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A dam is a super-structure widely used in water conservancy engineering fields, and its long-term safety is a focus of social
concern. Deformation is a crucial evaluation index and comprehensive reflection of the structural state of dams, and thus there are
many research papers on dam deformation data analysis. However, the accuracy of deformation data is the premise of dam safety
monitoring analysis, and original deformation data may have some outliers caused by manual errors or instruments aging after
long-time running. +ese abnormal data have a negative impact on the evaluation of dam structural safety. In this study, an
analytical method for detecting outliers of dam deformation data was established based on multivariable panel data and K-means
clustering theory. First, we arranged the original spatiotemporal monitoring data into themultivariable panel data format. Second,
the correlation coefficients between the deformation signals of different measuring points were studied based on K-means
clustering theory.+ird, the outlier detection rules were established through the changes of the correlation coefficients. Finally, the
proposed model was applied to the Jinping-I Arch Dam in China which is the highest dam in the world, and results indicate that
the detection method has high accuracy detection ability, which is valuable in dam safety monitoring applications.

1. Introduction

Since the 19th century, there have been many dam-break
events in the world, such as Malpasset Dam (France, 1959),
Vajont Dam (Italy, 1963), and Banqiao Dam (China, 1975),
which brought heavy disasters and huge economic losses to
the relevant countries [1, 2]. Dam safety monitoring is an
effective means to monitor dam structure safety [3]. +us,
governments and dam engineering researchers began to
attach great importance to dam safety monitoring, including
dam deformation, seepage, stress and strain, etc. Among the
various monitoring subjects, deformation is an compre-
hensive reflection of dam safety behaviors which can be
effectively assessed through the analysis of dam deformation
data [4].

+e research on dam deformation analysis has experi-
enced a stage from qualitative analysis to quantitative

analysis and focuses on the causes and statistical model of
dam deformation [5]. After the 20th century, with the
gradual development of artificial intelligence, artificial in-
telligence algorithm is used to simulate the input-output
relationship of dam deformation, and many high-precision
analysis models are established [6–8].

A large number of dam safety analysis studies have been
carried out based on the original deformation monitoring
data. However, the accuracy of original deformation moni-
toring data is the foundation of dam safety analysis. At
present, dam deformation data are mainly obtained through
automatic system acquisition or manual reading, which may
have some outliers due to the monitoring instrument aging,
artificial error, structural state change, etc [9]. Deformation
outlier usually deviates from the normal value, which affects
the correctness of dam safety evaluation. +erefore, detecting
the outliers of deformation data should be conducted before
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the dam safety analysis using original deformation data. +e
outlier values are often considered an important reflection of
the changes of structural safety behavior.

To date, the outlier detecting methods of dam safety
monitoring data mainly include the process line method,
statistical test method, and mathematical model method
[10]. However, there are some problems in these methods.
+e process line method, as a simple and effective method,
relies on human subjective judgment and is easy to be af-
fected by subjective experience. +e statistical test method is
constructed by means of mathematical statistics. Different
probability distribution models often lead to different re-
sults. +e mathematical model method is aimed at estab-
lishing the regression equation between the dependent
variable and the influence factors; due to the complexity of
the actual influencing factors, the accuracy and applicability
of the model are considered the key of the method.

+us, most outlier detection methods focus on the
change process of the monitoring data from the time level,
ignoring its spatial relationship. A large number of moni-
toring data from different dams show that the deformation
series of different measuring points have a significant cor-
relation [11, 12]. +erefore, it is needed to study how to
comprehensively consider the space-time relationship of
dam deformation in outlier detection model and effectively
obtain accurate dam deformation data.

+e multivariable panel data integrate the temporal and
spatial characteristics of deformation series and can describe
the dynamic characteristics of dam deformation [13].
K-means clustering is a widely used clustering algorithm
which is suitable for big data clustering and can be used in
dam deformation detection [14, 15]. +us, in this article,
combiningmultivariable panel data with K-means clustering
theory, the inherent distribution regularity of deformation
data was obtained, and outliers of dam deformation were
detected quantitatively based on the changing laws of the
deformation relevance.

2. Methodology

2.1. Multivariable Panel Data. Traditional dam deformation
clustering analysis usually uses monitoring data at a fixed
time and contains one monitoring subject [12, 16, 17].
However, fixed time-based clustering analysis neglects dy-
namic change tendency of deformations, and single clus-
tering subject cannot effectively reflect the overall situation
of deformation. For example, the deformation value of a
point includes both horizontal deformation and vertical
deformation in the operation time. Multivariable panel data
are transformed into a three-dimensional data format, in-
cluding the dimension of monitoring subject, measuring
point information, and time. Hence, multivariable panel
data can effectively reflect the space-time information of
dam deformation and provide a suitable database for
clustering analysis of dam deformation.

