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ABSTRACT 
 

Aims:  There are several entropy estimators to address the organization of time-series. However, 
the behavior of a given estimator in relation to the size N of the data is not often studied in terms of 
improving the analysis. Here, we investigate size-related properties of the estimator a1ApEn (area1 
of approximate entropy) in order to establish how such properties can improve time-series analysis. 
Study Design/Methodology:  We established a set of 14 different generating processes, including 
deterministic maps and limited and unlimited random distributions. Then, we created several vectors 
of five different sizes (N = 100, 200, 400, 500, 1000) for each process, and a set of indicators 
(maximum, minimum and mean a1ApEn values) was taken. The correlation between a given 
indicator and log10(N) was classified as greater or lower than zero, or non-significant, creating a 
pattern of correlations for each process. Next, we perform a similar analysis in a resampling 
procedure from vectors of 2,000 points for the same generating processes. In addition, we analyzed 
heart rate dynamics and solar wind cycles with this method in order to show the applicability of the 
technique. 
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Results:  The main result is that the patterns of the correlations between indicators and log10(N) are 
able to segregate the different generating process. 
Conclusion:  The use of a resampling procedure along with the size-related correlations of the 
nonlinear estimator a1ApEn is an effective method to discern different generating processes 
underlying empirical time-series. The method allows for the use of data sets of different sizes in 
comparisons among results. 
 

 
Keywords: Informational entropy; time-series analysis; data-vector size; approximate entropy; heart 

rate; solar wind. 
 
1. INTRODUCTION 
 
The discursive concept of complexity has no 
unique mathematical counterpart. Usually, the 
diversity of the elements of a time-series (or data 
set) is addressed in the efforts to give a number 
to complexity, and how to measure such a 
diversity comprises many different approaches. 
However, even what would be measured in the 
analysis might vary dramatically (e.g., [1]).  
 
Within the “how to measure” question above, 
there are numberless informational entropies 
with different properties and different scopes 
each one of them. Important examples are the 
Rényi entropy, SR, and Tsallis entropy, Sq, as 
discussed by Masi [2]. These entropies are 
devoted to extend Shannon’s uncertainty 
measure to a broader range of cases.  
 
From a different perspective, we have 
information entropies or measures alike (e.g., 
false neighborhood [3], directed weighted 
complex network [4]) that seek to establish a 
direct approach to data to give an estimation             
of the degree of organization of the series.                    
In this sense, such measures are much        
more “statistical” estimators than entropies, 
indeed. 
 
Approximate Entropy [5] falls into the category of 
the so-called “practical estimators” we just 
created above. It is interesting to note that 
Pincus envisaged a measure that would attain a 
limiting value as N tends to infinity [5,6] (see, 
also [7]), and employed the notation ApEn(m,r,N) 
to indicate a value coming from a finite sample 
size.  
 
Nevertheless, what is meant by extensive can 
have diverse interpretations. Formally, a function 
of extensive variables is extensive if it is 
homogeneous of degree 1 ([8] - chapter 5). 
However, such a discussion diverges from what 
the measures of organization are truly intended 

for. On a rather practical way, organization is 
somehow related to the occupancy of a phase-
space created by the estimation procedure itself 
[3,4], and “extensive” should allude for the 
relationship between the value of the estimator 
and the size N of the data set. In fact, size-
related issues are of great importance for 
estimators in general, either linear or nonlinear 
ones (consider, for instance, the mean and the 
variance), since one needs to know the 
contingent dependence of the estimator on the 
size of the data under analysis.  
 
As a direct example, Bruijn et al. [9] tested two 
nonlinear methods to quantify certain patterns of 
walking stability and found that while one of the 
methods presented an increase in its value as 
the length of the time-series increased, the other 
one presented a decrease. These results lead 
the authors to conclude that, in order to make 
comparisons meaningful, “a fixed number of 
strides should be analyzed” [9]. Thus, it becomes 
implicit that size of the sample might become an 
obstacle to compare different data.  
 
Even though its general acceptance, ApEn 
suffers from two subtle, and interconnected, 
drawbacks (see [10–14]). The first one is the lack 
an objective procedure to choose the parameters 
of analysis (namely, the tolerance for differences, 
r, and the size of the probing window, m). The 
other is the lack of consistency: two time-series 
can be classified in opposite ways depending on 
the choice of the parameters made by the 
observer.  
 
