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*e polygonal scaled boundary finite element method (PSBFEM) is a novel approach integrating the standard scaled boundary
finite element method and the polygonal mesh technique. In this work, a user-defined element (UEL) for dynamic analysis based
on the PSBFEM is developed in the general finite element software ABAQUS. We present the main procedures of interacting with
Abaqus, updating AMATRX and RHS, defining the UEL element, and solving the stiffness and mass matrices through eigenvalue
decomposition. Several benchmark problems of free and forced vibration are solved to validate the proposed implementation.*e
results show that the PSBFEM is more accurate than the FEM with mesh refinement. Moreover, the PSBFEM avoids the oc-
currence of hanging nodes by constructing a polygonal mesh. *us, the PSBFEM can choose an appropriate mesh resolution for
different structures ensuring accuracy and reducing calculation costs.

1. Introduction

Structural dynamic analysis, especially the analysis of the
response of a structure to an earthquake, is an important
problem in engineering design. In the past, calculations were
made for such problems under simplified conditions. *e
finite element method (FEM) has become the most powerful
and routine method of numerically analyzing the time-
dependent responses of structures in free and forced vi-
bration problems. Typically, the domain of the conventional
two-dimensional FEM is discretized using triangular or
quadrilateral elements. *e quadrilateral mesh is limited in
handling complex geometries [1] whereas triangular ele-
ments are more flexible than quadrilateral elements in mesh
generation while providing lower accuracy [2]. *e gener-
ation of a high-quality mesh can thus be a time-consuming
task.

*e scaled boundary finite element method (SBFEM)
was presented in the 1990s by Song and Wolf [3]. *e
SBFEM is a semianalytical method that attempts to fuse the

advantages and characteristics of the FEM and boundary
element method (BEM) into one approach.*e SBFEM only
discretizes at the boundary. Hence, the governing differ-
ential equations have a weak form along the circumferential
direction whereas they maintain a strong form along the
radial direction. *e SBFEM has been applied to many
physical field problems, such as those of wave propagation
[4, 5], heat conduction [6, 7], fracture mechanics [8–11],
acoustics [12], seepage [13, 14], elastoplastics [15], and fluids
[16, 17].

*e SBFEM has also been applied to the analysis of free
and forced vibrations. Sepehry et al. [18] adopted the SBFEM
to analyze the free and forced vibrations of piezoelectric
materials. Liu et al. [19] solved the associated eigenvalue
problem to determine the free vibration response of a cir-
cular cylindrical piezoelectric panel using the SBFEM. Liu
et al. [20] investigated the free vibration and transient dy-
namic behaviors of functionally graded sandwich plates
using the SBFEM. Yang et al. [21] developed a frequency-
domain method for modeling general transient linear-elastic
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dynamic problems using the SBFEM. *e SBFEM was
shown to be more efficient than the conventional FEM for
these problems.

*e polygonal scaled boundary finite element method
(PSBFEM) is a novel method integrating the standard
SBFEM and the polygonal mesh or quadtree mesh technique
[22]. Compared with the standard finite element, polygons
are not limited in terms of their number of sides [23]. *e
polygon-based finite element is easily generated through
Voronoi [24] and Delaunay tessellations [23]. *e ability to
assume any irregular shape makes polygon elements more
flexible in meshing complex geometries. *e discretization
thus becomes more flexible for complex geometries [25],
such as in modeling polycrystals [26] and biomechanics
applications [27]. Furthermore, for topology optimization,
Talischi et al. [28] revealed that polygons possess higher
degrees of geometric isotropy and allow for greater flexibility
in discretizing complex domains without suffering from
numerical instabilities. *erefore, these advantages have
further promoted the use of polygons as an alternative
technique.

*e SBFEM has not yet been included in commercial
software despite the maturing of its development. It is thus
difficult for the engineer to use this method in solving
engineering problems. *e commercial software Abaqus has
powerful linear and nonlinear and static and dynamic
analysis capabilities. Abaqus/Standard analysis also provides
a user-defined element (UEL) to create elements with an
element formulation that is not available in Abaqus/Stan-
dard. Molnar et al. [29] implemented an implicit, staggered
elastoplastic version of the phase-field approach in Abaqus
through the UEL. Kumbhar et al. [30] implemented the
element-based smoothed finite element method (CSFEM)
using UEL subroutines. Notably, the UEL can be used to
extend Abaqus to solve new problems conveniently.

Recent works have focused on the implementation of the
SBFEM in the commercial FEM software Abaqus. Ya et al.
[31] implemented an open-source polyhedral SBFEM ele-
ment for three-dimensional and nonlinear problems
through the Abaqus UEL. Ye et al. [32] implemented a
polygon SBFEM for two-dimensional linear elastostatic
problems using the UEL subroutine. Yang et al. [33] de-
veloped a polygon SBFEM element to solve steady-state and
transient heat conduction problems. *ese studies showed
that the Abaqus UEL subroutine is suitable for imple-
menting the SBFEM.

Yang et al. [34] conducted an explicit dynamic analysis
using the VUEL subroutine. For high-speed simulations, the
advantages of the explicit dynamic analysis are apparent
within the desired tolerance. *e cost of the explicit method
is much less than that of the implicit method. However, the
solutions are more unstable for low-speed simulations be-
cause high-frequency numerical noise becomes more im-
portant. *e numerical damping is induced in the implicit
analysis functions to remove noise and maintain accuracy.
*e explicit method is conditionally stable, and the stable
time period is thus much shorter than that for the implicit
method. Hence, an explicit method has many time incre-
ments for a long overall procedure [35]. At present, the use

of the Abaqus user-defined element of the SBFEM mainly
focuses on the forced vibration problem [34] whereas the
free vibration problem has received little attention.

