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(e cantilever plate structure in a T-beam bridge with a large aspect ratio will cause vibration under the influence of envi-
ronmental disturbance and self-stress, resulting in fatigue damage of the plate structure. Wave control based on elastic wave
theory is an effective method to suppress the vibration of the cantilever plate structure in a beam bridge. Based on the classical thin
plate theory and the wave control method, the active vibration control of the T-shaped cantilever plate with a large aspect ratio in
the beam bridge is studied in this paper. (e wave mode control strategy of structural vibration is analyzed and studied, the
controller is designed, the vibration mode function of the cantilever plate is established, and the control force/sensor feedback
wave control is implemented for the structure.(e dynamic response of the cantilever plate before and after applying wave control
force is analyzed through numerical examples. (e results show that the response of the structure is intense before control, but
after wave control, the structure increases damping, absorbs the energy carried by the elastic wave in the structure, weakens the
sharp response, and changes the natural frequency of the structure to a certain extent.

1. Introduction

(e bridge structure in working condition will bear its static
load and dynamic load caused by peripheral vibration.(ere
are a large number of T-cantilever extended plate structures
in beam bridge structures, mostly T-cantilever plate struc-
tures with a large aspect ratio. (ese structures carry their
static load and the static load and dynamic load of sur-
rounding vehicles in the beam bridge. At the same time, the
environmental disturbance and dynamic rotation of the
beam bridge structure will also cause structural vibration
[1, 2]. (e abovementioned will cause the vibration of the
bridge structure. If effective vibration suppression measures
are not taken, the vibration will decay very slowly, which will
not only affect the position of the beam bridge structure, but
also cause the vibration of the plate structure, cause fatigue
damage, and have a serious impact on the safety and service
life of the beam bridge [3].

(e traditional passive control methods, such as adding
damping, often only increase the additional weight of the
structure and reduce the service efficiency of the plate

structure and cannot get satisfactory results [4]. (erefore,
wave control based on elastic wave theory to suppress the
vibration of the cantilever plate structure in the beam bridge
is a new method to solve this problem.

At present, in the research of wave control, the research
object is mostly simplified as a flexible beam, and some
literature are simplified as plate structure to implement the
bending wave control [5, 6].(e wave control method can be
used to control the propagation of waves in one-dimensional
structures, such as bending waves in beams, and axial waves
in rods.

Halkyard studied the feedback adaptive control of
bending vibration of beam structure by the wave control
method [7]. EL-Khatib employs a tuned vibration absorber
to investigate the bending wave suppression in beams [8].
Krushynska studied the propagation characteristics of
curved edge waves in semi-infinite isotropic elastic plates
and found that the velocity of edge waves is essentially
independent of Poisson’s ratio [9]. Jones, IS used the same
method to analyze and experiment with the active control of
semi-infinite simply supported rib [10]. Kaplunov studied
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the propagation of a three-dimensional edge wave along the
edge of a semi-infinite elastic plate under mixed boundary
conditions and found that the cut-off frequency of the edge
wave is consistent with the natural frequency of the semi-
infinite strip [11]. In this paper, based on the research of the
abovementioned documents, a large number of cantilever plate
structures existing in the girder bridge structure are controlled
by the sliding film variable structure control method which is
different from the conventional control method.

(e vibration of the structure can be regarded as the
superposition of the waves propagating in the structure,
which are reflected and transmitted at the discontinuity of
the structure [12, 13]. By controlling the transmitted or
absorbed wave energy from one side to the other side of the
structure, the structural vibration can be suppressed.

Based on the classical thin plate theory and the wave
control method, the active vibration control of T-cantilever
plate with a large aspect ratio in beam bridge is studied in
this paper. (e wave mode control strategy of structural
vibration is analyzed and studied. (e controller is designed
to control the force/sensor feedback wave of the structure.

2. Vibration Equation and Solution of
Thin Plate

According to the classical thin plate theory, the expression of
displacement component u v in the rectangular coordinate
system is [14, 15]

u(x, y, z, t) � − z
zw(x, y, t)

zx
,

v(x, y, z, t) � − z
zw(x, y, t)

zy
,

(1)

where w(x, y, t) represents the transverse displacement of
the plate, u(x, y, z, t) and v(x, y, z, t) represent the dis-
placement in x and y directions in the plane, respectively,
which is linearly distributed along the thickness direction.

