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In this paper, a statistical analysis of the tensile strength of FRP composites is conducted. A relatively large experimental database
including 58 datasets is first constructed, and the Normal, Lognormal, andWeibull distributions are fitted to the data using a tail-
sensitive Anderson–Darling statistic as the measure of goodness of fit. Fitting results show that the Normal, Lognormal, and
Weibull distributions can be used to model the tensile strength of FRP composites. +en, the characteristic value for the tensile
strength of FRP composites at a fixed percentile is analyzed. It is found that the Weibull distribution results in a higher safety
margin in comparison to either the Normal or the Lognormal distribution. When the experimental justification, the theoretical
justification, as well as the design conservativeness are taken into consideration, the Weibull distribution is the most recom-
mended distribution to model the tensile strength of FRP composites. Furthermore, a probabilistic model considering the
statistical uncertainty for the tensile strength for FRP composites is proposed. It is believed that the statistical uncertainty can be
modeled as a reduction factor, and the recommended value of such factor for engineering design practices is provided based on
regression analysis.

1. Introduction

Fiber-reinforced polymers (FRPs) have been intensively
used in the repair and retrofitting of existing structures
during the last few decades; thus, many research efforts have
been made towards increasing the understanding of FRP
itself and the interaction between FRP and existing struc-
tures. To design highly reliable FRP-related structural sys-
tems, quantification of the uncertainty in the material
properties of FRP composites is necessary and crucial. As is
known, the tensile strength of FRP composites is one of the
most important properties that can affect the structural
response, as observed in many experiments. +erefore,
quantification of the uncertainties in the tensile strength of
FRP composites is essential for the development of robust
designs that meet target reliability levels.

A variety of probabilistic distributions, e.g., the Normal,
Lognormal, and Weibull distributions, is usually used to
model the tensile properties of FRP composites. Generally, a

set of nominally identical experiments is conducted using
relevant ASTM standards or guidelines (e.g., +e Composite
Materials Handbook MIL-HDBK-17-1F [1]), and then, a
distribution selection is carried out using hypothesis testing
methods such as the chi-square, Kolmogorov–Smirnov, or
Anderson–Darling tests (e.g., Atadero et al. [2] and Zureick
et al. [3]). By following this methodology, several researchers
have studied the uncertainties of the tensile behavior of FRP
composites under different conditions. For example, Bar-
bero et al. [4] presented generalized formulae to describe the
behavior of the Weibull estimators for composites and
proposed expressions to describe the A-basis and B-basis
material properties for design practices.

In the work of Alqam et al. [5], the two-parameter and
three-parameter Weibull distributions were compared to
model the strength and stiffness properties of pultruded
carbon FRP (CFRP) composites from 26 mechanical
property datasets. +e modified moment method and the
maximum likelihood method were used to estimate the
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Weibull parameters, and the Anderson–Darling statistic [6]
was used to test the goodness of fit. It was found that in
comparison with the two-parameter Weibull distribution,
the three-parameter Weibull distribution is slightly better in
modeling the strength and stiffness of FRP composites.
However, the difference in the fitting results between these
two Weibull distributions is marginal. It was found that the
design value obtained from the two-parameter Weibull
distribution is on average 5% lower than that obtained from
the three-parameter Weibull distribution. In the interest of
being conservative, the authors recommended the two-pa-
rameter Weibull distribution to model the strength and
stiffness properties of FRP composites. Based on this work and
others that used the same datasets, Zureick et al. [3] performed
a study on the statistical characterization of the mechanical
properties of FRP composites. +e Normal, Lognormal, and
Weibull distributions (the two-parameter Weibull distribu-
tion, if not specified, otherwise) were chosen to fit the datasets.
It was concluded that the Weibull distribution is not signif-
icantly better than either the Normal or the Lognormal dis-
tribution. In the work of Zureick et al., the Weibull
distribution was still recommended because it is the most
commonly used distribution for composite materials due to its
intrinsic weakest link hypothesis of failure and the fact that it
provides higher safety margins with respect to design values
compared to either the Normal or Lognormal distribution.

To investigate the variability of field-manufactured carbon
panels for bridge deck rehabilitations, the Normal, Lognor-
mal, Weibull, and Gamma distributions have been adopted to
fit datasets for the tensile strength, Young’s modulus, and
thickness by using the Chi-square test statistics as the indi-
cator of goodness of fit [2]. Observations showed that the
Weibull distribution was the best descriptor of tensile strength
and that the Lognormal distribution was the best descriptor
for Young’s modulus. More recently, Gomes et al. [7] per-
formed a probabilistic assessment of 1,368 tensile tests of
CFRP specimens. +ese specimens were precured and pro-
duced under the same conditions by the same manufacturer.
Statistical analysis with regard to the tensile strength, Young’s
modulus, and ultimate strain of the tested CFRP laminates
was conducted using the Normal and the Weibull distribu-
tions. It was concluded that the Weibull distribution can be
used to model the tensile strength, Young’s modulus, and the
ultimate strain for the lower 20th percentile of the sample. In
addition, Gohil and Shaikh [8] reported the statistical results
of the tensile tests of the glass fiber and a glass-polyester
composite. Naresh et al. [9] also presented the experimental
results for CFRP, glass FRP (GFRP), and hybrid FRP com-
posites with respect to the tensile strength under different
strain rate conditions. In references [8, 9], the Weibull dis-
tribution was also used to model the tensile strength of FRP
composites. From the above references, it is found that the
Weibull distribution is the most widely used distribution for
modeling the tensile strength of FRP composites. In fact, the
Weibull distribution arises from the weakest link hypothesis
of failure and has some theoretical justifications to model
composite materials [10].

Although many efforts have been carried out for the
probabilistic modeling of the tensile strength of FRP
composites, there are still numerous aspects that prevent the
efficient characterization of the tensile strength of FRP
composites for engineering design. +is situation is mainly
attributed to the lack of the following pieces of fundamental
knowledge:

(i) +e best-fitted distribution type is not convincing
from the perspective of experimental justification.
+is is mainly because the datasets used for ex-
perimental justification in the above-mentioned
references are rather limited. For example, in the
work of Zureick et al. [3], 5 datasets for charac-
terization of the tensile strength were used. On the
one hand, neither the Normal nor the Lognormal
distributions can be rejected for any of the 5
datasets; on the other hand, the Weibull distribu-
tion was rejected for 2 out of 5 sets (40% rejection).
In this situation, it is not convincing that the
Weibull distribution should be adopted for the
tensile strength of FRP composites. Similarly, the
conclusion of Atadero et al. [2] that the Weibull
distribution is the best for tensile strength is not
sound when only 3 datasets were used.