Two-dimensional models are relatively easy to set up and
have reasonably short analysis times in engineering design,
allowing sensitivity and optimization analyses [36]. Addi-
tionally, the models are readily available. Andersen and
Jones [37] compared a two-dimensional model and a three-
dimensional model for vibration analysis of two railway
tunnel structures using the combined finite element method
and boundary element method. *ey observed that the
results obtained using the two-dimensional model are
qualitatively consistent with those obtained using the three-
dimensional model at most frequencies. It is desirable to use
two-dimensional models as much as possible owing to these
design advantages.

*is work aims to develop a UEL of the PSBFEM for free
and forced vibration analyses by relying on the user sub-
routine interface of general finite element software Abaqus.
*e remainder of the paper is organized as follows. Section 2
introduces the basic principles of the SBFEM in dynamic
analysis. Section 3 describes the implementation of the
PSBFEM with dynamic analysis. Section 4 compares the
convergence and accuracy rates of the PSBFEMwith those of
the conventional FEM using several numerical benchmarks.
Section 5 presents concluding remarks.

2. Theory

2.1. Polygonal SBFEM Formulation. *e motion equation
and boundary conditions are written as

∇ σ{ } + b{ } � ρ u{ }
..

in Ω,

u{ } � u
−

in Γu,

σ{ } · n � t
−

􏼚 􏼛 in Γt,

(1)

where ∇ is the differential operator, σ{ } is the Cauchy stress
tensor, b{ } is the body force, ρ is the mass density, u{ } is the
displacement vector, and u{ }

..

is the acceleration vector. Γu
denotes the displacement boundary conditions, and Γt de-
notes the surface traction boundary conditions.

*e SBFEM has a local coordinate system (ξ, η) as il-
lustrated in Figure 1. *e coordinates of a point (x, y) along
the radial line and inside the domain are expressed as [38].

x � ξ[N(η)] x{ }, (2a)

y � ξ[N(η)] y􏼈 􏼉, (2b)

where ξ is the radial coordinate and η is the circumferential
coordinate.

*e differential operator is transformed from the Car-
tesian coordinate system to the scaled boundary coordinate
system by

∇ � b1􏼂 􏼃
z

zξ
+
1
ξ

b2􏼂 􏼃
z

zη
, (3)

with
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b1􏼂 􏼃 �
1
Jb

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

yb,η 0

0 − xb,η

− xb,η yb,η

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4a)

b2􏼂 􏼃 �
1
Jb

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

− yb 0
0 xb

xb − yb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (4b)

where the Jacobian matrix at the boundary (ξ � 1) is
expressed as

Jb􏼂 􏼃 �
xb yb

xb,η yb,η

⎡⎣ ⎤⎦ � xbyb,η − ybxb,η. (5)

*e displacement field u(ξ, η) at any point in the SBFEM
coordinates is expressed as

u(ξ, η)􏼈 􏼉 � Nu(η)􏼂 􏼃 u(ξ){ }. (6)

where u(ξ) is the radial displacement function along a line
connecting the scaling center O and a node at the boundary
and [Nu(η)] is the shape function matrix:

Nu(η)􏼂 􏼃 �
N1(η) 0 N2(η) 0 . . . 0 NM(η) 0

0 N1(η) 0 N2(η) . . . 0 NM(η)
􏼢 􏼣. (7)

*e strain-displacement transition matrices
[B1] � [B1(η)] and [B2] � [B2(η)] are introduced:

B1􏼂 􏼃 � b1􏼂 􏼃 Nu􏼂 􏼃, (8a)

B2􏼂 􏼃 � b2􏼂 􏼃 Nu􏼂 􏼃η. (8b)

*e strain field ϵ{ } is expressed in the scaled boundary
coordinates as

ε{ } � B1􏼂 􏼃 u(ξ){ },ξ +
1
ξ

B2􏼂 􏼃 u(ξ){ }􏼠 􏼡. (9)

*e stress field σ{ } is expressed as

σ{ } � [D] B1􏼂 􏼃 u(ξ){ },ξ +
1
ξ

B2􏼂 􏼃 u(ξ){ }􏼠 􏼡, (10)

where [D] is an elasticity matrix that has the form

[D] �
E

1 − v
2

1 v 0

v 1 0

0 0
1 − v

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

for plane stress problems, where E is Young’s modulus and v

is Poisson’s ratio.
According to the principle of virtual work, the radial

displacement function u(ξ) is the solution to the SBFEM
equation in displacement [39]:

E0􏼂 􏼃ξ2 u(ξ){ },ξξ + E0􏼂 􏼃 + E1􏼂 􏼃
T

− E1􏼂 􏼃􏼐 􏼑ξ u(ξ){ },ξ

− E2􏼂 􏼃 u(ξ){ } + F(ξ) � 0.
(12)

In the derivation, the governing equations of linear
elasticity are weakened in the circumferential direction
whereas they remain strong in the radial direction. *e
coefficient matrices [Ei], i � 0, 1, 2 depend only on the ge-
ometry and material properties and are expressed as