Recently, our group envisaged a new method, 
derived from ApEn, which we proved to be of 
greater consistency and completely objective 
[14]. The procedure is based on the construction 
of the area under the curve of ApEn versus a 
normalized tolerance vector r for the probing 
window size m = 1. The tool was named area1-
ApEn, or, simply, a1ApEn (see [14] for details of 
the method). 
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Therefore, it is very important to know the size-
related properties of a1ApEn. Moreover, it would 
be extremely relevant if these properties could be 
employed for a more complete characterization 
of empirical time-series without the obstacle of 
sample size. In the present study, we explore 
these properties and show that a1ApEn has size-
related features useful to recognize different 
processes.  
 
2. METHODS 
 
2.1 An Overview of the a1ApEn Estimator 
 
Notice that the complete description of the 
procedures is found elsewhere [14]. Here we 
simply give an outline of the a1ApEn estimator.  
 
2.1.1 Approximate entropy  
 
Within a time-series of size N, ApEn is devised 
as a counting of sub-vectors equal to each other 
along the series. The distance between a pair of 
sub-vectors is given by the Heavside distance, 
and equality is considered within a certain 
tolerance.  
 
Eqs 1-3 below detail the numerical procedure. A 
sub-vector i of size m is compared to every other 
sub-vector of size m along the original time-
series. For each paring, a match is generated if 
the distance is equal or less than a given 
tolerance r. The counting C for a sub-vector i is 
the number of matches (#) weighted in relation to 
the total number of comparisons made. Thus, for 
a given sub-vector i: 
 

#
( )

- 1
=

+

m
mC r

N m
i

i                         

(1) 
 

For the whole set of comparisons, φ is a variable 
computed as:  
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Notice that the denominator in Eqs 1 and 2 is the 
same for all the sub-vectors i, and that for each i 
there is, at least, one positive match coming from 
the comparison of i and i itself.  
 

Finally, the ApEn estimator is obtained through: 
 

1ApEn( , , ) ( ) ( )m mm r N r rφ φ += −          (3) 

2.1.2 The estimator a1ApEn  
 
The first and fundamental step is the construction 
of a tolerance vector, which, for the sake of 
simplicity, we shall call r. This vector contains 
multiple values of tolerances.  
 
In ordinary ApEn computations, the usual 
practice to establish the single value of tolerance 
for comparisons is to calculate it as a fraction of 
the standard deviation of the time-series (see 
[15]). For instance, some figure between 15% 
and 25% of the standard deviation is the most 
typical choice for ApEn computations.  
 
Here, we do not use the standard deviation as a 
milestone to compute r values to compose the 
tolerance r vector. Instead, we obtain a detailed 
set of distances among the members of the time-
series (code given in Supporting Information at 
the end of the manuscript). This set goes from 
the lowest value of distance that can be found 
among all the possible pairings in the time-series 
to the highest value of distance that can be 
formed among pairs. Then, from these distances, 
a new tolerance vector r* is constructed by 
scaling the original r from zero to one: 
 

1

max( )r
= ⋅r* r                        (4) 

 
The next step is to construct a curve of ApEn 
values using the original r vector for a window 
size m = 1. Such a curve describes the behavior 
of the function:  
 

1 2ApEn(1, , ) ( ) ( )N φ φ= −r r r                 (5) 

 
The last step is to compute the numeric integral 
of Eq 5 in relation to the normalized tolerance 
vector r*: 
 

1

0
a1ApEn( ) ApEn(1, , ) *N N dr= ∫ r*        (6) 

 
2.2 Scaling of a1ApEn 
 
The main sketch of the present work is as 
follows. In a first step, we studied fourteen 
prototypic processes generated in machina and 
addressed the question of what happens to the 
a1ApEn measure as the size of the vectors 
increases.  
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In a second step, from a single time-series of 
2,000 points of each prototypic process, we 
repeatedly resampled the series, thus forming 
vectors of diverse sizes. Next, we checked 

whether the size-related properties detected in 
the first step are still the same. The answer here 
is yes.  
 

 

 
 

Fig. 1.  Some examples of prototypic time-series  
These series are contained in the ]0,1[ interval and their respective histograms are shown in the insets; N = 500. 