(ii) +e statistical uncertainty due to the parameter
estimation from a sample of limited size is not well
considered in many situations. For given test data,
the p-percentile value of the fitted distribution is
commonly taken as the nominal design value.
However, this nominal design value does not ac-
count for the statistical uncertainty of parameter
estimation, and this normally results in an overes-
timate of the material strength. Especially when the
Weibull distribution is considered, difficulties arise
in the estimation of the statistical uncertainty be-
cause the sample distributions and confidence in-
tervals for the estimators are unavailable in closed
forms. +erefore, the proposal of a reduction factor
accounting for such statistical uncertainty is
meaningful and desirable.

+e primary objective of this study is to formulate a
probabilistic model with respect to the tensile strength of
FRP composites for engineering design purposes. To achieve
this objective, a relatively large experimental database of
CFRP and GFRP composites was first created. +en, the
Normal, Lognormal, andWeibull distributions were fitted to
all the datasets using the maximum likelihood method, and
the tail-sensitive Anderson–Darling statistic was used as the
indicator of goodness of fit. +e fitting results are discussed
to examine the appropriateness of the three distributions
from the perspective of experimental justification. Fur-
thermore, the statistical uncertainty arising from random
fluctuations in the measurement of each dataset was ana-
lyzed, and this uncertainty was quantified by a reduction
factor in the proposed design-orientated probabilistic
model.
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2. Statistical Characterization of the Tensile
Strength of FRP Composites

According to +e Composite Materials Handbook-MIL-
HDBK-17-1F [1], the Weibull distribution is examined first,
and, if not rejected by a statistical hypothesis test, chosen as the
distribution for FRP composites. More specifically, the two-
parameter rather than the three-parameterWeibull distribution
is selected for the first examination. +is is due to the obser-
vation that the third parameter (location) in the three-pa-
rameterWeibull distribution does not significantly improve the
characterization results and the fact that the two-parameter
Weibull distribution gives reasonable results with good com-
putational efficiency [5]. To be consistent with other afore-
mentioned studies, three commonly used distributions for
reliability analysis, i.e., the Normal, Lognormal, and Weibull
distributions, were used herein.+eprobability density function
for each is given in equations (1)–(3).

Normal :
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σ
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where μ and σ are the mean and standard deviation of the
variable X, respectively.

Lognormal :
f(x | μ, σ) �

1
xσ

���
2π

√ exp −
1
2

ln x − μ
σ

􏼠 􏼡

2
⎡⎣ ⎤⎦,

x> 0; σ > 0; −∞< μ<∞,

(2)

where μ and σ are, respectively, the mean and the standard
deviation of the natural logarithms of the variable X.

Weibull : f(x | α, β) �
β
αβ
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􏼒 􏼓
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􏼢 􏼣,

x≥ 0; α, β> 0,

(3)

where α and ß are the shape and scale parameters of the
variable X, respectively.

2.1. Experimental Database. FRP composites constitute fi-
bers and resin. +e tensile strength of FRP composites
cannot be easily described and is dependent onmany factors.
On the one hand, the tensile strength of FRP composites is
affected by the type of reinforced fiber (e.g., carbon, glass,
aramid, basalt, or natural fibers, or a mixture of different
kinds of fibers), the fiber form (e.g., continuous or chopped),
the fiber orientation (i.e., unidirectional, bidirectional, or
multidirectional), the type of resin (i.e., thermoset and
thermoplastic), the manufacturing technology (e.g., pul-
trusion, filament winding, autoclave, or wet layup pro-
cesses), and curing conditions; on the other hand, the
observed/tested tensile strength of FRP composites is also
influenced by the test methods (e.g., tensile test or bending
test) and loading rates (e.g., quasistatic or dynamic loading).

+erefore, to characterize the tensile strength of FRP
composites, it is necessary to limit the scope of the involved
test results. As known, in the application of FRP composites
in structural engineering (i.e., mainly strengthening, ret-
rofitting, and rehabilitation), the FRP composite is usually
considered as a perfect tensile brittle material. In other
words, no matter how the FRP composite is manufactured
and cured, it is believed that the load of interest is applied to
those continuous fibers along the fiber orientation. +e resin
and fibers orientated in other directions are not believed to
contribute to the tensile strength explicitly. For example, in
the load-bearing capacity analysis of a concrete beam ex-
ternally bonded with bidirectional FRP composites, the
tensile strength of the FRP material is deemed to be mainly
attributed to the fibers along the strengthening direction.

Consequently, the experimental database in this work can
be constructed by collecting the tensile test results of those FRP
composites tested with loading along the axial fiber orientation.
+e tested composites can be in the form of microcomposites,
sheets, laminates, plates, and coupons from pultruded thick
products such as bridge decks. It is noted that results from
tensile tests for a single fiber or fiber bundle/tow are inap-
propriate because the absence of resin does not make a single
fiber or fiber bundle/tow a composite. In this study, only carbon
and glass fibers are considered as they are the most frequently
used composites in structural engineering. With respect to the
test methods, the quasistatic tests are basic options according to
test standards such as ASTMD3039 [11] and ISO 527 [12]. +e
dynamic or impact test is also selected. Although the dynamic
tensile strength of a specific type of FRP composite deviates
from its quasistatic tensile strength, the tensile strength of the
FRP composite under dynamic loading can also be modeled by
the same distributions that are used to model the quasistatic
tensile strength of the same FRP composite, as indicated by Ou
and Zhu [13].

To set up a relevant large experimental database, the
tensile test results of FRP composites reported in published
literature (mainly journal articles) during the last decades
were reviewed and collected. A total of 58 datasets (1,171
samples) are summarized in Table 1, in which the specimen
size (thickness tf, width bf, and length lf ), test speed, followed
standard, and references are listed. +e database consists of
31 datasets (391 samples) of GFRP composites and 27
datasets (780 samples) of CFRP composites. For example, a
histogram as well as probability distributions fitted by the
Normal, Lognormal, and Weibull distributions with respect
to datasets 57 and 58 are shown in Figure 1.

Since all the datasets in the experimental database are used
to investigate the fitness of the selected distributions in the
hypothesis tests and to examine the statistical uncertainties
arising from parameter estimations, the sampling error due to
measurement shortage should be minimized. +erefore, only
those datasets resulting in small estimation errors can be se-
lected. It is well known that the minimum sample size is mainly
associated with the variation of the sample and the acceptable
estimation error. It is noted that each dataset shown in Table 1
passes the test that the estimation error of the dataset should be
smaller than the acceptable level. In this study, the acceptable
estimation error is chosen in such a way that the error of the
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Table 1: Summary of the experimental database.