(e bending moment and shear force in the plate can be
described as follows:
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z
2
w

zx
2 + ]
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2
w

zy
2􏼠 􏼡,

My � − D
z
2
w
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2􏼠 􏼡,

(2a)

Mxy � Myx

� − D(1 − v)
z
2
w

zxzy
,

(2b)

Qx � − D
z

zx
∇2w,

Qy � − D
z

zy
∇2w,

(2c)

where D is the bending stiffness of the plate,
D � Eh3/12(1 − ]2), ∇2 � z2/zx2 + z2/zy2 is the Laplace
operator, and ] is the Poisson’s ratio.

(e cantilever plate structure studied in this paper is
shown in Figure 1. (e equilibrium equation of plate mi-
croelement is

zMx

zx
+

zMyx

zy
− Qx � 0, (3a)

zMxy

zx
+

zMy

zy
− Qy � 0, (3b)

zQx

zx
+

zQy

zy
+ q − ρh

z
2
w

zt
2 � 0, (3c)

where ρ is the mass of the plate per unit area and q is the
external load on the plate per unit area.

Substituting equation (2a) in (3a), the vibration differ-
ential equation of the thin plate is
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∇2∇2w +
ρh
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D
. (4b)

(e displacement expression of modal expansion form
of thin plate is

w(x, y, t) � 􏽘
m

i�1
􏽘

n

j�1
Wi,j(x, y)qi,j(t), (5)

where Wi,j(x, y) is the vector modal function, qi,j(t) is the
modal coordinate, and m, n are the modal truncation
numbers.

Substitute equation (5) in (4a) to obtain
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where Wi,j(x, y) shall satisfy the following equation:

∇4Wi,j − ω2
i,j

ρh

D
Wi,j � 0, (7)

where ωi.j is the natural frequency of the plate.
Substitute equation (7) in (6) to obtain

􏽘
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i�1
􏽘

n

j�1
(ρh)Wi,j

z
2
qi,j

zt
2 + 􏽘

m

i�1
􏽘
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j�1
(ρh)ω2

i,jWi,jqi,j � q. (8)

Multiply both ends of equation (8) by the vibration
mode function Wr,s(x, y), it is integrated on the area
domain Ω of the thin plate, and the orthogonality of the
structural vibration mode shape function is used.
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1
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(e result is as follows:
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􏽘
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j�1
Wi,j(ρh)Wr,s
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i,jWi,j(ρh)Wr,sqi,jdxdy � B
Ω
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(erefore, there are

z
2
qi,j(t)

zt
2 + ω2

i,jqi,j(t) � pi,j(t), i � 1, 2, . . . m; j � 1, 2, . . . n.

(11)

Among them, the external disturbing force
pi,j(t) � 1/mi,jJΩq(x, y, t)Wi,j(x)dxdy, equation (11) is
the modal coordinate equation of the plate.

(e lateral displacement of the points on the plate is
expanded into the form of modal superposition. For can-
tilever rectangular plates, the modal function can usually be
decomposed into the product of two beam functions [16],
that is, the product of cantilever beam in x-direction and free
beam at both ends in y-direction.(erefore, the deflection of
the plate can be expressed as

w(x, y, t) � 􏽘
m

i�1
􏽘

n

j�1
Wi(x)Wj(y)qi,j(t), (12)

where Wi(x) is the mode function of the transverse dis-
placement of the cantilever beam in the x-direction of the
plate and Wj(y) is the modal function of the free beam in
the y-direction of the plate.

2.1. Vibration Mode Function of Cantilever Plate in x-
Direction. Based on Euler Bernoulli beam theory, the i-
order modal function of transverse displacement in x-di-
rection can be expressed as

Wi(x) � D1e
− ik0ix + D2e

ik0ix + D3e
− k0ix + D4e

k0ix. (13)

Applying Euler formula,

e
±ikx

� cos(kx) ± isin(kx)

e
±kx

� cosh(kx) ± sinh(kx)

⎫⎬

⎭. (14)

By substituting (14) in (13), another expression of the
vibration mode function can be obtained.

