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ABSTRACT 
 

Aim : This study used QSAR Pharmacophore-based virtual screening and molecular docking to 
identify lead compounds and determine structural requirements for breast cancer inhibitor 
development. CoMFA and CoMSIA modeling was employed to design more potential inhibitors. 
Materials and Methods:  3D-QSAR pharmacophore models were developed using HypoGen 
Module and validated by Fischer’s model and decoy test. The best pharmacophore model was 
employed to screen ZINC chemical library to obtain reasonable hits. Following ADMET filtering, 18 
hits were subjected to further filter through docking. CoMFA and CoMSIA models were built by 
partial least squares on phenylindole-3-carbaldehydes derivatives. 
Results:  19 random runs from Fischer’s validation and decoy test which led to an enrichment 
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factor of 48.23 and Guner-Henry factor of 0.774 show that the identified pharmacophore model is 
highly predictive. Top three hits (IC50=0.01~0.05 µM, fitness =52~62) were identified as potential 
inhibitory candidates from virtual screening and docking, and three new lead compounds were 
designed with predicted inhibiting potencies by pIC50 value of 8.55 from CoMFA and CoMSIA 
modeling and fitness value of ~59 from docking. 
Conclusion:  Validation results and decoy test indicate that the developed pharmacophore model is 
highly predictive. Residue Sep6 and Cys 5 were observed as important active sites for ligand-
protein binding. Top three hits were identified as more potential inhibitors, and the designed 
compounds show more inhibiting potencies. The QSAR and docking results obtained from this work 
should be useful in determining structural requirements for inhibitor development as well as in 
designing more potential inhibitors. 
 

 
Keywords: Molecular docking; pharmacophore; bioinformatics; QSAR; comparative molecular field 

analysis. 
 
1. INTRODUCTION 
 
Breast cancers are threatening to women’s 
health and life and the population of women 
developing breast cancer is gradually increasing 
every year in the world. Breast cancers arise 
from the epithelial cells, which display tumor 
heterogeneity. Usually, breast cancer tumor 
development may depend on HER2, 
progesterone receptors and estrogen receptors 
(ER). Especially, ER tumors dominate nearly two 
thirds of breast cancer women, predominantly 
infecting postmenopausal women, while minority 
of women developing breast cancers has           
triple-negative breast cancer tumors. Therefore 
hormonal and endocrine therapies are primary 
strategies against breast cancer ER tumors [1,2]. 
Estrogen receptors are subdivided into two types: 
alpha hERR and beta hER (ERα and ERβ). ERα 
is found to be more expressed in breast cancer 
tumors. Thus ERα is identified as a key target for 
developing new anti-breast cancer drugs with 
endocrine therapy [3,4]. 
  
Tamoxifen-selective ER modulator and 
aromatase inhibitors including exemestane -
steroidal and letrozole-nonsteroidal compounds 
are currently recommended for clinical treatment 
of ER breast cancer tumors. Tamoxifen is often 
used for treatment of ER-positive or metastatic 
cancers. However, it has been observed that 
tamoxifen may lead to endometrial enlargement 
or cancer and also can cause thrombosis as it 
may induce hormone activity. As compared to 
tamoxifen, aromatase drugs are recommended 
for the first choice for the treatment of ER breast 
cancers since they indicated better benefits for 
patient survival and greatly decrease recurrence 
of breast cancers. However, aromatase drugs 
may cause muscular and joint syndrome, such 
as lower back pain and feet pain as well as 

neuropathy and myalgia symptoms [3-5]. These 
side effects lead to discontinue aromatase 
inhibitors and tamoxifen, and patients are more 
probably to stop treatment. Therefore, 
researchers are currently more likely to develop 
novel scaffolds or inhibitory candidates in vivo or 
in vitro to avoid these side effects and clinically 
adverse treatment. Foudah et al. [5] investigated 
anti-breast cancer proliferative bioactivities of 
natural products-terpenoids with new sipholenol 
scaffolds and used 3D QSAR pharmacophore 
modeling to correlate structures and anti-breast 
cancer bioactivities of these compounds. 

