 
factors more effectively. 
 

5. HOW ML HELPS AGRARIAN FACTORS 
AND REMOTE SENSING IN CROP 
YIELD FORECASTING? 

 
While remotely sensed photos typically offer 
more spatio-temporal-spectral information that 
may be exploited, more subtle and diverse 
patterns, and more complex patterns, there                  
are stricter limitations on how these images                  
can be processed than for natural photographs. 
The incorporation of DL into environmental 
remote sensing has allowed for its use in a wide 
variety of applications, such as land cover 
mapping, environmental parameter retrieval,   
data fusion and downscaling, information 
production and prediction, and so on, all thanks 
to DL's superior ability in feature representation 
[78]. 

 

 
 

Fig. 6.  Agrarian factorsaffecting crop yield 
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Fig. 7.  Applications of deep learning 
 

5.1 Mapping of Land Cover 
 

Image categorization is required for the mapping 
of land cover from remote sensing data. 
According to various spatial units, such as 
moving windows, objects, and scenes as well as 
pixels, traditional classification algorithms identify 
photographs [79]. Unfortunately, it is usually 
difficult to distinguish between the complex 
terrain structures or patterns by using a small 
number of rules because standard methods only 
use low-level data in the spectral and spatial 
domains for categorization. As a result, methods 
for classifying data that incorporate a lot of 
features at high levels are recommended. The 
best results were obtained when DL was recently 
used to land cover mapping due to its benefits in 
multiscale and multilayer feature extraction [80]. 
In complex urban settings, the deep learning-
based classification strategy offers substantial 
advantages in terms of classification accuracy 
compared to the traditional rule-based and ML 
methods. Current applications have shown the 
promise of DL-based land-cover classification 
methods due to the necessity for land cover 
mapping from high-resolution and even very-
high-resolution satellite imageries. 
 

5.2 Environmental Parameter Retrieval 
 
Physical models that are based on systematic 
environmental data are frequently used in remote 
sensing to retrieve environmental parameters. 

The physical processes, however, are quite 
intricate and include a large number of model 
factors. Additionally, several environmental 
phenomena still lack a reliable physical model. 
This makes it possible for deep learning or 
machine learning to recover environmental 
factors. To begin with, deep leaning can replicate 
or condense the physical models for retrieving 
environmental factors. Physical models require 
extremely complicated calculation, and DL can 
be used in the forward simulation of physical 
models due to its significant simulation capability. 
As a result, retrieving environmental parameters 
can be made simpler. Second, due to its ability to 
approximate complex relationships, The 
statistical link between remote sensing 
measurements and in-situ environmental 
parameters can be determined using deep 
learning [81,82]. This can achieve a comparable 
performance without using complex physical 
models. Maybe more crucially, DL can offer an 
alternate and workable method for retrieving 
environmental parameters in particular 
environmental phenomena where there are no 
reliable physical models available. 
 

5.3 Agricultural Yield Prediction by 
Remote Sensing, Agrarian Factors 
and Machine Learning 
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[90]. By building models connecting yields and 
influencing (like weather, soil conditions, terrain, 
disease, and vegetation growth conditions) and 
human (like irrigation and fertilizer management) 
elements, the majority of available methods to 
forecast agriculture yield few months before 
harvesting. With remote sensing data collected 
over huge areas, some parameters can be 
calculated. An articulation controller NN model 
for the cerebellum was created by Desachy and 
Simpson in 1994. They discovered that the 
addition of remote sensing data, such as Landsat 
Thematic Mapper (TM) observations based on 
agricultural data and climatic factors, will 
increase the prediction model's accuracy. 
Moreover, by utilizing remote sensing vegetation 
indexes and other parameters, NNs surpassed 
the conventional linear regression approaches in 
the prediction of crop yield [38,91-93]. NDVI is 
the most widely used index. Using historical yield 
data, MODIS, and AVHRR NDVI, Ju et al 
developed the shuffled complex evolution 
technique (SCE-UA) optimization NN approach 
to estimate corn and soybean yields [94]. In one 
study, sugarcane yields were forecasted using 
MODIS NDVI and an ensemble model of NN. 
The initial data set's redundant and unnecessary 
characteristics were eliminated using a 
sequential backward elimination NN wrapper. 
Similar research has also been done on other 
unique vegetation indices [95]. Using crop yield 
data, Johnson and his colleagues built Bayesian 