Set no. Set size Material
Specimen size

(mm) Test speed Standard Reference
tf bf lf

1 7 Glass/epoxy laminate 1.5 12.7 25.4 n.a. n.a. Rosen 1964 [14]
2 5 Glass/epoxy laminate 1.5 12.7 25.4 n.a. n.a. Zweben 1968 [15]3 6 Glass/epoxy laminate 1.5 12.7 25.4 n.a. n.a.
4 13 Carbon/epoxy laminate n.a. n.a. n.a. n.a. n.a. Bullock 1974 [16]5 36 Carbon/epoxy tow n.a. n.a. n.a. n.a. n.a.
6 29 Glass/epoxy prepreg n.a. 25.4 203 n.a. n.a. Sun and Yamada 1978 [17]
7 25 Carbon/epoxy panel coupon n.a. 12.7 229 n.a. D3039

Whitney and Knight 1980 [18]8 20 Carbon/epoxy panel coupon n.a. 12.7 229 n.a. D3039
9 36 Carbon/epoxy panel coupon n.a. 12.7 229 n.a. D3039
10 49 S2-glass/epoxy n.a. n.a. n.a. n.a. n.a. Shimokawa et al. 1989 [19]
11 30 Carbon/epoxy laminate n.a. 38 300 n.a. n.a. Beyerlein and Phoenix 1990 [20]
12 31 Carbon/epoxy microlaminate n.a. n.a. n.a. n.a. n.a.
13 21 Carbon/epoxy microlaminate n.a. n.a. n.a. n.a. n.a.
14 48 Carbon/epoxy microlaminate n.a. n.a. n.a. n.a. n.a.
15 24 Carbon/epoxy microlaminate n.a. n.a. n.a. n.a. n.a.
16 30 Carbon/epoxy microlaminate n.a. n.a. n.a. n.a. n.a.
17 6 Carbon/epoxy prepreg 3.4 38.2 324 0.00047 s−1 D3039 Lavoie 1997 [21]
18 7 Carbon/epoxy prepreg 4.5 50.9 431 0.00047 s−1 D3039
19 7 Carbon/epoxy prepreg 1.1 12.7 108 0.00047 s−1 D3039
20 7 Carbon/epoxy prepreg 2.2 25.5 219 0.00047 s−1 D3039
21 7 Carbon/epoxy prepreg 3.4 38.2 324 0.00047 s−1 D3039
22 7 Carbon/epoxy prepreg 1.1 12.7 108 0.00047 s−1 D3039
23 8 E-glass/epoxy laminate 1.6 100 250 3mm/min n.a. Cattell and Kibble 2001 [22]
24 14 E-glass/epoxy laminate 1.0 100 250 3mm/min n.a.
25 20 Carbon/epoxy laminate 8.0 10 60 2.64mm/min D3039 Ochola 2004 [23]
26 20 Glass/epoxy laminate 8.0 10 60 2.64mm/min D3039
27 19 Carbon/epoxy sheet 0.89 15 206 1.33mm/min D3039 Birgoren and Husnu Dirikolu 2004 [24]
28 6 E-glass/epoxy 1.2 15 250 1mm/min ISO 527 Makarov et al. 2004 [25]
29 5 E-glass/epoxy 1.2 15 250 3.8 s−1 n.a.
30 5 E-glass/epoxy 1.2 15 250 22.65 s−1 n.a. Makarov et al. 2004 [25]
31 5 E-glass/epoxy 1.2 15 250 32.34 s−1 n.a.
32 5 E-glass/epoxy 1.2 15 250 39.85 s−1 n.a.
33 5 E-glass/epoxy 1.2 15 250 40.89 s−1 n.a.
34 30 E-glass/vinyl ester coupon 6.4 25.4 330 2.5mm/min D3039 Zureick et al. 2006 [3]
35 30 E-glass/vinyl ester coupon 9.6 25.4 330 2.5mm/min D3039
36 24 E-glass/vinyl ester coupon 6.4 25.4 330 2.5mm/min D3039
37 24 E-glass/vinyl ester coupon 6.4 25.4 330 2.5mm/min D3039
38 30 E-glass/vinyl ester coupon n.a. n.a. n.a. n.a. n.a.
39 5 Glass/epoxy laminate 1.0 12.7 82.7 0.0017 s−1 n.a. Shokrieh and Omidi 2009 [26]
40 5 Glass/epoxy laminate 1.0 12.7 82.7 0.55 s−1 n.a.
41 5 Glass/epoxy laminate 1.0 12.7 82.7 5.6 s−1 n.a.
42 5 Glass/epoxy laminate 1.0 12.7 83.7 46 s−1 n.a.
43 5 Glass/epoxy laminate 1.0 12.7 82.7 85 s−1 n.a.
44 30 Carbon/epoxy plate 1.0 5.0 120 0.5mm/min n.a. Okabe et al. 2010 [27]
45 20 Carbon/epoxy laminate 2.0 25 230 2mm/min GB/T3354 Wang and yang 2010 [28]
46 20 Carbon/epoxy laminate 2.0 15 175 2mm/min D3039 Du et al. 2012 [29]
47 7 Glass/polyester panel coupon 1.0 15 250 2mm/min D3039 Gohil and Shaikh 2013 [8]
48 60 Carbon/epoxy panel coupon 0.8 12.5 330 2mm/min D3039 Sasikumar et al. 2015 [30]
49 9 Glass/epoxy laminate 0.6 2.64 105 120 s−1 n.a. Ou and Zhu 2015 [13]
50 8 Glass/epoxy laminate 0.6 2.64 105 40 s−1 n.a.
51 10 Glass/epoxy laminate 0.52 22 105 1/600 s−1 n.a. Ou et al. 2016 [31]
52 9 Glass/epoxy laminate 0.52 22 105 50 s−1 n.a.
53 8 Glass/epoxy laminate 0.52 22 105 40 s−1 n.a.
54 8 Glass/epoxy laminate 0.52 22 105 40 s−1 n.a.
55 72 Carbon/polyamide6 laminate 1.0 25 250 1mm/min JISK7165 Ma et al. 2016 [32]
56 58 Carbon/epoxy laminate 1.0 25 250 1mm/min JISK7165
57 59 Carbon/polyamide6 laminate 1.0 15 250 1mm/min D3039 Ma et al. 2017 [33]
58 67 Carbon/epoxy laminate 1.0 15 250 1mm/min D3039
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estimatedmean value fromeach dataset (sample) is smaller than
5% of the corresponding population mean with a 95% confi-
dence level.