E0􏼂 􏼃 � 􏽚
+1

− 1
B1􏼂 􏼃

T
[D] B1􏼂 􏼃 Jb

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dη, (13a)

E1􏼂 􏼃 � 􏽚
+1

− 1
B2􏼂 􏼃

T
[D] B1􏼂 􏼃 Jb

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dη, (13b)

E2􏼂 􏼃 � 􏽚
+1

− 1
B2􏼂 􏼃

T
[D] B2􏼂 􏼃 Jb

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dη, (13c)

M0􏼂 􏼃 � 􏽚
+1

− 1
Nu􏼂 􏼃

Tρ Nu􏼂 􏼃 Jb

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dη. (13d)
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Figure 1: Scaled boundary finite element coordinate system on a generic polygon.
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When F(ξ) � 0, the solution of equation (12) is a series
of second-order ordinary differential equations obtained by
introducing the variable

X(ξ){ } �
u(ξ){ }

q(ξ)􏼈 􏼉
􏼨 􏼩, (14)

where q(ξ)􏼈 􏼉 is the internal force vector. Equation (12) can
be rewritten as a first-order ordinary differential equation
with twice the number of unknowns as

ξ X(ξ){ },ξ − Zp􏽨 􏽩 X(ξ){ } � 0, (15)

where the coefficient matrix [Zp] is a Hamiltonian matrix.
*e solution for a bounded domain is obtained using the
positive eigenvalues of [Zp]. Hence, [Zp] is expressed as

Zp􏽨 􏽩 �
− E0􏼂 􏼃

− 1
E1􏼂 􏼃

T
E0􏼂 􏼃

− 1

E2􏼂 􏼃 − E1􏼂 􏼃 E0􏼂 􏼃
− 1

E1􏼂 􏼃
T

E1􏼂 􏼃 E0􏼂 􏼃
− 1

⎡⎢⎢⎣ ⎤⎥⎥⎦. (16)

*e solution of equation (15) can be obtained using the
eigenvalue decomposition technique. *e eigenvalue de-
composition of [Zp] is expressed as

Zp􏽨 􏽩
Φ(n)

u􏽨 􏽩 Φ(p)
u􏽨 􏽩

Φ(n)
q􏽨 􏽩 Φ(p)

q􏽨 􏽩

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ �
Φ(n)

u􏽨 􏽩 Φ(p)
u􏽨 􏽩

Φ(n)
q􏽨 􏽩 Φ(p)

q􏽨 􏽩

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

λ(n)
􏽨 􏽩 0

0 λ(p)
􏽨 􏽩

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(17)

*e real parts of eigenvalues [λ(n)] are negative whereas
those of [λ(p)] are positive. [Φ(n)

u ] and [Φ(p)
u ] are trans-

formation matrices corresponding to the modal displace-
ments and forces, respectively. *e general solution of
equation (15) is written as

X(ξ) �
Φ(n)

u􏽨 􏽩 Φ(p)
u􏽨 􏽩

Φ(n)
q􏽨 􏽩 Φ(p)

q􏽨 􏽩

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

ξ− λ(n)[ ] 0

0 ξ− λ(p)[ ]

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦
c

(n)
􏽮 􏽯

c
(p)

􏽮 􏽯

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(18)

where c(n)􏼈 􏼉 and c(p)􏼈 􏼉 are the integration constants. For a
super element with 0≤ ξ ≤ 1, the solution of equation (15) is

u(ξ){ } � Φ(n)
u􏽨 􏽩ξ − λ(n)[ ] c

(n)
􏽮 􏽯,

q(ξ)􏼈 􏼉 � Φ(n)
q􏽨 􏽩ξ− λ(n)[ ] c

(n)
􏽮 􏽯,

(19)

where the integration constants c(n)􏼈 􏼉 are extracted from the
nodal displacements on the boundary ub􏼈 􏼉 � u{ }(ξ � 1) as

c
(n)

􏽮 􏽯 � Φ(n)
u􏽨 􏽩

− 1
ub􏼈 􏼉. (20)

Eliminating the integration constants c(n)􏼈 􏼉 from at ξ � 1
yields

F{ } � q(ξ � 1)􏼈 􏼉 � Φ(n)
q􏽨 􏽩 Φ(n)

u􏽨 􏽩
− 1

ub􏼈 􏼉. (21)

Hence, the stiffness matrix of the S-element is written as

[K] � Φ(n)
q􏽨 􏽩 Φ(n)

u􏽨 􏽩
− 1

. (22)

*e equation of motion of an S-element is expressed as

[M] €u{ } +[C] _u{ } +[K] u{ } � P{ }, (23)

where [M] is the mass matrix, [C] is the damping matrix,
and P{ } is the external force vector.