Suppose that there are N deformation measuring points
in the dam, and each measuring point has T measuring
values and M monitoring subjects; then, the multivariable
panel data are shown as follows.

Multivariable panel data are transformed into a three-
dimensional data format, and from the dimension of mea-
suring point number, Table 1 shows that the multivariable
panel data could be represented by the matrix as follows:

yi �

xi1(1) xi1(2) · · · x11(T)

xi2(1) xi2(2) · · · xi2(T)

⋮ ⋮ ⋮

xiM(1) xiM(2) · · · xiM(T)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i � 1, 2, . . . , N.

(1)

From the dimension of measuring subject and time, the
representation of matrix is similar to equation (1), which is
not expressed again. When the dam deformation data are
converted to multiindex panel data format, the following
study is how to use clustering theory to analyze the cor-
relation between each dam deformationmeasurement series.

2.2. K-Means Clustering Algorithm. After K-means clus-
tering algorithm was proposed, it has been widely studied
and applied in different disciplines. K-means clustering has
been extensively applied in the field of dam safety evaluation,
including clustering of displacement, seepage, and stress
[18–21]. +is algorithm has the characteristics of being
simple and efficient, and thus it is still one of the most widely
used clustering algorithms at present.

For a given dataset x containing P elements with the
dimension of d, x � x1, x2 . . . xP􏼈 􏼉xi ∈ Rd.

+e target of K-means clustering algorithm is to divide
the elements of dataset into K categories. x � ck,􏼈

k � 1, 2, . . . K}. Each partition represents a category
expressed as ck, and each ck has a center point μk. In order to
quantify the similarity between dataset elements, K-means
algorithm generally selects Euclidean distance as the mea-
surement standard. +us, the distance between the element
and center point in the category ck is expressed as follows:

J ck( 􏼁 � 􏽘
xi∈ck

xi − μk

����
����
2
. (2)

+e key of K-means clustering is to minimize J(c) which
is the sum of distance, and the expression of J(c) is

J(c) � 􏽘
K

k�1
J ck( 􏼁 � 􏽘

K

k�1
􏽘

xi∈ck

xi − μk

����
����
2

� 􏽘
K

k�1
􏽘

n

i�1
dki xi − μk

����
����
2
,

(3)

where dki � 0 if xi ∉ ci or dki � 1 if xi ∈ ci. According to the
least square method and Lagrange principle, the cluster
center point μk should be taken as the average value of
element of the category ck.

Combined with multivariable panel data theory and
K-means clustering algorithm, we can quantitatively analyze
the correlation of dam deformation and divide the dam
deformation into several zones, and the specific process of
dam deformation clustering is as follows:
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(1) Transform the deformation data into multivariable
panel data format.

(2) Randomly take K elements from panel data as the
center point of category ck.

(3) Calculate the distance between the remaining ele-
ments and the cluster centers, respectively, and then
classify the remaining elements according to the
distance from the center point.

(4) According to the clustering results by step 2, the
cluster centers are recalculated by taking the mean of
elements in each cluster.

(5) Repeat step 2 and step 3 to calculate the new cluster
center continuously.

(6) +e process is stopped until the clustering result does
not change.

(7) Output the dam deformation clustering result.

3. Outlier Detection Method

After the K-means clustering method is used to derive the
deformation clustering features, the dam is divided into
several deformation zones. +e deformation zone numbered
i has ni measuring points.+e outlier detectionmatrix of this
deformation zone can be expressed as follows:

Ki �

d11 d12 · · · d1ni

d21 d22 · · · d2ni

⋮ ⋮ ⋮

dni1 dni2 · · · dnini

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

where dab is the correlation coefficient of the deformation
data between the measuring point a and b. +e coefficients
can be calculated for each measuring point in this defor-
mation zone as follows:

dab(t) �

����������������������

􏽘

M

j�1
Δxa(j, t) − Δxb(j, t)( 􏼁

2

􏽶
􏽴

, (5)

where M is the number of monitoring subjects. In order to
better identify outliers through deformation change analysis,
we focus on the variation of deformation values which are
Δxa(j, t) � xa(j, t) − xa(j, t − 1). xa(j, t) is the deforma-
tion value of the monitoring subject of j at time t for the
monitoring point a.