It should also be noted that different production techniques
may result in different variations. For an overview of common
production techniques, a reference is made, e.g., a JRC report
[34]. It is an option to examine the datasets from different
production techniques separately to distinguish variations from
different production techniques. Similarly, variations due to
differences in the fiber type, resin type, fiber orientation, and
curing conditions should also be considered separately. Nev-
ertheless, in this paper, the entire database is used to investigate
the most appropriate stochastic model, and the analysis with
respect to each dataset is conducted separately. In other words,
the variation differences are inherently included in the analysis
of each dataset, and such variation in any dataset is not nec-
essarily connected to that in another dataset.

2.2. Maximum Likelihood Method. +e parameters of each
distribution function are estimated from test observations.
+e methods usually adopted for parameter estimation are
as follows:

(i) +e linear regression method
(ii) +e moment method
(iii) +e maximum likelihood method

Among these methods, the linear regression method is
often used in cases where a linear relationship can be found.
+e moment method or its modified form is based on
equating sample moments to the corresponding distribution
moments. +e maximum likelihood method is used to
determine the parameters in such a way that the likelihood of
the sample data is maximized. Although each of the methods
can be used to determine the parameters of any of the
mentioned distributions, the maximum likelihoodmethod is
chosen herein as it is generally used for the two-parameter
Weibull distribution [5]. +e maximum likelihood estima-
tors (MLEs, i.e., 􏽢μ and 􏽢σ for Normal and Lognormal; 􏽢α and 􏽢β
for Weibull) for each of the distributions can be obtained
from equations (4)–(6). It is noted that the estimators for the

Weibull distribution cannot be obtained directly but can be
obtained by root-finding techniques such as the New-
ton–Raphson method.

Normal :
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(6)

2.3. Goodness of Fit. Various methods exist for determining
the measure of goodness of fit for different probability
distributions. For different experimental datasets, the
probability distributions are generally similar in the central
regions but differ vastly in the tail regions. Since the
structural safety problem is very sensitive to the tail regions
of the distributions involved, the indicator of goodness of fit
is favored to reveal the (lower) tail regions for the selected
datasets. In this study, the Anderson–Darling test method is
adopted. +is is because, in the Anderson–Darling test
method, the weight function used in this test statistic has the
effect of giving great importance to observations in the tail
regions. In other words, this test statistic is sensitive to
discrepancies in the tail regions [6].
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Figure 1: Histograms and fitted probability distributions for datasets. (a) Dataset 57 [33] and (b) dataset 58 [33].
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+e Anderson–Darling statistic is defined as

A
2

�
1
n

􏽘

n

i�1
(1 − 2i) ln Fθ xi( 􏼁􏼂 􏼃 + ln 1 − Fθ xn+1−i( 􏼁􏼂 􏼃􏼈 􏼉􏼂 􏼃 − n,

(7)

where n is the sample size; xi is the ith ascending-ordered
sample point of the sample; and Fθ(x) is the cumulative
distribution function with parameters in the vector θ. For
distributions with unknown parameters, the goodness-of-fit
test is based on a cumulative distribution function with the
estimated parameters, i.e., F􏽢θ

(x) in terms of the Benard
median rank formula, which is given by

F􏽢θ
xi( 􏼁 �

i − 0.3
n + 0.4

. (8)

Furthermore, the Anderson–Darling statistic is modified
as shown in equation (9) for the Normal and Lognormal

distributions and as in equation (10) for the Weibull dis-
tribution. +en, the modified statistic is compared with the
critical value at a given significance level.

Normal/Lognormal :AD � 1 +
4
n

−
25
n
2􏼠 􏼡A

2
, (9)

Weibull :AD � 1 +
0.2

�
n

√􏼠 􏼡A
2
. (10)

Another way is to follow Anderson–Darling statistic-
based measures, such as the observed significance level
(OSL) recommended in MLF-HDBK-17-1F [1]. Based on
the Anderson–Darling statistic, the OSL is defined in
equation (11) for the Normal and the Lognormal distribu-
tions and in equation (12) for the Weibull distribution.

Normal/Lognormal : OSL �
1

1 + exp[−0.48 + 0.78 ln AD + 4.58AD]
, (11)

Weibull : OSL �
1

1 + exp[−0.10 + 1.24 ln AD + 4.48AD]
. (12)

+e OSL is the probability of obtaining a value for the
test statistic that is at least as extreme as the value calculated
for the null hypothesis being true when the data are actually
sampled from the distribution. +e widely used significance
level is 0.05; therefore, the null hypothesis is rejected if the
OSL value obtained is less than 0.05.

2.4. Data Analysis and Discussion

2.4.1. Overview of the Experimental Data. Figure 2 sum-
marizes the geometric properties of all the collected experi-
mental datasets. +e majority of the specimens had a thickness
between 1mm and 5mm (83.33%, Figure 2(a)). Almost 86.67%
of the specimens had a width between 10mm and 40mm
(Figure 2(b)).+e length of the tested specimens was larger than
100mm inmost cases (85.36%, Figure 2(c)). Figure 3 shows the
frequencies for the average and the coefficient of variation
(c.o.v.) with respect to tensile strength for all datasets. +e
average tensile strength for most specimens was less than
1500MPa (77.60%, Figure 3(a)), and the majority of the dataset
had a strength c.o.v. ranging from 0.025 to 0.10 (82.76%,
Figure 3(b)). +ese observations illustrate that the presented
experimental datasets cover a wide range of commonly used
FRP composites for engineering applications. Regardless of the
reinforced fiber type, each dataset shows relatively small vari-
ations. +e coefficients of variation (c.o.v.) for all datasets range
from 0.003 to 0.189, and the average of c.o.v. is 0.063. +e
relatively low c.o.v. values for the datasets indicate the efficiency
of the referred experiments and prove that the adoption of these
datasets is convincing for the use in the following fitting process
in the present study.

2.4.2. Fitting Result Analysis. With the experimental data-
base shown in Table 1, the OSL values for all datasets were
evaluated and the results are shown in Table 2. +ose OSL
values that are lower than the selected significance level, i.e.,
0.05, for which the null hypothesis is rejected, are underlined.
+e average and c.o.v. values for the OSL values for each
dataset group are shown in Figure 4. Regardless of the fiber
type, the average OSL values for the Normal and Weibull
distributions are comparable and slightly larger than that for
the Lognormal distribution. For GFRP datasets, the average
and c.o.v. for the OSL values for each distribution are also
comparable. With respect to the CFRP datasets, the highest
average (as well as c.o.v.) for the OSL values is referred to the
Weibull distribution. +e average and c.o.v. for the OSL
values shown in Figure 4 indicate that the goodness of fit with
respect to all three distributions is comparable.