*e mass matrix is written as

[M] � Φ(u)
b􏽨 􏽩

− T
􏽚
1

0
ξ〈λb〉 Φ(u)

b􏽨 􏽩
T

M0􏼂 􏼃 Φ(u)
b􏽨 􏽩ξ〈λb〉ξdξ Φ(u)

b􏽨 􏽩
− 1

,

(24)

where the coefficient matrix [M0] is introduced as

M0􏼂 􏼃 � 􏽘
e

M
e
0􏼂 􏼃, (25)

with

M
e
0􏼂 􏼃 � 􏽚

+1

− 1
Nu􏼂 􏼃

Tρ Nu􏼂 􏼃 Jb

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dη. (26)

To perform the integration with respect to ξ in equation
(24) analytically, the abbreviation

m0􏼂 􏼃 � Φ(u)
b􏽨 􏽩

T
M0􏼂 􏼃 Φ(u)

b􏽨 􏽩, (27)

is introduced. *e integration is rewritten as

[m] � 􏽚
1

0
ξ〈λb〉 m0􏼂 􏼃ξ〈λb〉ξdξ, (28)

and equation (24) is rewritten as

[M] � Φ(u)
b􏽨 􏽩

− T
[m] Φ(u)

b􏽨 􏽩
− 1

. (29)

Each entry of matrix [m] is evaluated analytically,
resulting in

mij � 􏽚
1

0
ξλbi m0ijξ

λbjξdξ �
m0ij

λbi + λbj + 2
. (30)

2.2. Natural Frequency and Mode Shapes. *e equations of
equilibrium governing the linear dynamic response are
written as [40]

[M] €u{ } +[C] _u{ } +[K] u{ } � P{ }, (31)

where [M], [C], and [K] are, respectively, the mass,
damping, and stiffness matrices; P{ } is the external force
vector; and €u{ }, _u{ }, and u{ } are, respectively, the acceler-
ation, velocity, and displacement vectors. *e relationship
between the damped natural frequency fd and the un-
damped natural frequency fud is expressed as [41]

fd �

�����

1 − ζ2
􏽱

fud. (32)

Equation (32) shows that the damped natural frequency
is lower than the undamped natural frequency. However, in
many practical cases, the damping ratio is relatively small
and the difference is thus negligible [41, 42]. Equation (32) is
therefore rewritten as

[M] €u{ } +[K] u{ } � P{ }. (33)
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For the free vibrations, the external force vector P{ } is
zero [43]. Hence,

[M] €u{ } +[K] u{ } � 0. (34)

For the steady-state conditions, starting from the
equilibrium state, we set

u{ } � U{ }sin ωt, (35)

where U{ } is the vector of nodal amplitudes of vibration and
ω (rad/s) is the circular frequency. Introducing equation (35)
into equation (34) yields

[K] U{ } � ω2
[M] U{ }. (36)

We thus have a generalized eigenvalue problem

[K] U{ } � λ[M] U{ }, (37)

where U{ } is an eigenvector, representing the vibrating
mode, corresponding to the eigenvalue λ. *e eigenvalue λ is
the square of the circular frequency ω. *e frequency f in
hertz is obtained as f � ω/(2π).

2.3. Implicit Dynamic Analysis. Abaqus/Standard uses the
Hilber–Hughes–Taylor (HHT) [44] time integration for the
implicit dynamic analysis. *e HHTmethod is an extension
of the Newmark method [45].

In solving the dynamic equation

[M] €u{ } +[C] _u{ } +[K] u{ } � P{ }, (38)

the HHT method is expressed as [44]

[M] €u{ }t+Δt +(1 + α) [C] _u{ }t+Δt +[K] u{ }
t+Δt

􏼐 􏼑

− α [C] _u{ }t +[K] u{ }
t

􏼐 􏼑 � P{ }
t+Δt

,

(39)

_u{ }t+Δt � _u{ }t + (1 − c) €u{ }t + c €u{ }
t+Δt

􏽨 􏽩Δt, (40)

u{ }t+Δt � u{ }t + _u{ }tΔt +
1
2

− β􏼒 􏼓 €u{ }t + β €u{ }
t+Δt

􏼔 􏼕Δt, (41)

where t is time, Δt is the time increment, and α, β, and c are
parameters that are determined to obtain integration ac-
curacy and stability; − 1/3≤ α< 0, β≥ 1/4(c + 1/2)2, and
c≥ 1/2 [46]. *is method reduces to the Newmark method
when the integration parameter α is set to zero [47].

3. Implementation Details

3.1. Implementation of PSBFEM Using the UEL.
According to the Abaqus User Subroutines Reference
Manual [48], the most critical work of the UEL is to update
the contribution of the element to the internal force vector
RHS and the stiffness matrix AMATRX in the user sub-
routine interface provided by Abaqus. AMATRX is an array
containing the contribution of the element of the stiffness or
the other matrix of the overall system of equations whereas
RHS is an array containing the contributions of the element

to the right-hand-side vectors of the overall system of
equations.

In free vibration analysis, the natural frequencies of an
undamped system can be written as equation (37), and
AMATRX is thus defined as

AMATRX �
[K],

[M],
􏼨

when LFLAGS (3) � 2,

when LFLAGS (3) � 4,
(42)

where LFLAGS is an array containing flags that define the
current solution procedure and requirements for element
calculations.

In the case of forced vibration, Abaqus/Standard adopts
implicit dynamic analysis, and AMATRX and RHS are
defined as

AMATRX � [M]
d€u{ }

du{ }
+(1 + α)[C]

d _u{ }

du{ }
+(1 + α)[K], (43)

RHS � − Pt+Δt􏼈 􏼉 � − [M] €ut+Δt􏼈 􏼉 − (1 + α)

· C _ut+Δt􏼈 􏼉 + K ut+Δt􏼈 􏼉􏼂 􏼃 + α C _ut􏼈 􏼉 + K ut􏼈 􏼉􏼂 􏼃,

(44)

Equation (41) can be rewritten as

€ut+Δt􏼈 􏼉 �
1

βΔt2
ut+Δt􏼈 􏼉 −

1
βΔt2

ut􏼈 􏼉 −
1

βΔt
_ut􏼈 􏼉 −

1
2β

− 1􏼠 􏼡 €ut􏼈 􏼉.