(A) Beta2; (B) L3.68; (C) Beta4; (D) UDRN. See Table 1 for details of the originating processes 
 

Table 1. Prototypic processes and their designation s (in alphabetical order) 
 
Designation Process/Description 
AR1 Autoregressive 1st order. The weight of the previous datum in the next ndrn datum 

was set as 20% (see NDRN entry below). 
AR2 Autoregressive 2nd order. The weight of the previous and the second previous data in 

the next ndrn datum were 20% and 40%, respectively (see NDRN entry below). 
Beta1 Beta random distribution (α = β = 0.4); U-shaped. 
Beta2 Beta random distribution (α = 2, β = 5); left-skewed. 
Beta3 Beta random distribution (α = β = 0.1); extremely U-shaped. 
Beta4 Beta random distribution (α = 0.2, β = 5); extremely left-skewed. 
Henon  Henon map. Parameters a = 1.4 and b = 0.3. Chaos region. Initial conditions were 

randomly assigned around x0 ≅ 0.63 and y0 ≅ 0.179 
L3.6 Logistic map with control parameter µ = 3.6. Period 2 region, jumping between ]0.30 , 

0.61[ to ]0.78 , 0.91[. Initial condition randomly assigned.  
L3.68 Logistic map with control parameter µ = 3.68. Pomeau–Manneville scenario 

(transition to chaos due to intermittency). Initial condition randomly assigned. 
L3.9 Logistic map with control parameter µ = 3.9. Chaos region. Initial condition randomly 

assigned. 
L3.99 Logistic map with control parameter µ = 3.99. Chaos region. Initial condition 

randomly assigned. 
Lévy Lévy distribution. 
NDRN Normally distributed random numbers with zero mean and standard deviation of 1. 
UDRN Uniformly distributed random numbers in the ]0,1[ interval. 
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The third and final step was to apply the 
resampling method to empirical data (resting 
heart rate and solar wind) to illustrate the 
usefulness of the size-related properties of 
a1ApEn.  
 
Table 1 specifies and describes the prototypic 
processes studied here. Notice that are three 
grand subsets of processes: (1) deterministic 
maps (Hénon and Logistic); (2) random numbers 
limited to a given interval (beta and uniform 
distributions); (3) random numbers not limited 
(autoregressive models, Lévy and normal 
distributions). Fig. 1 illustrates examples of time-
series generated by some of these processes. 
Data were generated in machina using Matlab 
R2013a. 
 
3. RESULTS AND DISCUSSION 
 
3.1 First Step – Independent Vectors  
 
Vectors of varying sizes for each process were 
generated. The sizes were N = 100; 200; 400; 
500; 1,000. For each size, 60 independent 
vectors were created. Thus, 300 vectors (5x60) 
were generated per process, and 4,200 vectors 
were analyzed (14x300). 
 
From the 60 vectors of each size (in each 
process), we established, as indicators, the 
maximum value (upper bound), the mean value 

and the minimum value (lower bound) of the 
a1ApEn estimator. The correlation between 
log10(N) and each indicator was obtained for 
each process. The use of the logarithm of the 
size is for linearize the order of magnitude of 
change in N, thus avoiding false correlations due 
to the extremity effects in the statistics. 
 

The results are summarized in Table 2. As the 
table shows, depending on the process and the 
indicator chosen, there are positive, “zero” or 
negative correlations, where “zero” is for the non-
significant correlations. Fig. 2 illustrates different 
behaviors of these indicators, for the same 
processes shown in Fig. 1. 
 
Therefore, depending on the process and on the 
indicator, a1ApEn can be an increasing, a 
decreasing or an unchanging measure as a 
function of the time-series size (as exemplified in 
Fig. 2). 
 
Table 3 gives a symbolic pattern of correlations 
for the results presented in Table 2. There, we 
grouped the processes accordingly to their 
symbolic pattern. It is interesting to note that the 
size-related properties of a1ApEn are able to 
discern these originating processes and group 
them into those three grand subsets that we 
know beforehand. Notice, thus, that we are not 
concerned with the values of the correlations: our 
focus is in patterns. 