+e rejection cases for each distribution are shown in
Table 3. It is shown that, out of 58 datasets, the Normal, the
Lognormal, and the Weibull distributions are rejected by 5, 5,
and 7 datasets, respectively. When the reinforced fiber type is
considered separately, it is found that the three distributions are
respectively rejected by 1, 1, and 3 out of 31 GFRP datasets and
are respectively rejected by 4, 6, and 4 out of 27 CFRP datasets.

Unlike the observations in reference [3] where the
Weibull distribution was rejected in 3 out of 12 sets and
neither the Normal nor Lognormal distributions can be
rejected for any of the 12 sets, the observations herein show
that for some sets (e.g., Sets 25, 44, and 49), the Weibull
distribution cannot be rejected, whereas both the Normal
and Lognormal distributions are rejected. As mentioned
previously, many authors claim that, from the perspective of
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Figure 3: Distribution of the tensile strength. (a) Average of tensile strength and (b) c.o.v of tensile strength.
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Figure 2: Distribution of the geometric properties of specimens. (a) Specimen thickness, (b) specimen width, and (c) specimen length.
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Table 2: Statistics for the datasets and OSL for Normal, Lognormal, and Weibull distributions.

Data set no. Sample size Fiber type c.o.v.
OSL∗

N LN W
1 7 Glass 0.048 0.466 0.487 0.243
2 5 Glass 0.050 0.400 0.411 0.177
3 6 Glass 0.058 0.503 0.474 0.596
4 13 Carbon 0.045 0.254 0.319 0.049∗∗
5 36 Carbon 0.040 0.195 0.252 0.017
6 29 Glass 0.057 0.699 0.622 0.589
7 25 Carbon 0.070 0.176 0.081 0.724
8 20 Carbon 0.060 0.136 0.079 0.681
9 36 Carbon 0.094 0.155 0.028∗∗ 0.557
10 49 Glass 0.100 0.338 0.152 0.333
11 30 Carbon 0.055 0.596 0.527 0.522
12 31 Carbon 0.111 0.583 0.570 0.144
13 21 Carbon 0.104 0.469 0.317 0.793
14 48 Carbon 0.157 0.654 0.495 0.221
15 24 Carbon 0.090 0.353 0.200 0.801
16 30 Carbon 0.094 0.500 0.571 0.153
17 6 Carbon 0.052 0.694 0.665 0.773
18 7 Carbon 0.030 0.413 0.427 0.286
19 7 Carbon 0.041 0.552 0.569 0.458
20 7 Carbon 0.026 0.356 0.328 0.695
21 7 Carbon 0.061 0.584 0.568 0.618
22 7 Carbon 0.050 0.448 0.410 0.667
23 8 Glass 0.037 0.558 0.527 0.772
24 14 Glass 0.045 0.524 0.501 0.540
25 20 Carbon 0.068 0.025∗∗ 0.009∗∗ 0.278
26 20 Glass 0.039 0.140 0.138 0.113
27 19 Carbon 0.064 0.181 0.129 0.536
28 6 Glass 0.037 0.177 0.167 0.203
29 5 Glass 0.048 0.697 0.685 0.663
30 5 Glass 0.026 0.619 0.632 0.288
31 5 Glass 0.052 0.055 0.050 0.014∗∗
32 5 Glass 0.051 0.783 0.790 0.638
33 5 Glass 0.056 0.734 0.726 0.635
34 30 Glass 0.074 0.113 0.195 0.009∗∗
35 30 Glass 0.130 0.198 0.120 0.302
36 24 Glass 0.102 0.142 0.147 0.136
37 24 Glass 0.077 0.142 0.260 0.008∗∗
38 30 Glass 0.069 0.757 0.684 0.699
39 5 Glass 0.003 0.400 0.399 0.329
40 5 Glass 0.008 0.795 0.796 0.610
41 5 Glass 0.010 0.511 0.513 0.317
42 5 Glass 0.026 0.717 0.716 0.594
43 5 Glass 0.008 0.550 0.551 0.347
44 30 Carbon 0.043 0.049∗∗ 0.040∗∗ 0.115
45 20 Carbon 0.047 0.122 0.188 0.006∗∗
46 20 Carbon 0.047 0.021∗∗ 0.020∗∗ 0.021∗∗
47 7 Glass 0.025 0.525 0.544 0.307
48 60 Carbon 0.058 0.615 0.562 0.272
49 9 Glass 0.072 0.027∗∗ 0.018∗∗ 0.123
50 8 Glass 0.065 0.440 0.370 0.748
51 10 Glass 0.074 0.510 0.487 0.628
52 9 Glass 0.057 0.551 0.603 0.389
53 8 Glass 0.032 0.433 0.433 0.470
54 8 Glass 0.048 0.169 0.182 0.098
55 72 Carbon 0.180 0.001∗∗ 0.003∗∗ 0.001∗∗
56 58 Carbon 0.189 0.088 0.048∗∗ 0.113
57 59 Carbon 0.093 0.360 0.185 0.522
58 67 Carbon 0.083 0.476 0.326 0.302

Average 0.063 0.392 0.367 0.384
c.o.v. 0.038 0.233 0.234 0.255

∗Some of the experimental data displayed were digitized using graphs obtained from the respective references; thus, a small systematic error could be present.
∗∗Values of OSL< 0.05, for which the null hypothesis is rejected, are underlined.
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experimental justification, the Weibull distribution is the
best option to model the tensile strength of FRP composites.
However, the observations from Table 3 do not agree with
this opinion. Actually, for the GFRP dataset group, the
rejection ratio for the Weibull distribution (9.68%) is higher
than that for the Normal (3.23%) or the Lognormal (3.23%)
distribution. Table 3 shows that the rejection ratios for all the
three distributions are relatively low. It can be concluded
that all three distributions can be used to model the tensile
strength of FRP composites when the experimental justifi-
cation result is taken as the unique basis. To find out the
most recommended option among these three distributions,
more evidence should be provided. In the following section,
further analysis is performed from the perspective of the
design-orientated probabilistic model.

3. ProbabilisticModel of the Tensile Strength of
FRP Composites for Structural Design

3.1. Characteristic Value. As described in Fib Bulletin 14
[35], which is adapted from Eurocode 0 [36], unless oth-
erwise specified, the characteristic value of the used FRP
composites, ffk, corresponds to the 5% fractile of the tensile
strength. By using the probability density function in
equations (1)–(3), the p-percentile value, i.e., the value such
that P[X<xp] � p, is given by

Normal: xp � μ + σzp,

Lognormal: xp � exp
μ2

������

σ2 + μ2
􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ + zp

����������

log
σ2

μ2 + 1
􏼠 􏼡

􏽶
􏽴

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Weibull: xp � α[−ln(1 − p)]
1/β

,

(13)

where zp is the inverse of the standard normal cumulative
distribution function at the corresponding probability p.
+erefore, the estimated characteristic value for the tensile
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Figure 4: +e statistics for the OSL values. (a) Averaged OSL values and (b) c.o.v. of the OSL values.