(45)

Substituting equation (45) into equation (40) yields

_ut+Δt􏼈 􏼉 �
c

βΔt
ut+Δt􏼈 􏼉 −

c

βΔt
ut􏼈 􏼉 −

c

β
− 1􏼠 􏼡 _ut􏼈 􏼉

− Δt
c

2β
− 1􏼠 􏼡 €ut􏼈 􏼉.

(46)

It follows from equations (43), (45), and (46) that

AMATRX �
1

βΔt2
[M] +

c

βΔt
(1 + α)[C] +(1 + α)[K].

(47)

Finally, the UEL subroutine updates AMATRX and RHS
according to equations (47) and (44) in the forced vibration
analysis.

Figure 2 shows an overall implementation of the UEL
subroutine. Using the connectivity information of the input
file, the UEL computes the scaling centers and transforms
the global coordinates into local coordinates. Equation (13a)
computes the coefficient matrices [E0], [E1], [E2], and [M0],
which are used to construct the Hamilton matrix [Zp] using
(16). *e two eigenvector matrices ([Φ(n)

q ], [Φ(n)
u ]) are

constructed through eigenvalue decomposition. We finally
obtain the stiffness matrix [K] and mass matrix [M] of the
PSBFEM elements.

We need to adopt eigenvalue decomposition (see equation
(17)) in solving the stiffness matrix and mass matrix. *ere are
many mathematical libraries with which eigenvalue decom-
position is performed. We use the Intel Math Kernel Library
(MKL) [49] for eigenvalue decomposition in this work.
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Abaqus CAE does not support the visualization of UEL
results. *erefore, this paper uses the open-source program
Paraview [50] to visualize the results. *e specific method is
to write the node information, field variable information,
unit information, and unit type in the result file “odb” into
the “vtu” file according to the file format provided by
Paraview through a Python script and finally import the file
into Paraview for visualization.

3.2. Defining Elements in the UEL. Figure 3 shows the
schematic diagram of the PSBFEM polygon mesh.
Figure 3(a) shows the arbitrary polygon mesh, including
triangle, quadrilateral, and pentagonal elements. Moreover,
Figure 3(b) shows a quadtree mesh, including a traditional
quadrilateral mesh and complex quadrilateral mesh. For
complex quadrilateral elements, such as elements 5 and 6 in
Figure 3(b), there are hanging nodes, which can be regarded
as polygonal elements in the PSBFEM.

*e input file of Abaqus usually contains a complete
description of the numerical model, such as information on
the nodes, elements, degrees of freedom of nodes, and
materials. *is information needs to be defined in the “inp”

file by the user. We show a simple polygon mesh of the
PSBFEM to demonstrate the defining of elements in the
UEL, as shown in Figure 3(a). *e mesh comprises three
types of element: triangular elements (U3), quadrilateral
elements (U4), and pentagon elements (U5). *e pentagon
element (U5) is defined as follows:

(a) *e keywords of basic information are shown as
follows:

(1) ∗User element, nodes� 5, type�U5, proper-
ties� 2, coordinates� 2

(2) 1,2
(3) ∗Element, type�U5, elset� E5
(4) 3,2,3,4,8,7
(5) ∗Uel property, elest� E5
(6) 2e5,0.3,2000,0,0

Here, Line 1 assigns the element type, number of
nodes, number of element properties, and number of
degrees of freedom at each node; Line 2 assigns the
active degrees of freedom; Lines 3 and 4 define the
element set E5; and Lines 5 and 6 set the element
properties (i.e., Young’s modulus, Poisson’s ratio,
density, and Rayleigh damping coefficient) of E5.

(b) *e keywords of free vibration analysis are shown as
follows:

(7) ∗Frequency, eigensolver� Lanczos
(8) 5, , , , ,

Here, Line 7 defines the analysis step of eigenvalue
extraction; the eigenvalue extraction method is
Lanczos. Line 8 defines the number of eigenvalues
requested.

(c) *e keywords of forced vibration analysis are shown
as follows:

(9) ∗Dynamic, direct
(10) 0.02,25.

Here, Lines 9 and 10 define the implicit dynamic analysis
of the fixed time increment; the total time t � 25 and the
time increment Δt � 0.02.

4. Numerical Examples

*is section validates the convergence and accuracy of the
implementation by solving benchmark problems. Moreover,
the results of the PSBFEM are compared with those of the
FEM. *e FEM analysis uses the commercial finite element
software Abaqus. *e comparison is evaluated on an Intel
Core i7-4710MQ CPU running at 2.50GHz with 4.0GB of
RAM. *e relative error norm in the results is analyzed
according to

e �
Unum − Uref

����
����L2

Uref
����

����L2

, (48)

where Unum is the numerical result obtained using the
PSBFEM and Uref is the reference solution obtained as the
analytical solution or numerical solution.

Compute the stiffness/mass matrix of SBFEM
element [K]/[M]

Read input data from
‘inp’ file 

Compute scaling centers and transform the
global coordinate to local coordinate 

End UEL subroutine

Computer the coefficient matrices
[E0] [E1] [E2] [M0] 

Construct the Hamilton matrix
[Zp] 

Solve the SBFEM equation
by eigenvalue decomposition

Start UEL subroutine

First increment?