Wi(x) � A1cos k0ix( 􏼁 + A2sin k0ix( 􏼁

+ A3cosh k0ix( 􏼁 + A4sinh k0ix( 􏼁.
(15)

Considering the boundary conditions at both ends of the
cantilever Euler Bernoulli beam, it can be obtained that

cos k0ia( 􏼁 · cosh k0ia( 􏼁 + 1 � 0. (16)

Equation (16) is the dispersion equation of cantilever
vibration [17].

Combined with the frequency equation, equation (15)
can be expressed as

Wi(x) � cos h k0ix( 􏼁 − cos k0ix( 􏼁

+ ai sin h k0ix( 􏼁 − sin k0ix( 􏼁􏼂 􏼃,
(17)

where a is the length in the x-direction, k0i � (ρhω2/D)1/4 is
the elastic wave number in the classical plate;
ai � − cosh(k0ia) + cos(k0ia)/sinh(k0ia) + sin(k0ia), this
coefficient is determined according to the boundary con-
ditions at both ends of the cantilever Euler Bernoulli beam.
Equation (17) is the vibration mode function of the canti-
lever plate in the x-direction.

Central rigid body

y

z
a

b

xh

Cantilever plate

Figure 1: Model of the cantilever plate.
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2.2. Vibration Mode Function of Cantilever Plate in
y-Direction. In the same way as the derivation of the mode
shape function in the x-direction, the j-order mode shape
function of the transverse displacement in the y-direction of
the cantilever plate is

Wj(y) � C1e
− ik0jy

+ C2e
ik0jy

+ C3e
− k0jy

+ C4e
k0jy

. (18)

Using Euler formula (14), change x into y and substitute
it in (18)

Wj(y) � B1 cos k0jy􏼐 􏼑 + B2 sin k0jy􏼐 􏼑

+ B3 cos h k0jy􏼐 􏼑 + B4 sin h k0jy􏼐 􏼑
(19)

Considering the boundary conditions at both ends of the
Euler Bernoulli beam with free ends, it can be obtained that

cos k0jb􏼐 􏼑 · cosh k0jb􏼐 􏼑 − 1 � 0. (20)

Equation (20) is the dispersion equation of the vibration
of free beams at both ends [18, 19].

Combined with the frequency equation, equation (20)
can be expressed as

Wj(y) � cosh k0jy􏼐 􏼑 + cos k0jy􏼐 􏼑

+ bi sinh k0jy􏼐 􏼑 + sin k0jy􏼐 􏼑􏽨 􏽩,
(21)

where b is the length in the y-direction, k0j � (ρhω2/D)1/4 is
the elastic wave number in the classical plate;
bj � − cosh(k0jb) − cos(k0jb)/sinh(k0jb) − sin(k0jb), this
coefficient is determined according to the boundary con-
ditions of Euler Bernoulli beams with free ends.

It should be emphasized here that when j≥ 3, the mode
function of the Euler Bernoulli beam with free ends is
equation (21), which is determined by the dispersion
equation of vibration of free beams at both ends. And,
Wj(j � 1, 2) is in the following form:

W1 � 1,

W2 � 1 −
2y

b
.

(22)

It can be seen that equations (21) and (22) are vibration
mode functions in the y-direction of the cantilever plate.

(e maximum kinetic energy of the plate during vi-
bration is [20]

Tmax �
1
2
B
Ω
ρhW

2
(x, y)dxdy. (23)

(e maximum potential energy of the plate during vi-
bration is
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1
2
B
Ω

D
z2W

zx2 +
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+ 2(1 − ])
z2W
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􏼠 􏼡

2

−
z
2
W
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2
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2
W
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2

⎡⎣ ⎤⎦
⎧⎨

⎩

⎫⎬

⎭dxdy. (24)

According to the Rayleigh-Ritz principle, the natural
frequency of the plate is

ω2
�

Umax

Tmax
. (25)

3. Feedback Wave Control of Cantilever Plate

Consider the presence of an excitation in the beam structure
where a train of wave control forces is applied to a line
parallel to the y-axis. At this point, the point discontinuity on
the beam is the line discontinuity here. According to the
traveling wave theory, the incident elastic wave will be re-
flected and transmitted at discontinuities [21, 22]. Assuming
a column of forward propagating waves is incident at x � 0,
where the incident attenuation wave is ignored and the time
factor is not considered, the displacements of the beam at
x< 0 and x> 0 are respectively as follows:

w− (x, y) � a
+
e

− ikx
W(y) + a

−
e

ikx
W(y) + a

−
Ne

kx
W(y),

w+(x, y) � b
+
e

− ikx
W(y) + b

+
Ne

− kx
W(y).