Busnena et al. [6] assessed the inhibitory activity 
and anti-proliferative of olive secoiridoids and 
bioisostere analogues against highly metastatic 
human breast cancer cell line. Others such as 
thiosemicarbazone and alkylindole derivatives 
with nonsteroidal analogs were reported [7,8]. 
However, all these inhibitory activities were 
submicromolar. Several different factors 
interposing in antiproliferative activity against 
breast tumor cells may not be observed in vivo or 
in vitro. Thus 3D QSAR pharmacophore 
modeling and molecular docking may not only 
discover lead compounds with novel scaffolds 
but also provide important structural information 
for future structure-based drug design. 
Furthermore, comparative molecular field 
analysis (CoMFA) and comparative molecular 
similarity analysis (CoMSIA) may also be useful 
in designing more potential inhibitors [9-14]. 
 
2. MATERIALS AND METHODS 
 
2.1 3D-QSAR Pharmacophore Modeling  

and Virtual Screening 
 
3D-QSAR pharmacophore models were 
developed using HypoGen mode in program 
Discovery Studio 2.5. 46 known breast cancer 
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inhibitors with IC50 values were collected from 
previous publications, which were subdivided into 
training data set (TDS) (Fig. 1) and testing data 
set [5,15-18]. All molecular conformations were 
produced using “Best conformation method”, and 
Uncertain value was given as 2.0 with other 
values kept as defaults. The test data set, 
Fischer’s randomization and decoy test were 
used to validate pharmacophore models [9-11]. 
In the decoy test, the database contains 1224 
compounds, including 19 known inhibitors. The 
well-validated pharmacophore model was 
employed to identify ligands and aligns ligands to 
the query throughout ZINC databases. All hits 
were further screened using ADMET descriptors. 
A penalty function which introduces each 
parameter to fall into suitable region was used to 
evaluate completion of ADMET. 
 
2.2 Molecular Docking 
 
Docking ligands into active sites of breast cancer 
proteins was performed by Gold 4.1.2 program. 
Breast cancer proteases (PDB code: 4IGK and 
4IFI) were prepared for molecular docking as 
given previously [9,10]. Protease atoms were 
comprised within the 3D spatial region of 7 Å 
surrounding the reference compound. Active site 
of docking was confined to the spatial region of 
8.0 Å using the coordinates of crystal structure of 
reference ligand. For studied systems, the bins of 
receptor and ligand was fixed to 0.28-0.55 A˚, 
outline bins was fixed to 0.22-0.44 A˚, and the 
distance tolerant range for aligning a ligand and 
a receptor sphere was fixed to 1.3-1.55 A˚. The 
structures of breast cancer protein outside of 
active sites remained unchanged, while active 
sites were kept partially flexible upon docking. 
The binding competence of hit compounds was 
evaluated by a docking-score method [11,19-21]. 
 
2.3 CoMFA and CoMSIA Modeling 
 
CoMFA and CoMSIA models were built on 20 
phenylindole-3-carbaldehydes derivatives by 
SYBYL-X 1.3 program [8]. Reasonable molecular 
conformations were obtained from docking into 
crystal structure of breast cancer protein, which 
were used in molecular alignment. Biological 
activities of compounds were determined using 
partial least squares (PLS) analysis. Inhibitory 
bioactivity values and CoMFA descriptors were 
employed as dependent and independent 
variables for PLS analysis, respectively. 30 
kcal/mol cut-off energy was maintained to 
remove unfavorable electrostatic and steric 
energies and a filtering value of 1.8 kcal/mol was 

kept to improve modeling signal [22,23]. In 
CoMSIA modeling, five similarity fields, i.e. 
hydrogen bond acceptor, hydrogen bond donor, 
hydrophobic, steric and electrostatic were 
calculated. The most important contributions to 
ligand-protein binding were characterized by 
these fields. Probe atom with charge +1 around 
radius 1 A˚, hydrogen bond accepting +1, 
hydrogen bond donating +1 and hydrophobicity 
+1 was used to compute the corresponding fields. 
A test set of five compounds was used to perform 
external validation of CoMFA and CoMSIA 
models [23].  
 