Yes

Update RHS and AMATRX,
according to Equation (42)

Update RHS and AMATRX,
according to Equations (44,47)

Free vibration analysis Forced vibration analysis

Figure 2: Framework of implementing the UEL in free vibration
and forced vibration analyses.
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4.1. Analysis of the Natural Frequency and Mode Shapes

4.1.1. Free Vibration Analysis of a Horizontal Soil
Foundation. In this example, we consider a horizontal soil
foundation with a thickness of 5m for free vibration
analysis, as shown in Figure 4. *e material properties are a
dynamic shear modulus of soil G � 1000 kPa, Poisson’s ratio
] � 0.3, and mass density ρ � 2000 kg/m3. *e bottom of the
foundation is fixed for all displacement components. *e
vertical displacement of the soil foundation is constrained.
*e frequency of mode j of the foundation is expressed as
[51]

ωj �
(2j − 1)π

2H
vs. (49)

*e shear wave velocity is calculated as

vs �

��
G

ρ

􏽳

. (50)

*e domain is discretized with quadrangle and arbitrary
polygonal elements. A convergence study is conducted using
both types of mesh. We refine meshes successively following
the sequence h � 0.5, 0.25, 0.1, and 0.05m. Element meshes
with element size of 0.5m are shown in Figure 4(b) and 4(c).

*e relative errors in the first five natural frequencies are
given in Table 1. *e errors decrease as the mesh is refined.
*e relative error of the PSBFEM is less than that of the
FEM. As an example, the error of the PSBFEM is 1.057%
whereas that of the FEM is 1.623% when the element size is
0.5m.Moreover, the accuracy of the PSBFEM improves with
the refining of the mesh. As an example, the error of the
PSBFEM is 0.007% whereas that of the FEM is 0.017% when
the element size is 0.05m.*e PSBFEM element is thusmore
accurate than the FEM element for the same element size.

Figure 5 shows that the relative error decreases at natural
frequencies with an increasing number of degrees of

1 2 3

45

6 7

8

1

2

Triangle element
Quadrilateral element
Pentagonal element 

1
2

3

3

Quadrilateral element
Pentagonal element
Hexagonal element 

4

5
6

Complex
quadrilateral element 

Conventional
quadrilateral unit

Node
Hanging node

4

5 6

(a) (b)

Figure 3: Schematic diagram of polygon meshes: (a) random polygon meshes and (b) quadtree meshes.

H=5.0 m

L=1.0 m

(a) (b) (c)

Figure 4: Geometry and meshes of a horizontal soil foundation: (a)
geometry of a horizontal soil foundation, (b) Abaqus CPE4 meshes,
and (c) polygonal meshes.
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freedom. *e convergence rate of the PSBFEM is close to
that of the FEM. Figure 6 shows the first four mode shapes of
the foundation, where the displacement field is normalized.
Mode shapes are virtually the same for the FEM and
PSBFEM.

4.1.2. Free Vibration Analysis of a Multihole Panel. A panel
with four circular holes, as shown in Figure 7, is considered
to demonstrate the flexibility of the PSBFEM element and
quadtree algorithm. *e multihole panel has a height H

� 1m and length L � 5m. Each of the four circular holes has
a radius of 0.3m. *e material properties are a Young’s
modulus E� 206GPa, mass density ρ � 7800kg/m3, and
Poisson’s ratio v � 0.3.

*e quadtree mesh is generated by setting the same
number of mesh seeds on each hole, as shown in Figure 8(b),
and themesh transition between the holes of different sizes is
effectively handled. *e multihole panel is modeled with
1632 quadtree elements, and there are a total of 2478 nodes.
Moreover, this problem is analyzed with a similar number of
nodes (2565 nodes) using the Abaqus CPS4 element.

Table 2 gives the relative error norms of the FEM and
PSBFEM as 0.54% and 0.80%, respectively. *e two methods
thus show good accuracy. However, the FEM is more

accurate in this example owing to the meshes of the FEM
conforming more than the quadtree meshes to the geometry.
*e first four mode shapes are presented in Figure 9. Modes
1, 2, and 4 are characterized by bending deformation and
mode 3 by axial deformation. *e present solutions are in
good agreement with those obtained by the FEM.

4.2. Response History Analysis

4.2.1. Forced Vibration Analysis of a Cantilever Beam. To
verify the validity of the proposed method for forced vi-
bration problems, we investigate the forced vibration of a
cantilever beam, as shown in Figure 10(a). *e mesh is
refined through h-refinement. *e meshes of the FEM and
PSBFEM are shown in Figures 10(c) and 10(d). *e results
are compared with the analytical solutions [52]. *e can-
tilever beam has a length of 1.0m and height of 0.5m. *e
material properties are a Young’s modulus E� 100 Pa, mass
density ρ � 1.0 kg/m3, and Poisson’s ratio ] � 0. A uniform
loading is applied to the right edge with a Heaviside step
loading P(t) � 1.0 N/m2, as shown in Figure 10(b).

In general, the numerical integrations using the New-
mark method are accurate when Δt/T is smaller than ap-
proximately 0.01 [40]. In this example, we consider that the

Table 1: *e first five natural frequencies (Hz) of a horizontal soil foundation.