Table 3: Rejection of fitting results (values in brackets are the
rejection ratios).

Dataset Normal Lognormal Weibull
Total (58 datasets) 5 (8.62%) 5 (12.07%) 7 (12.07%)
GFRP (31 datasets) 1 (3.23%) 1 (3.23%) 3 (9.68%)
CFRP (27 datasets) 4 (14.81%) 6 (22.22%) 4 (14.81%)
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strength of FRP composites based on MLEs (i.e., the pa-
rameter estimators in equations (4)–(6)) is defined by

Normal : 􏽢ffk � 􏽢x0.05 � 􏽢μ − 1.645􏽢σ,

Lognormal: 􏽢ffk � 􏽢x0.05

� exp
μ2

������

􏽢σ2 + 􏽢μ2
􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ − 1.645

����������

log
􏽢σ2

􏽢μ2 + 1
􏼠 􏼡

􏽶
􏽴

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Weibull: 􏽢ffk � 􏽢x0.05 � 􏽢α[−ln(1 − 0.05)]
(1/􏽢β)

� 􏽢α[0.0513]
(1/􏽢β)

.

(14)

Many researchers (e.g., Zureick et al. [3]) have pointed
out that the Weibull distribution usually provides higher
safety margins with respect to design values when compared
to the Normal or Lognormal distributions. +e estimated
characteristic values (i.e., 5th percentile lower bound) di-
vided by the sample mean for all 58 datasets using the three
distributions are shown in Table 4. +e ratio for this esti-
mated fractile derived from the Normal and Lognormal
distributions to that from the Weibull distribution (i.e.,
(􏽢x0.05(N)/􏽢x0.05(W)) and (􏽢x0.05(LN)/􏽢x0.05(W))) is plotted
in Figure 5. Clearly, almost all the datasets (except for two
datasets) show that the estimated characteristic tensile
strength obtained from the Normal and the Lognormal
distributions is larger than that obtained from the Weibull
distribution. Considering Set 14 for instance, the OSL values
for three distributions (i.e., 0.654 (N), 0.495 (LN), and 0.221
(W)) are all larger than the significance level 0.05. +erefore,
the hypothesis cannot be rejected for any of these distri-
butions. It is found that the 5th percentile lower bounds over
the sample mean corresponding to the Normal and the
Lognormal distributions are 0.744 and 0.760, indicating an
8.4% and 10.8% higher than that derived from the Weibull
distribution (􏽢x0.05(W)/x � 0.686), respectively. +is obser-
vation indicates that, for the same dataset, the adoption of
the Weibull distribution for engineering design provides
more conservativeness than the adoption of the Normal or
the Lognormal distribution.

3.2. Statistical Uncertainty. As known, the quality of the
MLE estimators is affected by the sample size. +e statistical
uncertainty of these parameters provides the basis for
confidence levels that show the accuracy of the parameter
estimates.+e estimate of xp, i.e., 􏽢xp, has its own distribution
depending on the distributions of the parameter estimates
(e.g., 􏽢α and 􏽢β for the Weibull distribution). +is distribution
is used to obtain the p-percentile with a given confidence c,
i.e., 􏽢xp,c, which means there is a c × 100% confidence that
(1 − p) × 100% of the population will be above this value.
􏽢xp,c is often referred to as the c × 100% lower confidence
bound on the p-percentile of a specified population of
measurements. Unfortunately, the distributions for the

Table 4: +e 5th percentile characteristic values.

Set no. Sample size Fiber type
􏽢x0.05/x

N LN W

1 7 Glass 0.926 0.928 0.893
2 5 Glass 0.926 0.928 0.908
3 6 Glass 0.913 0.914 0.906
4 13 Carbon 0.929 0.931 0.888
5 36 Carbon 0.935 0.937 0.908
6 29 Glass 0.907 0.909 0.884
7 25 Carbon 0.886 0.887 0.873
8 20 Carbon 0.904 0.905 0.896
9 36 Carbon 0.848 0.848 0.831
10 49 Glass 0.837 0.841 0.815
11 30 Carbon 0.912 0.913 0.890
12 31 Carbon 0.821 0.828 0.772
13 21 Carbon 0.834 0.839 0.807
14 48 Carbon 0.744 0.760 0.686
15 24 Carbon 0.855 0.859 0.838
16 30 Carbon 0.848 0.855 0.810
17 6 Carbon 0.922 0.923 0.907
18 7 Carbon 0.955 0.956 0.937
19 7 Carbon 0.938 0.939 0.914
20 7 Carbon 0.960 0.960 0.957
21 7 Carbon 0.907 0.909 0.882
22 7 Carbon 0.924 0.925 0.920
23 8 Glass 0.944 0.944 0.933
24 14 Glass 0.928 0.929 0.913
25 20 Carbon 0.891 0.890 0.878
26 20 Glass 0.937 0.938 0.926
27 19 Carbon 0.897 0.899 0.879
28 6 Glass 0.945 0.945 0.942
29 5 Glass 0.930 0.931 0.922
30 5 Glass 0.961 0.962 0.942
31 5 Glass 0.923 0.923 0.944
32 5 Glass 0.925 0.927 0.900
33 5 Glass 0.918 0.920 0.896
38 30 Glass 0.888 0.891 0.863
39 5 Glass 0.996 0.996 0.995
40 5 Glass 0.988 0.988 0.982
41 5 Glass 0.985 0.985 0.978
42 5 Glass 0.962 0.962 0.950
43 5 Glass 0.988 0.989 0.985
44 30 Carbon 0.930 0.931 0.921
45 20 Carbon 0.924 0.927 0.881
46 20 Carbon 0.925 0.926 0.916
47 7 Glass 0.962 0.962 0.943
48 60 Carbon 0.905 0.907 0.880
49 9 Glass 0.889 0.887 0.906
50 8 Glass 0.900 0.901 0.897
51 10 Glass 0.885 0.888 0.865
52 9 Glass 0.912 0.915 0.877
53 8 Glass 0.951 0.952 0.941
54 8 Glass 0.926 0.928 0.910
55 72 Carbon 0.706 0.742 0.635
56 58 Carbon 0.691 0.716 0.657
57 59 Carbon 0.848 0.853 0.823
58 67 Carbon 0.865 0.869 0.834

Average 0.905 0.908 0.886
c.o.v. 0.062 0.057 0.073
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parameter estimators are not always available in a closed
form. In case the Weibull distribution is involved, for ex-
ample, modern computational techniques such as Monte
Carlo simulation are usually adopted to quantify the sta-
tistical uncertainty of the parameter estimates.