(26)

Make
b

+

b
+
N

􏼢 􏼣 �
t1
t2

􏼢 􏼣a
+
,

a
−

a
−
N

􏼢 􏼣 �
r1
r2

􏼢 􏼣a
+
,

(27)

where a+ is the mode coefficient of the incident propagation
wave, a− is the mode coefficient of the reflected propagation
wave, a−

N is the mode coefficient of the reflected attenuation
wave, b+ is the mode coefficient of the transmitted propa-
gation wave, and b+

N is the mode coefficient of the trans-
mitted attenuation wave.

In feedback wave control, sensors and actuators are
positioned in an area of the structure to control the prop-
agation of elastic waves, where the position of the control
force is discontinuous. In the frequency domain, the control
force of the feedback wave is taken as

F(ω) � − H(ω)W(ω), (28)

where H(ω) is the transfer function of the controller, which
can be determined by calculating the reflection coefficient
and transmission coefficient of the solution wave.
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Considering the continuity and balance of the beam at
x � 0, there are

w+(0, y) � w− (0, y),

zw− (0, y)

zx
�

zw+(0, y)

zx
,

(29a)

Hw+ � Q+(0, y) − Q− (0, y),

M+(0, y) � M− (0, y),
(29b)

where H is the transfer function of the wave controller.
Substitute equation (26) in (29a)

1

− i
􏼢 􏼣a

+
+

1 1

i 1
􏼢 􏼣

a
−

a
−
N

􏼢 􏼣 �
1 1

− i − 1
􏼢 􏼣

b
+

b
+
N

⎡⎣ ⎤⎦, (30a)

i

− 1
􏼢 􏼣a

+
+

− i 1
− 1 1

􏼢 􏼣
a

−

a
−
N

􏼢 􏼣 �
i − 1

− 1 1
􏼢 􏼣

b
+

b
+
N

􏼢 􏼣 +
H H

0 0
􏼢 􏼣

b
+

b
+
N

􏼢 􏼣, (30b)

where H � H/EIk3. Substitute equation (27) in (30a),

1

− i
􏼢 􏼣a

+
+

1 1

i 1
􏼢 􏼣

r1

r2
􏼢 􏼣a

+
�

1 1

− i − 1
􏼢 􏼣

t1

t2
􏼢 􏼣a

+
, (31a)

i

− 1
􏼢 􏼣a

+
+

− i 1
− 1 1

􏼢 􏼣
r1

r2
􏼢 􏼣a

+
�

i − 1
− 1 1

􏼢 􏼣
t1

t2
􏼢 􏼣a

+
+

H H

0 0
􏼢 􏼣

t1

t2
􏼢 􏼣a

+
. (31b)

By solving this equation

t1 � 1 +
Hi

4 − (1 + i)H
,

r1 �
Hi

4 − (1 + i)H
.

(32)

(e energy carried by the propagating wave is propor-
tional to the square of the wave amplitude [23]. (erefore,
the reflection energy and transmission energy per unit in-
cident energy is E � |t1|

2 + |r1|
2, if there is no energy dis-

sipation at x � 0, then |t1|
2 + |r1|

2 � 1. In this paper, a
controller for absorbing incident energy is designed by
adding damping to the structure.

In particular, if we let H(ω) �
�
2

√
(1 + i)ωg, then

E � t1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ r1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

� 1 −
(1 + i) gω
2gω + 2

�
2

√
i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+ −
(1 + i) gω
2gω + 2

�
2

√
i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

.

(33)

We assume that the wave is incident from one side of the
control region to seek the optimal control gain g andmake it
absorb the energy of the incident wave as much as possible,
in other words, minimize E � |r|2 + |t|2 (maximize the en-
ergy absorbed by the controller). In this case, let zE/zω � 0,
and the control gain is

g �

�
2

√

ω
. (34)

(erefore, the transfer function of the wave controller is

H(ω) � 2(1 + i). (35)

Typically, the tuned PD (proportional plus differential
control) feedback wave control is used so that it has the same
effect as the optimal controller at a particular frequency ωd.
(e frequency response of the controller is

Hw(ω) � c1 + c2(iω), (36)

where c1 � 2, c2 � 2/ωd.
When the controller in the frequency domain is con-

verted to the time domain, the inverse Fourier transform is
performed on the control law, and the PD control in the time
domain is obtained [24, 25]. If the wave control force is
applied at (xw, yw), it becomes

fw(x, y, t) � − c1w(x, t) + c2 _w(x, t)􏼂 􏼃δ x − xw( 􏼁δ y − yw( 􏼁.