Method Element size (m) Degrees of freedom
Natural frequencies (Hz)

Relative error (%)
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Analytical solution — — 0.3467 1.0401 1.7334 2.4268 3.1202 —

FEM

0.5 126 0.3466 1.0377 1.7223 2.3964 3.0556 1.623
0.25 410 0.3467 1.0395 1.7307 2.4192 3.1040 0.407
0.1 1458 0.3467 1.0400 1.7330 2.4256 3.1176 0.065
0.05 8442 0.3467 1.0400 1.7333 2.4265 3.1195 0.017

PSBFEM

0.5 164 0.3468 1.0416 1.7406 2.4466 3.1623 1.057
0.25 644 0.3467 1.0404 1.7349 2.4308 3.1286 0.212
0.1 3998 0.3467 1.0401 1.7336 2.4273 3.1213 0.027
0.05 15998 0.3467 1.0401 1.7334 2.4268 3.1205 0.007
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Figure 5: Convergence behavior of the soil foundation in terms of the relative error norm at the first five natural frequencies.
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H
=1
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1 m 1 m 1 m 1 m 1 m

r=0.3 m

Figure 7: Geometry and boundary conditions of a multihole panel.

(a)

(b)

Figure 8: Elements of a multihole panel: (a) Abaqus CPS4 elements and (b) quadtree elements.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 1 Mode 2 Mode 3 Mode 4 

FEM PSBFEM

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.
U Magnitude

Figure 6: First four mode shapes of the horizontal soil foundation. (a) FEM. (b) PSBFEM.
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time step Δt � 0.001 s is used for the time integration, and
the total time is 1.2 s.*e convergence of the relative error in
the horizontal displacement is presented in Figure 11. All

methods show an optimal convergence rate. *e PSBFEM
element provides better accuracy than the FEM element.
Figure 12 illustrates the horizontal displacement time history

Table 2: *e first four natural frequencies (Hz) of a multihole panel.

Method
Natural frequencies f (Hz)

Relative error norm (%)
Mode 1 Mode 2 Mode 3 Mode 4

Reference solutions 31.811 150.19 209.31 330.64 —
FEM 31.916 151.15 210.03 333.40 0.54
PSBFEM 31.992 151.66 210.07 334.93 0.80

Mode 1

Mode 2

Mode 3

Mode 4

FEM

U Magnitude
0.0e+00 0.20.30.40.50.60.70.8 1.0e+00

(a)

Mode 1

Mode 2

Mode 3

Mode 4

PSBFEM

U Magnitude
0.0e+00 0.20.30.40.50.60.70.8 1.0e+00

(b)

Figure 9: *e first four modes of a multihole panel: (a) modes of the FEM and (b) modes of the PSBFEM.

P (t)Monitor
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H
=0

.5
 m

(a)

P (t)

t0

p0

0.2 0.4 0.6 0.8 1.0 1.2

(b)

(c) (d)

Figure 10: Heaviside step loading applied to a cantilever beam: (a) geometry and boundary condition, (b) Heaviside step loading, (c)
Abaqus CPS4 element, and (d) PSBFEM element.

10 Advances in Civil Engineering



of the monitoring point. *e PSBFEM obtains a history of
acceleration that is in excellent agreement with that obtained
by the FEM.

4.2.2. Forced Vibration Analysis of a Multihole Plate. We
again use the model of a multihole panel. *e geometry and
boundary conditions are presented in Figure 13. *e same
meshes as used in Section 4.1.2 are used in this example, as
shown in Figure 8. As for the results in Section 4.1.2, the
fundamental frequency is ω � 2πf � 199.77. Hence, a
concentrated force p(t) � 10000 sin(199.77πt) is applied to
the right end of the plate. *e material properties are the
same as those in Section 4.1.2. *e response analyses of

damped and undamped systems are considered. *e rela-
tionship between the coefficients of the Rayleigh damping αR
and βR and the damping ratio ςn is expressed as [40]

ςn �
αR

2ωn

+
βRωn

2
, (51)

where n denotes the nth mode. In traditional methods, two
reference vibration modes are selected, and their damping
ratios ςi and ςj are obtained through measurement or re-
liable test data estimation and their frequencies ωi and ωj are
used to solve αR and βR [53]:

αR

βR

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
�

2ωiωj

ω2
j − ω2

i

ωj − ωi

−
1
ωj

1
ωi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ςi

ςj

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (52)

When ςi � ςj � ς, the coefficients of Rayleigh damping
are determined as

αR

βR

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
�

2ς
ωi + ωj

ωiωj

1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (53)

Generally, the damping ratio ς is 0.03–0.05 [51]. In this
example, we consider that the damping ratio ς is 0.05. Hence,
the coefficients of Rayleigh damping are αR � 16.494 and
βR � 0.0001. *e time step Δt � 0.001 s is used for the time
integration, and the total time is 0.4 s. *e vertical dis-
placement and velocity time history of the monitoring point
calculated using the FEM and PSBFEM are compared in
Figures 14 and 15. *e results obtained using the two
methods correspond well.

4.3. Case Analysis of a Concrete-Face Rockfill Dam. We
consider the vibration analysis of a simple concrete-face
rockfill dam (CFRD) to show the advantage of the PSBFEM
in handling hanging nodes. *e geometry of the CFRD is
shown in Figure 16. *e height of the dam is 10m, and the
slopes upstream and downstream have a gradient of 1 : 2.*e
thickness of the concrete face is 0.4m. *e properties of the
CFRD are given in Table 3.*e bottom boundary of the dam
is fixed for all displacement components in the free vibration
analysis. In the forced vibration analysis, the vertical dis-
placement of the bottom boundary of the dam is fixed. *e
bottom boundary of the dam is subject to a seismic load [51]
in the horizontal direction.