3. RESULTS AND DISCUSSION 
 
3.1 3D-QSAR Pharmacophore Model and 

Virtual Screening 
 
The identified pharmacophore model from ten 
hypotheses is shown in Fig. 2, which includes 
four elements, i.e. Hydrophobic feature (HP), 
aromatic ring (AR), hydrogen bond acceptor 
(HBA) and hydrogen bond acceptor-lipid (HBAL). 
Calculated statistical results indicate that cost 
difference between null and total cost is 
168.8984 (>60), the difference between null cost 
and the fixed cost is 177.2944 (>80), and statistic 
errors from bioactivity prediction range from -2 to 
+2 (Table 1) [11,12]. All 19 random runs from 
Fischer’s validation give lower correlation 
coefficients and higher cost values compared 
with the identified model. Calculations on the 
decoy test indicate that the enrichment factor is 
48.23 and Guner-Henry factor is 0.774 [10]. Fig. 
2 shows that higher bioactive compound 13 was 
mapped well with all four elements, while lower 
bioactive compound 5 or 2 was mapped only with 
three or two elements. All these results confirm 
that the identified model is highly predictive [9-
12]. 
 
The pharmacophore model was employed to 
discover novel and inhibitory lead compounds by 
matching pharmacophore features and spatial 
requirements from ZINC library. 48 hits with 
estimated IC50 values in the range of 0.02~2.80 
µM were obtained through virtual screening of 
about 2.0 million compounds, which were 
subsequently subjected to filter through ADMET 
descriptors. Finally, 18 of those hits met key 
parameters for lead compounds, such as BBB 
penetration, toxicity, distribution coefficient, 
aqueous solubility, and percent human oral 
absorption. The final hits were further visually 
analyzed based on functional and geometrical 
space necessities. 
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Table 1. Estimated from the pharmacophore model and  experimental bioactivity (IC 50 in µM) for 
known breast cancer inhibitors in the TrDS 

 

Comp.  no  Bioactive  Predicted  Errors  Fitted value  
1 130 93.0933 -1.3964 4.2588 
2 120 65.2257 -1.8397 4.4133 
3 11 14.2543 1.3296 5.0738 
4 8.23 23.837 1.5037 4.1349 
5 8.9 2.3749 -3.7474 5.8521 
6 80 81.8047 1.0225 4.315 
7 68 46.6102 -1.4589 4.5593 
8 12.2 7.1431 -1.7079 5.3739 
9 5.9 5.5676 -1.0597 5.4821 
10 24.5 50.2526 2.0511 4.5266 
11 0.26 0.734 2.8231 6.3621 
12 0.28 0.7299 2.6069 6.3645 
13 0.06 0.1059 1.7658 7.2026 
14 0.552 0.5004 -1.1029 6.5283 
15 1.015 0.4929 -2.0588 6.5349 
16 1.99 0.7228 -2.7528 6.3687 
17 0.0055 0.006626 1.2047 8.4065 
18 0.0074 0.008434 1.1398 8.3017 
19 40 88.1022 2.2025 4.2828 

 

3.2 Docking Modeling 
 
18 hits were docked into the cavities of active 
sites of breast cancer proteins (PDB code: 4IGK 
and 4IFI). Each compound with different 
conformations was matched to the crystal 
structures of the two proteins to achieve the 
satisfied docking results. Fitness values for 18 
hits range from 41 to 62. Finally, based on    
higher fitness values and lower IC50 values 
predicted from pharmacophore screening, top 
three hits with novel scaffolds: ZINC67688504 
(IC50=0.01962 µM, fitness =52.23), 
ZINC32752710 (0.1277, 61.13), and 
ZINC37577736 (0.050478, 55.41), were 
identified as potential lead compounds or 
inhibitory candidates for breast cancer as shown 
in Fig. 3. 
 