(37)

At this time, the wave control force (37) is applied to the
original vibration system, and the matrix form of the system
motion equation is

􏽥Mw €q + 􏽥Cw _q + 􏽥Kwq � 􏽥p, (38)

Advances in Civil Engineering 5



where 􏽥p � p11 p12 . . . pN􏼂 􏼃
T, pi,j(t) � 1/mi,jJΩq

(x, y, t)Wi,j(x)dxdy, 􏽥Mw, 􏽥Cw, 􏽥Kw are mass matrix,
damping matrix, and stiffness matrix, respectively, in the
form of

􏽥Mw � I,

􏽥Cw � c2
􏽢Ψw,

􏽥Kw � ω2
+ c1

􏽢Ψw,

(39a)

􏽢Ψw �

W1 xw( 􏼁W1 yw( 􏼁W1 xw( 􏼁W1 yw( 􏼁 . . . W1 xw( 􏼁Wm yw( 􏼁W1 xw( 􏼁Wn yw( 􏼁

W1 xw( 􏼁W1 yw( 􏼁W2 xw( 􏼁W1 yw( 􏼁 . . . W1 xw( 􏼁Wm yw( 􏼁W2 xw( 􏼁Wn yw( 􏼁

⋮⋮⋮
Wm xw( 􏼁W1 yw( 􏼁Wn xw( 􏼁W1 yw( 􏼁 . . . Wm xw( 􏼁Wm yw( 􏼁Wn xw( 􏼁Wn yw( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(m·n)×(m·n)

. (39b)

And it should be emphasized that in the later pro-
gramming calculation, c1, c2 will also be matrices.

When there is no wave control force, the mass matrixM
is the unit matrix of (m · n) × (m · n), C is the zero matrix of
(m · n) × (m · n), and K is the diagonal matrix of the square
of natural frequency. However, the wave control force
couples the vibration modes of the uncontrolled original

system together, and the modes of the wave control system
change accordingly.

(e state vector X(t) � [qT(t): _qT(t)]T is introduced,
and equations (2a)–(35) are written as

_X(t) � AX(t) + B􏽥p, (40)

where the coefficient matrix is

A �
0 I

− 􏽥Mw
− 1 􏽥Kw − 􏽥Mw

− 1 􏽥Cw

􏼢 􏼣,

B �
0

􏽥Mw
− 1 􏽢Ψd

􏼢 􏼣,

􏽢Ψd �

W1 x1( 􏼁W1 y1( 􏼁W1 x2( 􏼁W1 y2( 􏼁 . . . W1 xN( 􏼁W1 yN( 􏼁

W1 x1( 􏼁W2 y1( 􏼁 . . . W1 xN( 􏼁W2 yN( 􏼁

⋮ ⋮ ⋮

Wm x1( 􏼁Wn y1( 􏼁 . . . W1 xN( 􏼁W2 yN( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(m·n)×N

.

(41)

4. Numerical Examples and Analysis Discussion

(e dynamic response of thin plates before and after
applying wave control force is analyzed and studied by
using feedback wave control. (e characteristic length is
taken as the length b of the beam, and the following
dimensionless quantity is adopted: Poisson ratio v � 0.30;
a/b � 2; ωi,j � ωi,j/ω1,1(i � 1, 2, 3; j � 1, 2). (e first 6 di-
mensionless frequencies of the cantilever plate are shown
in Table 1.