In the work in reference [3], a so-called data confidence
factor (i.e., the ratio of 􏽢xp,c to 􏽢xp) was investigated by
adopting the method proposed by Bain and Engelhardt [37]
and compared with that used in wood design. It should be
noted that the adoption of this method requires an extensive
tabulated database (e.g., Table 4 in reference [37]), which is

obtained by the Monte Carlo simulation for different cases.
+en, for the purpose of further usage, another extensive
tabulated database for the data confidence factor needs to be
generated for different confidence levels, p values, c values,
and sample sizes (an example can be found in reference [3]).
In case no such table is available, it is not convenient to use
this method, and approximate methods such as the one
proposed by Bain and Engelhardt [38] can be adopted. In
this method, the c × 100% lower confidence bound for xp
based on MLEs is given by

Normal: 􏽢xp,c � 􏽢μ − tc n − 1, −
�
n

√
zp􏼐 􏼑 ·

􏽢σ
�
n

√ ,

Lognormal: 􏽢xp,c � exp log
􏽢μ2

������

􏽢σ2 + 􏽢μ2
􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ − tc n − 1, −

�
n

√
zp􏼐 􏼑 · ·

������������

log 􏽢σ2/􏽢μ2 + 1􏼐 􏼑

n

􏽳

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

Weibull: 􏽢xp,c � exp ln 􏽢α −
tc

􏽢β
�����
n − 1

√􏼠 􏼡,

(15)

where n is the sample size; the MLE estimators 􏽢μ, 􏽢σ, 􏽢α, and 􏽢β
can be obtained according to equations (4)–(6); zp is the
inverse of the standard normal cumulative distribution
function at the corresponding probability p; and tc is the
inverse of the noncentral t cumulative density function with
(n - 1) degrees of freedom and noncentrality parameter
−

�
n

√
ln(−ln(1 − p)) corresponding to a probability c.

+ismethod used herein is first compared with themethod
used in reference [3]. In this study, the 90th percent confidence
for the 5th percentile of the sample of 24 tensile specimens VG
13-18 is calculated with 􏽢α � 480.91MPa and 􏽢β � 75.57MPa.
+e value of 􏽢x0.05,0.90 is calculated to be 341.36MPa, which is
2% higher than the calculated value of 334.40MPa in reference
[3]. +is indicates that this simple approximate method is
sufficiently accurate for practical purposes.

3.3. Probabilistic Model for Structural Design Based on Re-
gression Analysis. Since the coverage method with a sig-
nificance level of 75% is approximately identical to Bayesian
estimations with vague priors (as described in Eurocode 0
[36]), the 75% confidence level is adopted in this study. For
other significance levels, procedures similar to those de-
scribed in the following sections can also be applied where
necessary.

With respect to the characteristic value of the tensile
strength for the adopted datasets, the values for 􏽢x0.05,0.75
divided by the sample mean are given in Table 5. +e es-
timated lower bounds with 75% confidence obtained from
the Normal and Lognormal distributions are compared with
those obtained from the Weibull distribution (i.e., by ana-
lyzing the ratios (􏽢x0.05,0.75(N)/􏽢x0.05,0.75(W)) and
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Figure 5: +e ratio of the 5th percentile lower bound for (a) the Normal distribution and (b) the Lognormal distribution to the Weibull
distribution.
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Table 5: +e 5th percentile characteristic value with a 75% confidence level.

Set no. Sample size Fiber type
(􏽢x0.05,0.75/x) 􏽢x0.05,0.75/􏽢x0.05

N LN W N LN W

1 7 Glass 0.899 0.904 0.854 0.971 0.973 0.956
2 5 Glass 0.890 0.895 0.860 0.960 0.964 0.947
3 6 Glass 0.876 0.880 0.865 0.960 0.963 0.954
4 13 Carbon 0.912 0.916 0.863 0.982 0.984 0.972
5 36 Carbon 0.928 0.930 0.897 0.992 0.992 0.988
6 29 Glass 0.894 0.897 0.868 0.986 0.987 0.982
7 25 Carbon 0.869 0.872 0.854 0.981 0.982 0.978
8 20 Carbon 0.887 0.889 0.878 0.981 0.983 0.980
9 36 Carbon 0.829 0.831 0.811 0.978 0.981 0.977
10 49 Glass 0.821 0.827 0.797 0.980 0.983 0.978
11 30 Carbon 0.900 0.902 0.876 0.987 0.988 0.983
12 31 Carbon 0.797 0.808 0.746 0.971 0.976 0.965
13 21 Carbon 0.806 0.815 0.777 0.966 0.972 0.962
14 48 Carbon 0.717 0.740 0.659 0.964 0.973 0.961
15 24 Carbon 0.833 0.839 0.813 0.974 0.977 0.971
16 30 Carbon 0.827 0.837 0.786 0.976 0.979 0.971
17 6 Carbon 0.889 0.893 0.866 0.964 0.967 0.955
18 7 Carbon 0.938 0.940 0.912 0.983 0.984 0.974
19 7 Carbon 0.915 0.918 0.881 0.975 0.977 0.964
20 7 Carbon 0.945 0.946 0.940 0.985 0.985 0.982
21 7 Carbon 0.872 0.878 0.838 0.962 0.966 0.950
22 7 Carbon 0.896 0.899 0.889 0.970 0.972 0.966
23 8 Glass 0.925 0.927 0.910 0.980 0.981 0.975
24 14 Glass 0.912 0.914 0.893 0.983 0.984 0.979
25 20 Carbon 0.871 0.873 0.857 0.979 0.980 0.976
26 20 Glass 0.926 0.928 0.913 0.988 0.989 0.986
27 19 Carbon 0.879 0.882 0.857 0.979 0.981 0.975
28 6 Glass 0.922 0.924 0.915 0.975 0.977 0.971
29 5 Glass 0.895 0.898 0.880 0.962 0.965 0.955
30 5 Glass 0.942 0.944 0.911 0.980 0.981 0.967
31 5 Glass 0.885 0.887 0.912 0.959 0.961 0.966
32 5 Glass 0.888 0.894 0.849 0.960 0.964 0.943
33 5 Glass 0.877 0.882 0.842 0.955 0.960 0.940
38 30 Glass 0.873 0.878 0.845 0.983 0.985 0.979
39 5 Glass 0.994 0.994 0.992 0.998 0.998 0.997
40 5 Glass 0.981 0.982 0.973 0.994 0.994 0.990
41 5 Glass 0.977 0.977 0.966 0.992 0.992 0.988
42 5 Glass 0.943 0.944 0.923 0.980 0.981 0.972
43 5 Glass 0.983 0.983 0.976 0.994 0.994 0.991
44 30 Carbon 0.921 0.922 0.910 0.990 0.990 0.988
45 20 Carbon 0.911 0.915 0.861 0.986 0.987 0.977
46 20 Carbon 0.912 0.914 0.901 0.986 0.987 0.984
47 7 Glass 0.947 0.949 0.921 0.985 0.986 0.977
48 60 Carbon 0.896 0.899 0.869 0.990 0.991 0.988
49 9 Glass 0.856 0.856 0.876 0.962 0.965 0.967
50 8 Glass 0.867 0.870 0.862 0.963 0.967 0.961
51 10 Glass 0.853 0.860 0.828 0.964 0.968 0.957
52 9 Glass 0.885 0.891 0.841 0.971 0.974 0.958
53 8 Glass 0.935 0.937 0.920 0.983 0.984 0.978
54 8 Glass 0.902 0.905 0.879 0.974 0.976 0.966
55 72 Carbon 0.682 0.725 0.612 0.966 0.977 0.963
56 58 Carbon 0.663 0.695 0.631 0.959 0.971 0.961
57 59 Carbon 0.834 0.841 0.808 0.984 0.986 0.982
58 67 Carbon 0.853 0.859 0.821 0.987 0.988 0.984