When the change laws of deformation signals of a
deformation zone are normal, the coefficient between
different measuring points in the same deformation zone is
close. When the change laws of deformation data at one
measuring point become abnormal, remarkable changes
will occur in the coefficients of this measuring point with
other measuring points. +us, the detection of deformation
outliers can be transformed into the detection of the
outliers of correlation coefficient. +e core problem of
outlier recognition is the formulation of outlier standard.
+e detection criteria of abnormal value of dam defor-
mation are proposed below.

In order to quantify the variation difference of defor-
mation data of each measuring point, the correlation co-
efficient vector of measuring point m can be estimated as

Om

��→
(t) � dm1(t), dm2(t), . . . , dmn(t)( 􏼁, (6)

where m is the number of the measuring point and n is the
total number of measuring points in the zone. Om

��→
(t) cor-

responds to the m row vector of the outliers detection matrix
K at time t. +e vector module is defined to quantify the
change amplitude of the correlation coefficient vectors O

→
m,

that is,

Om

��→
(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 �

�����������������������

d
2
m1(t) + d

2
m2(t) + · · · d

2
mn(t)

􏽱

. (7)

If the vector module of a measuring point is significantly
bigger than the other measuring points in the zone, the
deformation of this measuring point may have outliers. In
order to evaluate the degree of significant difference
quantitatively, the research introduces the 3σ-rule which is
the classical outlier analysis method.

For the dataset X � |O1(t)
�����→

|, |O2(t)
�����→

|, · · ·􏼚 |Om(t)
������→

|},

t � 1, 2, . . . , T,

Table 1: Multivariable panel data.

Time 1 · · · t · · · T

Point no.
Subject

1 · · · j · · · M · · · 1 · · · j · · · M · · · 1 · · · j · · · M

1 x11(1) . . . x1M(1) · · · x11(t) · · · x1M(t) · · · x11(T) · · · x1M(T)

· · · · · · · · · · · · · · · · · ·

i xi1(1) · · · xiM(1) · · · xi1(t) · · · xiM(t) · · · xi1(T) · · · xiM(T)

· · · · · · · · · · · · · · · · · ·

N xN1(1) · · · xNM(1) · · · xN1(t) · · · xNM(t) · · · xN1(T) · · · xNM(T)

i is the number of measuring points, j is the number of measuring subjects, t is the monitoring time, and xij(t) represents the deformation value of the
measuring point and monitoring subject numbered i and j, respectively, at time t (i � 1, 2, . . . N, j � 1, 2, . . . M, t � 1, 2, . . . T).
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If X satisfies Gaussian distribution, then the parameter of
Gaussian distribution is

􏽢μ � X �
􏽐

T
t�1 􏽐

n
m�1 O

→
m(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

nT
,

􏽢σ2 �
􏽐

T
t�1 􏽐

n
m�1 |O

→
m(t)| − 􏽢μ􏼒 􏼓

2

nT
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

In the 3σ-rule, if data are bigger than 􏽢μ + 3􏽢σ or smaller
than 􏽢μ − 3􏽢σ, they are considered as outliers. However, when
|O
→

m| is smaller than 􏽢μ − 3􏽢σ, it shows that the deformation
law of this measuring point is more similar to that of other
measuring points in the same zone. +us, the outlier de-
tection rule is

O
→

m(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌> 􏽢μ + 3􏽢σ. (9)

If the deformation data of a measuring point meet the
above formula, it is considered that the data of themeasuring
point at time t are abnormal. +e outlier identification
process of dam deformation is designed as shown in the
flowchart (Figure 1) below.

4. Case Study

4.1. ProjectOverview. Jinping-I concrete arch dam is located
at the Yalong River, which is the key river in Sichuan
Province in China. +e height of the dam is 305m, which is
the highest in the world. +e normal water level of the
reservoir is 1880m, and the total storage is 7.76 billion cubic
meters [22]. +e power station is mainly used for power
generation and flood storage.

According to the requirements of dam monitoring
specifications, a large number of monitoring instruments are
embedded in the dam to comprehensively monitor the
deformation, seepage, stress, and strain of the structure. In
order to analyze the outliers of dam deformation, the fol-
lowing focuses on the conditions of dam deformation
monitoring. Figure 2 shows the layout of deformation
measuring points along the height direction.