Figures 2–7 show the frequency response of the structure
before and after applying wave control forces. In Figure 2,
the unit disturbance force is applied at the point
(xd, yd) � (0.30a, 0.20b), while the wave control force and
the measuring response position are at the point (xw, yw) �

(0.40a, 0.40b) and (xs, ys) � (0.40a, 0.70b), respectively. In
Figure 3, the unit disturbance force is applied at the point

(xd, yd) � (0.40a, 0.20b), the wave control force and the
measured response position are (xw, yw) � (0.40a, 0.40b)

and (xs, ys) � (0.70a, 0.80b), respectively. (e unit distur-
bance force is applied at the point (xd, yd) � (0.30a, 0.30b)

in Figure 4, the wave control force and the measured re-
sponse position are (xw, yw) � (0.45a, 0.45b) and (xs, ys) �

(0.70a, 0.60b), respectively.
In Figure 5, the unit disturbance force is applied at the

point (xd, yd) � (0.40a, 0.30b), the wave control force and
the measured response position are (xw, yw) � (0.45a,

0.45b) and (xs, ys) � (0.40a, 0.60b), respectively. In Fig-
ures 6 and 7, the unit disturbance force is applied at the point
(xd, yd) � (0.30a, 0.20b), and the wave control force posi-
tions are (xw, yw) � (0.40a, 0.40b), (xw, yw) � (0.45a,

0.45b), respectively, the measured response positions are
(xs, ys) � (0.40a, 0.60b) and (xs, ys) � (0.40a, 0.70b), re-
spectively. In the approximation of tuned PD control, the
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controller is tuned to the optimum at the third natural
frequency. (rough analysis, the following are discussed:

It can be seen from Figures 2–7 that the frequency re-
sponses before and after different wave controls. (e
transverse coordinates are dimensionless frequency values,
while the longitudinal coordinates are the common loga-
rithmic values of frequency responses. Figures 2–7 show the
frequency response of the front and rear structures using
wave controllers. (e response of the structure is rapid
before control, while wave control can be regarded as adding
damping to the structure and absorbing the energy carried

by the elastic wave in the structure. After the wave control,
the sharp response is weakened; in addition, the frequency
response before and after the wave control also reflects that
the modal characteristics of the whole structure have
changed after the wave control, the natural frequency of the
structure has been changed to a certain extent. Finally, from
Figures 2–7, it can be seen that the position of the wave
controller is different and the control effect of each order
mode is different. At the third natural frequency, the ab-
solute output amplitude of the controller is reduced to about
31.8% of the original value, and the controller is tuned to the
optimum value at the third natural frequency, so the control
effect is the best at the third natural frequency.

From the comparison of Figures 2–5, it can be seen that
when the wave control position is the same, but the dis-
turbance is different. And when the dynamic response
position is different, although the sharp response is

Table 1: (e first 6 dimensionless frequencies of the cantilever
plate.

Modal order 1 2 3 4 5 6
Natural frequency 1.00 51 5.51 12.90 15.43 23.73
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Figure 5: Frequency response before and after wave control.
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weakened, the control effect is not identical. It can be seen
from the comparison between Figures 6 and 7 that when the
disturbance position is the same, the wave control force is
different, and the dynamic response position is different, the
control effect is also different. (e influence of the appli-
cation position of the wave controller on the control effect is
also very important. (e application point of the wave
controller should avoid the node of the mode as far as
possible. Otherwise, the active control will not get good
results, and may even lead to system instability.

5. Conclusions

Based on the classical thin plate theory and the wave control
method, the active vibration control of the cantilever plate is
studied in this paper. In this paper, the wave control method
widely used in the one-dimensional waveguide is applied to
classical thin plates, and a series of active vibration control

examples of cantilever plates are given. (e following
conclusions can be drawn:

(e mode shape function of a cantilever rectangular
plate is decomposed into the product of two functions, that
is, the product of the mode shape function of a cantilever
beam only dependent on the direction, and the mode shape
function of a free beam at both ends only dependent on the
direction. (e problem of solving the vibration mode
function of the thin plate is effectively solved.

When a series of wave control forces are applied to the
plate, the point discontinuity on the beam is where the line
discontinuity is. (e wave control force is determined by
using the equilibrium condition and continuity condition at
the line discontinuity.

With wave control, a controller is designed to absorb the
incident vibration energy by adding damping to the
structure, which corresponds to a tuned spring and damper
in the time domain. It can be seen from the control output
that the control gain can achieve the optimal design at a
certain tuning frequency. (erefore, when the applied po-
sition of wave control is different, the control effect of each
order mode is different due to the distance between the
applied position and the node of each order mode. For better
control, the wave controller can be applied at several dif-
ferent locations, while avoiding instability of the system, the
application point of the wave controller should avoid the
modal nodes as far as possible.
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