The compound ZINC32752710 is involved in four 
hydrogen bonds with Ser-P6, Ile1, Lys1 and 
Cys5 of breast cancer protein as shown in Fig. 4. 
Carboxyl group on the main chain interacts with 
amino group of Lys1 and methylene of Ser-P6 to 
form two hydrogen bonds with 2.582 and 2.247Å 
distance respectively. Oxygen atom of 
oxadiazole interacts with amino group of Cys5 to 
engage in hydrogen bond, and oxygen atom of 
C5O2 ring also interacts with NH group of Ile1 to 
form the other HB. ππ −  stacking is evident 
between oxadiazole ring and the methyl group of 
Sep6. Furthermore, methyl groups make 
hydrophobic interactions with Asn1, Ile1, and 
Lys1, which stabilizes the interaction of the 

compound and the protein. ZINC67688504 was 
predicted to make three hydrogen bonds with 
Lys1-Ys17, and Sep6 of breast cancer protein as 
shown in Fig. 4. Oxygen atoms of thiophene ring 
accept hydrogen atom of amino group of Sep6-
Ep6 to form a hydrogen bond. Carboxyl group on 
the main chain also accepts hydrogen atom of 
amino group of Lys1 and hydrogen atom of Sep6 
to form two hydrogen bonds respectively. The 
compound also makes short contacts with Ser-
P6, Glu-1698, Gly 1656 and Leu 1657 to form 
hydrophobic interaction and Van der waals           
bond, which further stabilizes its binding. 
Interestingly, residue Sep6 and Cys5 were 
observed as important active sites for ligand-
protein binding. 
 

3.3 CoMFA and CoMSIA Modeling 
 
We note that the identified pharmacophore 
model above may predict lead compounds or 
inhibitory candidates with novel scaffolds, but 
sometimes may not predict more potential 
inhibitory candidates or lead compounds since 
the features of the pharmacophore model were 
determined on the basis of experimentally known 
inhibitors and their structures and thus other 
important features or factors may not be included 
in the pharmacophore model. Considering the 
limitation of 3D-QSAR model, we employed 
CoMFA and CoMSIA models built on 
phenylindole-3-carbaldehydes derivatives [8] 
(Table 2) to predict more potential lead 
compounds as a supplement. 
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Table 2. Structures and activities of breast cancer  inhibitors (MCF-7) used for CoMFA and 
CoMSIA modeling 

 

 

Predicted activity 
pIC50 

No. R1 R2 R3 R4 R5 Observed activity pIC 50 CoMFA CoMSIA 
1 Ome COH OMe H H 6.58 6.77 6.64 
2 H COH OMe OMe H 7.45 7.17 7.18 
3 H COH OMe F H 7.22 7.03 7.12 
4 F COH OMe H H 6.26 6.81 6.56 
5 Me COH OMe H H 7.06 6.98 7.14 
6 n-Bu COH OMe H H 8.17 7.84 7.67 
7 t-Bu COH OMe H H 6.55 6.50 6.63 
8 n-Pent COH OMe H H 8.25 8.34 8.27 
9 n-Hex COH OMe H H 8.13 8.35 8.46 
10 H COH H OMe OMe 5.99 6.03 5.91 
11 H COH OMe OMe OH 6.09 6.13 6.55 
12 H COH Me OMe H 7.51 7.66 7.61 
13 H COH Me Cl H 8.11 7.58 8.13 
14 n-Bu COH Et H H 7.57 7.61 7.51 
15 n-Bu COH F H H 6.45 6.99 6.59 
16 n-Hex COH CF3 H H 7.36 7.15 7.40 
17 H CH=NMe OMe OMe H 7.46 7.50 7.58 
18 n-Pent CH=NMe OMe H H 8.22 8.34 8.47 
19 n-Bu CH=NOH OMe H H 7.39 7.65 7.63 
20 n-Bu CH=NOH CF3 H H 6.30 6.21 6.41 
21* Me COH OMe Cl H 7.59 7.78 - 
22* H COH OMe OMe OMe 6.56 5.88 - 
23* n-Bu CH=NOMe OMe H H 8.21 7.84 - 
24* n-Bu COH Me H H 7.46 7.40 - 
25* Et COH n-Bu H H 6.52 7.39 - 