 

 
 

Fig. 2.  Upper bound, mean and lower bound of a1ApEn for som e prototypic series  
Results from the resampling procedure (step two) versus log10(N). (A) Beta2; (B) L3.68; (C) Beta4; (D) UDRN 
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Table 2. Correlation between log( N) and a1ApEn values for the indicators ( maximum, mean 
and minimum ) 

 
Process  Maximum Mean Minimum 
AR1 r -0.70 0.55 0.95 

F-value 2.89 1.3 29.77 
AR2 r -0.90 -0.89 0.00 

F-value 12.44 11.56 0.01 
Beta1 r -0.95 -0.97 0.00 

F-value 27.3 67.44 0.01 
Beta2 r 0.96 0.98 0.95 

F-value 34.74 79.6 30.81 
Beta3 r -0.33 -0.61 0.87 

F-value 0.38 1.8 8.93 
Beta4 r 0.96 0.96 0.89 

F-value 41 34.23 12.16 
Henon r -0.99 -0.99 0.70 

F-value 143 194 2.87 
L3.6 r 0.87 0.99 0.99 

F-value 9.68 551 304 
L3.68 r 0.77 0.91 0.94 

F-value 4.42 14.07 24.09 
L3.9 r 0.00 0.96 0.91 

F-value 0.03 45.24 14 
L3.99 r 0.00 0.96 0.97 

F-value 0.04 41.5 52.6 
Lévy r 0.40 0.92 0.91 

F-value 0.58 15.72 13.41 
NDRN r -0.99 -0.98 -0.77 

F-value 617 86.73 4.58 
UDRN r -0.91 -0.96 0.42 

F-value 16.16 37.37 0.65 
r: correlation coefficient. In bold: significant positive correlation; italic-bold: significant negative correlation. F critical = 10.13 for 

95% confidence interval (v1 = 1, v2 = 3) 
 

Table 3. Symbolic representation of the 
correlations of the prototypic processes, 

organized by pattern similarity 
 

Process Maximum Mean Minimum 
Beta2 0 0 0 
Henon 0 + + 
L3.6 0 + + 
L3.68 0 + + 
L3.9 0 + + 
L3.99 0 + + 
AR1 - - 0 
AR2 - - 0 
Beta4 - - 0 
Lévy - - 0 
NDRN - - 0 
Beta1 + + + 
Beta3 + + + 
UDRN + + + 

+: significant positive correlation; -: significant negative 
correlation; 0: non-significant correlation 

 
An exception seems to be the Beta2 random 
distribution (parameters α = 2, β = 5), that ended 
up in an isolated pattern. This distribution is 
somewhat skewed, but not too much. If it 
“progresses” towards a more prominent 

skewness (as Beta4), it will resemble a non-
limited process, and its size-related pattern 
would go as the one of the normally distributed 
random numbers or the Lévy distribution (which 
is an extreme of an unlimited process). On the 
other hand, if it “progresses” towards a less 
skewed distribution, its size-related pattern 
would, then, go as those of the clearly limited 
processes, as the uniformly distributed random 
numbers. Therefore, the size-related properties 
of our Beta2 distribution help to explain the size-
related patterns of other distributions, as we 
present below. 
 
The set formed by AR1, AR2, Beta4, Lévy and 
NDRN has negative correlations of the maximum 
and of the mean a1ApEn values, while minimum 
values have non-significant correlations. The 
members of this set comprise distributions that 
have the major part of their data within some 
limits but, every now and then, a discrepant 
value emerges. Then, from the standpoint of 
a1ApEn, the phase-space seems less occupied 
when very discrepant values are found in the 
time-series (as it were a less dense set). As the 
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size of the series increases the chance of 
discrepant values to emerge also increases, thus 
the mean and the maximum tend to decrease 
with an increasing N. On the other hand, 
minimum a1ApEn values are not affected by this 
condition (thus, the zero correlation for the 
minimum values). 
 
The opposite holds true for the set comprising 
Beta1, Beta3 and UDRN. These processes are 
limited and, as their sizes increase, the phase-
space is gradually more occupied, resulting in 
a1ApEn values progressively higher. 
 

3.2 Second Step – Resampling Procedure 
 
The results just described indicate that the size-
related properties of a1ApEn are, likely, a 
relevant topic to address the temporal 
organization of a time-series and its putative 
underlying process. However, for one to obtain 
60 independent vectors with different sizes as we 
did in the preceding section is highly improbable 
in the real world (132,000 data points for each 
process were necessary for those analysis). 
 