NNs in each hierarchically grouped region to 
assess the MODIS NDVI, MODIS EVI, and 
AVHRR NDVI. For all three crops, they 
discovered that MODIS NDVI was a reliable 
prediction, and MODIS EVI was an improved 
predictor [96]. NDVI, green vegetation index, soil-
adjusted vegetation index, and perpendicular 
vegetation indices were used in one research to 
create the BPNN model. The outcomes showed 
that the grid images of perpendicular vegetation 
index were accurate in predicting the corn 
production [97]. In one study, the effect of 
irrigation on lettuce output was investigated by 
building a neural network model with the use of 
the NDVI, chlorophyll green, simple ratio, and 
red-edge chlorophyll. The scientists discovered 
that a drop in irrigation water caused a fall in 
lettuce yield. To create prediction models 
between auxiliary factors and agricultural yields, 
some more types of neural networks are also 
utilized [98]. Researchers used a fuzzy neural 
networks (FNN) or granular neural networks 
(GNN) to forecast crop yields using simulation 
parameters from the Crop Growth Monitoring 
System and SPOT NDVI [99]. In comparison to 
the conventional approaches, the use of neural 
networks and deep learning to predict agricultural 
output is significantly improved with the addition 
of remote sensing data based on meteorological 
data. There are numerous different retrieval 
models available right now. The forecast model's 
robustness, however, is limited as a result of 

 

 
 

Fig. 8. Estimation of usage of AL in different countries to predict crop yield 
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Table 3. Some studies of varios crop yield pridticng techniques 
 

Technique Results Reference 

Neural 
network (Back propagation) 

The suggested and trained models total four. 
Benchmark MLR model was outperformed by the 
fourth model. 

[83] 

Model named SRS 
(model of simulation remote 
sensing) 

There were three different input types, and then 
calculation of  LAI was conducted. When given 
AVHRR GAC input, the model produces good results. 

[84] 

Model named Monteith The accuracy of model declines as crop 
heterogeneity increases. 

[85, 86] 

SVR Model (support vector 
regression) 
 

Calculated MAPE & MAE were compared to other 
commercially available models. The proposed 
model's MAPE is higher but still within acceptable 
bounds. 

[86] 

Model RS-P-YEC  
(yield 
estimation for crop) 
 

Data from meteorology as well as remote sensing 
were utilized. The outcomes of this model are 
contrasted with meteorological station observations, 
where R2 hits 0.817. 

[87] 

GPR , RFR, SVR and BRT 
are used. 

The performance of machine learning approaches is 
superior to that of traditional regression techniques. 

[88] 

Prediction based on weather The results show sensitivity of 89.36% + specificity of 
91.72%.+ accuracy of 94.5%.  

[89] 

 

 
 

Fig. 9. Crop yield prediction in different seasons 
 
specific circumstances, including various crop 
types, topography, and climate. Remote sensing 
may be used throughout the entire agricultural 
production cycle, from soil preparation to 
harvesting. Due to the advancement of low-cost 
unmanned aerial vehicles, high spatial and 
temporal resolution satellite data, and field hyper 
spectral measurements, remote sensing 
agricultural applications have undergone a 
significant transformation. Satellite data continue 
to be the most efficient remote sensing technique 
for scanning large areas and monitoring changes 
in national and regional agriculture [100]. In 

addition, high-precision forecasts are usually only 
applicable to the study area. So, increasing the 
universality and migration of the crop yield 
forecast model is a popular but tough field of 
future research. 
 

6. CONCLUSIONS 
 

The expected crop production is an important 
piece of data. This may be accomplished via 
surveys, statistical models as well as machine 
learning. Agricultural output is affected by many 
factors, including climate, soil type, soil nutrients, 
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crop nutrients, crop canopy volume and biomass, 
water content, disease, weeds, insects, and 
cultivar and variety. The effects of the 
aforementioned factors may be observed in the 
crop's spectroscopic characteristics, which can 
be assessed by a variety of remote sensors. 
Crop yield may be tracked, assessed, and 
estimated quickly, affordably, and effectively 
using remote sensing. In this study, a detailed 
assessment of the use of DL techniques for 
agricultural production forecasting by using 
remote sensing data has been conducted. The 
objectives of this were to give useful information 
on how vegetation indices and environmental 
variables influence crop production forecast and 
to highlight the research gaps that still needed to 
be addressed in a specific field of deep learning 
methods. This comprehensive study of the 
literature has shown the various deep learning 
techniques, remote data sensing and agrarian 
parameters utilized for agricultural output 
forecasting. All deep learning algorithms may 
forecast crop output based on the variables and 
parameters included in the various models.. 
Based on the findings of this review, it is 
determined that the vegetation indices and 
meteorological data, which define the 
characteristics of the crops and help in 
monitoring the climatic conditions that directly 
influence crop yield forecast, are the most often 
utilized aspects. Furthermore, it is evident that 
the factors that affect crop yield forecasting are 
influenced by the crop yield and how it relates to 
other variables. Still further research is needed to 
examine the pro and cons of various techniques. 
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