*test set for validation of CoMFA and CoMSIA models 
 
Since reliable CoMFA and CoMSIA models 
depend on two important factors: conformation 
generation and compound alignment, in this case 
flexible docking was employed to achieve 
compound alignment. Statistic results show that 
cross-validation coefficient q2 is greater than 
0.419 for both CoMFA and CoMSIA models 
(Tables 2, 3). The calculation on test cross-
validation produced the cross validated 
coefficient q2 of ~ 0.65 for both CoMFA and 
CoMSIA models. To achieve a best validation, a 
test set of five compounds with similar activities 
and structures as those in TDS was used to 
perform external validation of CoMFA and 
CoMSIA models using the criteria of validation 
proposed by Golbraikh [24]. The identified 
CoMFA and CoMSIA models indicate the best R2 
(>0.78) and q2 (>0.59), satisfying the conditions 
of validation [24,25]. The predicted active values 
were given in Table 2. These analyses confirm 

that the built CoMFA and CoMSIA models are 
stable and reliable. 
 
CoMFA contour maps of compound 6 (Table 2) 
are shown in Fig. 5 (a) and (b). Methyl groups at 
both side ends occupy sterically favor green 
region, locating at the corresponding AR region 
in the final pharmacophore model; Phenyl group 
occupies the yellow regions, lying towards 
corresponding H space. Methyl group connecting 
to oxygen atom is also situated at positive charge 
favor blue region, lying towards HBD space; 
indole ring occupies electronegative favor red 
region, lying towards HBA space. n-Bu and 
OCH3 groups occupy sterically favored green 
regions at both side sites leading to potent 
bioactivity of pIC50=8.17. This trend is also 
observed for other phenylindole-3-carbaldehydes 
derivatives at the positions by large groups 
(compounds 6, 8, 9, 18, 23 with n-pent and n-hex 
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substituents). However, the two green contours 
are unoccupied by compounds 10 (pIC50=5.99) 
and 15 (pIC50=6.45) due to lack of steric bulk 
group, reflecting the importance of steric bulk 
substituents in these regions. Occupancy of a 
yellow steric unfavorable areas around phenyl 
ring would lead to lower activity (for example, 

OMe substituent in compounds 10 and 22 
(pIC50=6.56)). Localization of n-Bu and OCH3 
groups within hydrophobic favored region in 
white in CoMSIA field (Fig. 5e)) and steric 
favored region in green in CoMFA field sugeests 
that hydrophobic and steric bulk groups may play 
an important role at the positions [22]. 

 
Table 3. Statistic and cross-validation parameters for the best CoMFA and CoMSIA models 

 

Model  N q2 r2 R2 SEE F 
CoMFA 4 0.49 0.88 - 0.212 - 
CoMSIA 6 0.55 0.85 0.975 0.147 82.97 

 

 
 

1 (130µM)                 2 (120µM)             3 (10.72µM)                    4 (82.35µM) 
 

 
 

5 (8.9µM)                6 (80µM)                     7 (5.9µM)               8 (12.2µM) 
 

 
 

9 (68µM)                10 (24.5µM)                 11 (0.26µM)             12 (0.28µM) 
 

 
 

13 (0.06µM)                   14 (0.552µM)                      15(1.015µM) 
 

 
 