+e dam began to store water after it was completed in
December 2012. On December 1, 2012, it began to store
water for the first time, and the reservoir water level began to
rise from 1648.37m. On June 15, 2013, the diversion bottom
outlet was closed, and the second stage of water storage
began, and the reservoir water level began to rise from
1712.48m. On August 26, 2013, the third stage of water
storage began, and the water level reached 1838.66m on
November 20. On December 11, the water level reached
1880m, and then the water level remained stable. Since the
dam deformation during the impoundment period is rela-
tively important for dam safety and may have outliers, the
dam deformation data from December 2012 to December
2014 are selected as the object for outlier detection analysis.

4.2. Clustering Analysis of Dam Deformation Data. +e first
step of outlier analysis is to study the zoning characteristics

of the dam using multivariable panel data and K-means
panel clustering analysis method. Due to the large number of
measuring points, this section takes PL9-3, PL11-5, and
PL13-5 as an example to show the multivariable panel data
of dam deformation. Table 2 shows the multivariable panel
data of Jinping-I Dam during the impoundment stage
(2012.12.1–2014.12.11). δx and δy are radial displacement
and tangential displacement, respectively. +e deformation
data of typical dam segments are shown in Figures 3 and 4.

According to the K-means clustering algorithm, k� 8 is
selected in this paper in order to divide the deformation of
the dam into 8 zones which could fully reflect the zoning
characteristics of the dam. Each monitoring point in the
same deformation zone has highly similar deformation law.
Figure 5 shows the results of deformation zones (zones I, II,
III, IV, V, VI, VII, and VIII) in the dam. When deformation
zones of the dam are determined, the proposed outlier
detection analysis method of dam deformation data could be
used to evaluate whether the deformation data of a moni-
toring point have outliers or not.

4.3. Outlier Detection Analysis of Dam Deformation Data.
Due to the large number of measuring points in the
dam, when detecting the outliers of deformation data, de-
formation zone I in Figure 5 is taken as an example. For
convenience of numbering, PL11-3, PL11-4, PL13-3, and
PL13-4 in deformation zone I are set as measuring points 1,
2, 3, and 4, respectively, and dab is the correlation coefficient
between measuring points a and b in the deformation series.
Figure 6 represents the calculated results of correlation
coefficients in this deformation zone during the impound-
ment period.

+emodule values of correlation coefficient vectors of all
measuring points in zone I could be calculated based on
equation (7). +e changing laws of module values of dif-
ferent monitoring points in zone I are expressed in
Figures 7–10. In order to evaluate whether the deformation
data of each measuring point in deformation zone I contain
outliers, according to the proposed outlier detection
method, the threshold value of 3σ-rule should be calculated.
According to the calculated results of deformation data in
zone I, 􏽢μ � 0.38, 􏽢σ � 0.61. +erefore, the detection criterion
for outliers in equation (9) could be expressed as
|O
→

m(t)|> 􏽢μ + 3􏽢σ � 0.38 + 3 × 0.61 � 2.21. On the basis of
the diagnostic criteria of outliers, outliers can be identified
for the deformation measured values of each measuring
point in deformation zone I, and the identification results
are marked in Figures 7–10.

4.4. Comparative Analysis of Outlier Detection Results. In
order to verify the effectiveness of the proposed outlier
detection method, this section selects the detection results of
two methods as a comparison. One is the pauta criterion (3σ
rule), and the other is the manual inspection. Pauta criterion
is a widely used statistical test method for outliers, that is, to
test whether the measured value is more than 3 times the
sample standard deviation. +e manual inspection method
verifies whether there are manual recording errors in the
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Original dam deformation data

Transformed dam deformation data

Multivariable panel data Theory

Derive the results of dam deformation data zoning 

K-means clusering algorithm

Calculatethe the correlation coefficient dmn
Construct the outlier evaluation matrix K

.

Identify outliers of dam deformation data

Outliers detection3σ-rule

Figure 1: Flowchart of dam deformation outlier detection.
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Figure 2: Distribution diagram of deformation measuring points on Jinping-I Dam.

Table 2: Multivariable panel data of Jinping-I Dam during impoundment stage.

Time 2012.12.1 · · · 2013.10.1 · · · 2014.12.11

Point no.
Subject

δx, δy (mm) · · · δx, δy (mm) · · · δx, δy (mm)

PL9-3 −0.21, −0.12 · · · 7.00, 0.90 · · · 28.80, 5.43
· · · · · · · · · · · · · · · · · ·

PL11-5 −0.05, −0.01 · · · 14.86, 2.69 · · · 27.18, 5.04
· · · · · · · · · · · · · · · · · ·

PL13-5 0.03, −0.08 · · · 18.20, 1.68 · · · 32.09, 3.24
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monitoring data through the verification of the original
monitoring data by the monitoring recorder.