Average 0.884 0.889 0.861 0.977 0.979 0.971
c.o.v. 0.065 0.059 0.074 0.011 0.010 0.013
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(􏽢x0.05,0.75(LN)/􏽢x0.05,0.75(W)) , as plotted in Figure 6. Figure 6
shows that the Weibull distribution provides a greater safety
margin with respect to structural design than the Normal
and the Lognormal distributions, which is consistent to the
findings in Figure 5. +is means that, whether or not the
statistical uncertainty is considered, the selection of the
Weibull distribution to model the tensile strength of FRP
composites consistently results in more conservativeness

than the adoption of the Normal or the Lognormal
distribution.

With the estimated lower bounds, the statistical un-
certainty can be quantified by analyzing the ratio of 􏽢x0.05,0.75
to 􏽢x0.05, as listed in Table 5. According to regression analysis,
the average of the ratio of 􏽢x0.05,0.75 to 􏽢x0.05 for the Normal, the
Lognormal, and the Weibull distributions are 0.977, 0.979,
and 0.971 with a corresponding c.o.v. of 0.011, 0.010, and
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Figure 6: +e ratio of the 5th percentile lower bound at a 75% confidence level for (a) the Normal distribution and (b) the Lognormal
distribution to the Weibull distribution.
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Figure 7: +e reduction factor for (a) the Normal, (b) the Lognormal, and (c) the Weibull distributions.
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0.013, respectively. +is means that, for purposes of sim-
plicity, the characteristic value for structural design of the

tensile strength of FRP composites based on the test results
can be evaluated by

Normal: 􏽢ffk � kf · 􏽢x0.05 � 0.977(􏽢μ − 1.645􏽢σ),

Lognormal: 􏽢ffk � kf · 􏽢x0.05 � 0.979 exp log
􏽢μ2

������

􏽢σ2 + 􏽢μ2
􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ − 1.645

����������

log
􏽢σ2

􏽢μ2 + 1
􏼠 􏼡

􏽶
􏽴

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Weibull: 􏽢ffk � kf · 􏽢x0.05 � 0.971􏽢α[0.0513]
1/􏽢β

,

(16)

where the estimated parameters 􏽢μ, 􏽢σ, 􏽢α, and 􏽢β can be de-
termined according to equations (4)–(6) based on the tensile
test results with respect to the specified distribution; .kf is a
reduction factor that considers the uncertainty arising from
parameter estimation. +e reduction factors for the Normal,
Lognormal, and Weibull distributions for all 58 collected
datasets are shown in Figure 7.

4. Conclusions

In this work, a probabilistic model for the tensile strength of
FRP composites is elaborated. After the construction of a
relatively large experimental database, the Normal, the Log-
normal, and the Weibull distributions were selected to fit the
database using a tail-sensitive Anderson–Darling statistic as the
measure of goodness of fit. +en, the probabilistic model
considering statistical uncertainties for the tensile strength of
FRP composites is proposed. According to the findings in this
paper, the following conclusions can be drawn:

(1) From the perspective of experimental justification,
all the Normal, the Lognormal, and the Weibull
distributions can be used to model the tensile
strength of FRP composites. From the perspective of
theoretical justification, however, the Weibull dis-
tribution is recommended due to its intrinsic
weakest link hypothesis of failure.

(2) Whether or not the statistical uncertainty is con-
sidered, the design values of FRP composites at the
5th percentile obtained from the Normal and the
Lognormal distributions are often larger than that
from the Weibull distribution. In other words, the
adoption of the Weibull distribution for design
provides higher safety margins than the selection of
the Normal or Lognormal distribution.

(3) When the experimental justification, the theoretical
justification, as well as the design conservativeness
are all taken into consideration, the Weibull distri-
bution is the most recommended distribution to
model the tensile strength of FRP composites.

(4) +e proposed probabilistic model for the tensile
strength of FRP composites considers the statistical
uncertainties arising from parameter estimation.
Such statistical uncertainties can be modeled by a

reduction factor, and the design-oriented charac-
teristic value is the product of the reduction factor
and the estimated characteristic value. +e reduction
factor for the Weibull distribution is recommended
to be 0.971.

It should be noted that the provided reduction factor
should be used with caution because it corresponds to the 5th

percentile lower bound with a 75% confidence level. +e
reduction factors based on other specified percentiles and
confidence levels should be evaluated and can be part of
future work.
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[4] E. Barbero, J. Fernández-Sáez, and C. Navarro, “Statistical
analysis of the mechanical properties of composite materials,”
Composites Part B: Engineering, vol. 31, no. 5, pp. 375–381,
2000.

[5] M. Alqam, R. M. Bennett, and A.-H. Zureick, “+ree-pa-
rameter vs. two-parameter Weibull distribution for pultruded
composite material properties,” Composite Structures, vol. 58,
no. 4, pp. 497–503, 2002.

[6] M. A. Stephens, “EDF statistics for goodness of fit and some
comparisons,” Journal of the American Statistical Association,
vol. 69, no. 347, pp. 730–737, 1974.

[7] S. Gomes, L. Neves, D. Dias-da-Costa, and E. Nuno Brito
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