16 (1.99µM)                 17 (0.0055µM)   18 (0.0074µM)           19 (40µM) 
 

Fig. 1. 2D structures of 19 breast cancer inhibitor s in the training data set for pharmacophore 
modeling. The values in parentheses represent IC 50 (µM) obtained experimentally  
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Fig. 2. The identified pharmacophore model. 
HP is shown by cyan sphere, AR is shown by 
orange spheres, HBA and HBAL are shown 

by green spheres. The space distances 
between the features are shown in Å. The 

inhibitors 2 (120 µM), 5 (8.9 µM) and 15 (1.015 
µM) in TDS are mapped with the model

 

ZINC32752710 (0.019619 
µM, 52.23) 

Fig. 3. 2D structures of top three hits discovered by docking and virtual screening. IC
and fitness values are listed in the parentheses, r espectively

 

ZINC32752710 bound to 4IGK

Fig. 4. The docking modes of ZINC32752710 and ZINC67688504
bonds are shown in dotted yellow lines. Important
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The identified pharmacophore model. 
HP is shown by cyan sphere, AR is shown by 
orange spheres, HBA and HBAL are shown 

by green spheres. The space distances 
between the features are shown in Å. The 

inhibitors 2 (120 µM), 5 (8.9 µM) and 15 (1.015 
are mapped with the model  

Carboxyl group (electron withdrawing) on 
ring, occupying favored positive atomic charge 
region in blue (Fig. 5b), makes the moiety 
electronic density more positive and thus leads to 
compounds 8 (pIC50=8.25) and 23 (
with more potential inhibitory activity. The least 
active compound 10 contains O-CH
at this position which makes the moiety 
electronic density more negative. Negative 
charge favorable area in red is mainly occupied 
by negative partial charge atoms such as oxygen 
and nitrogen around indole ring, indicating more 
potential inhibitory activity in compounds 6, 8, 18, 
23. In contrast to these compounds, compound 
17 with CH=NMe group (electron donating) at 
indole ring indicates lower inhibitory ac
reflecting the importance of negative partial 
charge atoms at this position. 

 

 

ZINC67688504  
(0.127681,61.13) 

ZINC37577736 (0.050478, 
55.41) 

 
 

Fig. 3. 2D structures of top three hits discovered by docking and virtual screening. IC
and fitness values are listed in the parentheses, r espectively  

 

 
 

ZINC32752710 bound to 4IGK  
 

ZINC67688504 bound to 4IGK
 

ZINC32752710 and ZINC67688504 to 4IGK protein. The hydrogen 
bonds are shown in dotted yellow lines. Important  residues are shown and labeled
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(electron withdrawing) on phenyl 
, occupying favored positive atomic charge 

region in blue (Fig. 5b), makes the moiety 
electronic density more positive and thus leads to 

) and 23 (pIC50=8.21) 
with more potential inhibitory activity. The least 

CH3 substituent 
at this position which makes the moiety 
electronic density more negative. Negative 
charge favorable area in red is mainly occupied 

ge atoms such as oxygen 
and nitrogen around indole ring, indicating more 
potential inhibitory activity in compounds 6, 8, 18, 
23. In contrast to these compounds, compound 
17 with CH=NMe group (electron donating) at 
indole ring indicates lower inhibitory activity, 
reflecting the importance of negative partial 

 
ZINC37577736 (0.050478, 

Fig. 3. 2D structures of top three hits discovered by docking and virtual screening. IC 50 in µM 

 