*e accuracy of modeling improves with an increasing
number of degrees of freedom as shown in Sections 4.1 and
4.2. However, increasing the number of degrees of freedom
requires a longer computing time.We should thus choose an
appropriate mesh resolution that ensures accuracy but a low
cost of calculation. Figure 17 presents the results of the mesh
size sensitivity for two element types. It is clear that these
elements provide more accurate results when the mesh
resolution is less than 0.5m. *e size of the concrete face of
the CFRD is smaller than the size of the rockfill. In this case,
to well evaluate the dynamic characteristics of the face, we
set the mesh resolution of the face at 0.06m. *ere are three
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Figure 12: Time history of the horizontal displacement of the
monitoring point.
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Figure 11: Convergence of the relative error in the horizontal
displacement at the monitoring point.
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modeling cases for this example. Case 1 is FEM modeling
with mesh resolutions of the face and rockfill of 0.06m, as
shown in Figure 18(a). Case 2 is FEM modeling with mesh
resolutions of the face and rockfill of 0.06 and 0.5m, re-
spectively, as shown in Figure 18(b). We set a tie constraint
between the concrete face and rockfill to compatibly couple
the meshes. Case 3 is PSBFEM modeling with mesh reso-
lutions of the face and rockfill again set at 0.06 and 0.5m,
respectively, as shown in Figure 18(c). *e element type is a
plane strain element.

Table 4 gives the first five natural frequencies of the
CFRD.*e relative error norms of the three cases for the first
five natural frequencies are 0.03%, 0.18%, and 0.04%. *e

L=5 m

Monitor
Point

H
=1

 m

1 m 1 m 1 m 1 m 1 m

r=0.3 m

P (t)

Figure 13: Geometry and boundary conditions of a multihole panel subject to a concentrated dynamic loading.
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Figure 14: Time history of the vertical displacement.
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Table 3: Properties of the CFRD.

Material Young’s modulus (MPa) Poisson’s ratio Density (kg/m3)
Concrete face 3.0×104 0.167 2500
Rockfill 520 0.3 2000
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Figure 17: Sensitivity analysis of meshes.
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Figure 18: Continued.
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PSBFEM and the FEMwith a global element size of 0.06m is
more accurate than the FEM using the tie constraint. Fig-
ure 19 shows the first three mode shapes of the dam. *e
mode shapes are virtually the same for the FEM and
PSBFEM. In addition, the PSBFEM obtains a history of
acceleration that is in good agreement with the reference
solution, as shown in Figure 20. *e total CPU running time
is 22.5 s for Case 1, 0.6 s for Case 2, and 1.4 s for Case 3.

Results show that the computational cost of the PSBFEM is
slightly higher than that when using the Abaqus standard
element for a similar number of elements. *e PSBFEM is
bound to generate relatively more computations than the
standard FEM owing to the PSBFEM needing to decompose
the eigenvalue and sort eigenvalues and conduct other
operations [54]. However, the PSBFEM avoids the occur-
rence of hanging nodes by constructing a polygonal mesh.

Concrete face 

Rockfill

Hanging node
15-Nodes element

Node

(c)

Figure 18: Mesh model of the CFRD: (a) Case 1, FEM model with a global element size of 0.06m; (b) Case 2, FEM model with a tie
constraint; and (c) Case 3: PSBFEM model.

Table 4: *e first five natural frequencies (Hz) of a simple CFRD.

Case Number of elements
Natural frequencies (Hz)

Relative error norm (%) Time consumption (s)
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Reference — 12.413 16.673 20.492 22.106 25.580 — —
Case 1 69329 12.403 16.670 20.482 22.103 25.577 0.03 22.5
Case 2 2212 12.395 16.658 20.447 22.071 25.511 0.18 0.6
Case 3 2788 12.406 16.676 20.498 22.112 25.602 0.04 1.4

Case 2
Mode 1

Mode 2

Mode 3

Case 3Case 1 Reference

U Magnitude
0.0e+00 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0e+00

Figure 19: *e first three modes of the dam in the three cases.
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Hence, the PSBFEM can choose an appropriate mesh res-
olution for different structures to ensure accuracy and re-
duce the cost of calculation.

5. Conclusions

*is work implemented the PSBFEM in two-dimensional
free and forced vibration analyses within an Abaqus/Stan-
dard analysis using the UEL subroutine. *e work mainly
focused on the main procedures of interacting with Abaqus,
updating AMATRX and RHS, defining the UEL element in
the input file, and solving the stiffness matrix and mass
matrix through eigenvalue decomposition using the MKL
mathematical libraries in the UEL implementation proce-
dure. Moreover, meshes were generated automatically and
results were visualized in Paraview using a Python script.

*e implementation of the PSBFEM was validated
against the FEM by solving benchmark problems.*e results
demonstrate that the PSBFEM is more accurate than the
FEMwithmesh refinement. In addition, the implementation
of the PSBFEM can conveniently use arbitrary polygon el-
ements through polygon/quadtree discretization in the
commercial finite element software Abaqus. Notably, be-
cause the PSBFEM avoids hanging nodes by constructing a
polygonal mesh, the PSBFEM can choose an appropriate
mesh resolution for different structures to ensure accuracy
and reduce calculation costs.
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