4.4.1. Outlier Detection Results of the Proposed Method.
In most of the time period, the change rule of deformation
vector modulus of each measuring point is relatively stable
which means |O

→
m(t)|< 2.21, and the change rule of de-

formation data is normal. However, it can be seen from

Figures 7–10 that the four observation points have the same
time of abnormal points, which are June 19, 2014, July 15,
2014, and August 14, 2014. +e original monitoring data of
deformation variation at four measuring points are shown in
Figures 11–14. It can be seen from the figures that the
abnormal time of large deformation variation is completely
consistent with the above outlier analysis. +e outliers of
each measuring point at three time points are marked on the
graph.
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Figure 6: Results of correlation coefficients in deformation zone I during impoundment period.
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Figure 7: Distribution graph of module values of PL11-3 during impoundment period.
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Figure 8: Distribution graph of module values of PL11-4 during impoundment period.
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Figure 9: Distribution graph of module values of PL13-3 during impoundment period.
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Figure 10: Distribution graph of module values of PL13-4 during impoundment period.
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Figure 11: Distribution graph of deformation variation of PL11-3 during impoundment period.
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Figure 12: Distribution graph of deformation variation of PL11-4 during impoundment period.
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Figure 13: Distribution graph of deformation variation of PL13-3 during impoundment period.
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Figure 14: Distribution graph of deformation variation of PL13-4 during impoundment period.

Advances in Civil Engineering 9



4.4.2. Outlier Detection Results of the 3σ Method.
According to the monitoring data of four measuring points, the
mean value and standard deviation of each sample are calcu-
lated, respectively. +e calculation results are shown in Table 3.

Relying on the 3σ rule, the calculation index of each
sequence is calculated by the following formula:

d � |y − μ| − 3σ. (10)

If d< 0, it means that the difference between the mea-
sured value and the sample mean does not exceed 3 times the
standard deviation, and the measured value is normal; if
d≥ 0, it means that the difference between the measured
value and the sample mean exceeds 3 times the standard
deviation, and the measured value is abnormal.

In order to compare and verify the effectiveness of the
proposed method, the d value corresponding to the above
three abnormal dates is analyzed. +e calculation results of
the three abnormal dates are shown in Table 4. Y in the
bracket indicates that the measured value is an abnormal
data through detection; N indicates that the measured value
is a normal data through detection.

By comparing the results of Table 4 and Figures 11–14, it
can be found that the outliers detected by the two methods
are completely consistent.

4.4.3. Outlier Detection Results of the Manual Inspection
Method. +e monitoring data are checked by the moni-
toring recorder. On June 19, 2014, and August 14, 2014, due
to the staff’s routine inspection of the monitoring instru-
ments, the interval time between the measured values is not
one day, but seven days, during which there are no moni-
toring data, so the difference between the adjacent moni-
toring data is large, and thus the deformation data in these
two time periods are judged as abnormal values. +ese
abnormal values are not caused by structural changes or
monitoring errors, but due to the lack of measured values.
On July 15, 2014, the deformation variation of PL11-3 is
3.40mm, and the deformation variation of the other three
measuring points is less than 1.00mm; By checking with the
monitoring data management department of the project, it is
found that the original data should be 0.20mm, and the
abnormal value is caused by manual recording error. Hence,
the proposed method effectively identifies the outliers of
dam deformation data.

5. Conclusion

In this study, multivariable panel data theory and K-means
clustering algorithm are combined to construct an outlier
detection model for dam deformation monitoring data. +e
conventional outlier recognition mainly aims at the single
measurement point sequence and uses the probability and
statistics method to define and diagnose outliers. +e pro-
posed method detects abnormal data of dam deformation
through clustering analysis and effectively considers the
relevance between different measuring points, which avoids
the influence of short data sequence or difficult expression of
probability function in conventional outlier recognition.+e
research on the characteristics of deformation zoning plays a
positive role in studying the overall deformation behavior
and safety evaluation of the dam. +rough the analysis of a
typical dam project, it is found that the proposedmethod can
effectively identify the outliers in the dam deformation data
and provide reliable information foundation for dam re-
searchers and management personnel.
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