ZINC67688504 bound to 4IGK  

to 4IGK protein. The hydrogen 
residues are shown and labeled  
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Electrostatic and steric contour maps in CoMSIA 
are similar to those of CoMFA field and the colors 
in both fields provide the same significance. Fig. 
5 c and d show HB acceptor and donor contour 
maps of CoMSIA models. Carboxyl substituent at 
indole ring occupies magenta favored HB 
acceptor area, leading to potent inhibitory 
bioactivity in compounds 6, 9 (pIC50=8.13), 18 
(pIC50=8.22). Red unfavorable HB acceptor 
areas are observed around substituents 
CH=NMe and CH=NOMe at indole ring exhibiting 
potent activity in compounds 18 and 23, which 

agrees well with CoMFA maps. Cyan favored HB 
donor contours are occupied by phenyl and 
indole rings in compounds 6, 9, 23 with higher 
activity, reflecting favored hydrogen atom 
contributions. Purple unfavorable HB donor 
contours are occupied by amide and hydroxyl 
groups at these positions leading to the 
decrement in activity in compounds 1,10, 20 
(pIC50<6.30). In addition, compounds 17and 19 
with N-H containing substituent’s at indole ring 
wrapped by the purple contour show less          
active.  

 

 

 

 
 

(a) R1 steric  contribution green: 5.23 yellow: 
0.35 

(b) R1 electrostatic contribution blue: 2.78 
red: 1.96 

 

  
 

(c) acceptor field  (d) donor field  
 

 
 

(e) hydrophobic field  
 

Fig. 5. Contour maps of CoMFA model (a),(b) and CoM SIA model (c), (d), (e) for compound 6 
(Table 2) 

 

 
  

1 (8.50,53.33) 2 (8.53,65.20)                   3 (8.56,53.43) 
 

Fig. 6. 2D structures and predicted bio-activities of designed compounds based on CoMFA 
and CoMSIA modeling. The values in parentheses repr esent pIC 50 and fitness from docking, 

respectively 
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Considering these structure requirements for the 
template compound, three new compounds were 
designed as inhibitor as shown in Fig. 6 
(compounds 1, 2, 3). To further evaluate their 
activity, molecular docking of the 
threecompounds to breast cancer protease and 
ADMET filtering were performed respectively. 
Fitness values from docking are 53.33 (1), 65.20 
(2) and 53.43 (3) respectively. Compound 1 is 
involved in four hydrogen bonds with carboxyl 
group of Asn1678, OH group of Sep6 and amide 
group of Cys5 and Sep6, respectively. 
Compound 2 was predicted to make five 
hydrogen bonds with carboxyl group of Asn1678, 
amide group of Gln1779, Ala4 and Cys5, and OH 
of Sep6, respectively. Compound 3 was also 
predicted to make three hydrogen bonds with 
carboxyl group of Asn1678, OH of Sep6, and 
amide group of Sep6, respectively. ADMET 
analysis also shows that these compounds met 
key parameters for drug use. These results 
indicate promising potential as breast cancer 
inhibitors for the three compounds. It is implied 
from CoMFA, CoMSIA modeling and docking that 
substituent at the side site of compound 6 (OCH3 
group) such as phenyl-CONH2 group and ethane 
group at the other side site may improve 
bioactivity by pIC50 value of 8.55 and fitness 
value of ~59, respectively. 
 

4. CONCLUSION 
 
Validation results and decoy test indicate that the 
developed 3D pharmacophore model is highly 
predictive. Residue Sep6 and Cys 5 were 
observed as important active sites for ligand-
protein binding. Top three hits with novel 
scaffolds: ZINC67688504 (IC50=0.01962 µM, 
fitness =52.23), ZINC32752710 (0.1277, 61.13), 
and ZINC37577736 (0.050478, 55.41), were 
identified as potential lead compounds or 
inhibitory candidates for breast cancer. Three 
new lead compounds were designed with 
predicted inhibiting potencies. It is implied from 
CoMFA and CoMSIA modeling that substituent at 
the side site of compound 6 (OCH3 group) such 
as phenyl-CONH2 group and ethane group at the 
other side site may improve bioactivity by pIC50 
value of 8.55 and fitness value of ~59, 
respectively. The QSAR and docking results 
obtained from this work should be useful in 
determining structural requirements for inhibitor 
development as well as in designing more 
potential inhibitors. 
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