Therefore, we adopt another approach, one that 
could be feasible for empirical data analysis. 
From a single series of 2,000 points for each 
process, we conducted a resampling procedure. 
The resampling procedure consisted of selecting 
an initial point at random and, then, extract a 
vector of N-1 consecutive points from that initial 
one. This was done 30 times for each size N 
(100, 200, 400, 500 and 1,000), and so, 1,500 
random sub-vectors of different sizes were 
created from the 2,000-points original one.  
 
Minimum, mean and maximum values of a1ApEn 
for the 30 vectors of each size were obtained and 
we computed the correlation with log10(N), as in 
the previous section. Table 4 shows the symbolic 
pattern for this resampling procedure. 
 
Basically, the same groupings are obtained. A 
noticeable change occurred for the 
autoregressive model of 1st order, that, now, 
resembles the Beta2 pattern from the 60 
independent samples. 
 
Anyway, it is still clear that one can use the size-
related properties of a1ApEn in a resampling 
procedure to distinguish among different 
processes. Maps and limited random processes 
contrast each other by the size-related behavior 
of maximum values, and unlimited random 
processes present a clear diverse pattern, 
essentially due to negative correlations. 

Table 4. Symbolic representation of the 
correlation of the resampled prototypic 

processes for the indicators (maximum, mean 
and minimum)  

 
Process Maximum Mean Minimum 
Beta2 0 0 + 
Henon 0 + + 
L3.6 0 + + 
L3.68 0 + + 
L3.9 0 + + 
L3.99 0 + + 
AR1 0 0 0 
AR2 0 - 0 
Beta4 - - 0 
Lévy - - 0 
NDRN - - 0 
Beta1 + + + 
Beta3 + + + 
UDRN + + + 

+: significant positive; -: significant negative;  
0: non-significant correlation 

 

3.3 Third Step – Empirical Data Analysis 
 
In order to test the real application of the size-
related properties of the a1ApEn measure, we 
investigated two types of data: heart rate 
dynamics and solar wind. 
 
3.3.1 Heart rate dynamics  
 
Electrocardiographic records (ECG) were 
obtained from seven resting individuals for 30 
minutes using superficial electrodes. Table 5 
gives a descriptive summary of the volunteers. 
From each 30 minutes recording, the first five 
were discarded at once. The analysis comprises 
the remaining 25 minutes of data from each 
subject.  
 

Table 5. Volunteers’ descriptive summary 
 
Subject Gender Age  

(years) 
Mean  
HR (bpm) 

Size  
of the  
<R-R> 
vector 

1 F 38 54 1,322 
2 F 22 69 1,749 
3 M 32 55 1,289 
4 M 32 52 1,288 
5 M 23 56 1,372 
6 M 36 74 1,990 
7 F 22 76 1,967 

 
From the ECG recording of a given individual, a 
vector of sequential inter-beats intervals (R-R 
interval) was obtained (the total size of the 
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vectors changes among the individuals due to 
different heart rates) – Fig. 3 illustrates one of 
these series. Then, the same resampling 
procedure adopted in step two was undertaken. 
The symbolic patterns obtained are shown in 
Table 6, and we grouped the individuals 
accordingly to these patterns.  
 
We can recognize that four individuals have 
similar patterns, corresponding to the group of 
the unlimited random processes as those found 
in Table 4. Two individuals (#2 and #7) are 
identical twin sisters that were subjected to 
corrective heart surgery in their early childhood 
and they have a low-grade mitral valve prolapse. 
Interestingly, the size-related properties of 
a1ApEn have grouped them separately from the 
other volunteers. Finally, individual #5 falls in 
another subset that do not correspond to any 
pattern of the processes studied here. This 
subject has no phenotypic particularity that could 
explain his results. Nevertheless, it is relevant to 
note that the a1ApEn size-related pattern of 
heart rate dynamics generally resembles the 

unlimited random processes, and seems to 
detect some particularities of individuals.  
 
3.3.2 Solar wind  
 
Data of the magnetic field and the               
plasma temperature from solar wind were 
obtained directly from NASA 
(omniweb.gsfc.nasa.gov/form/dx1.html). Few 
points were deleted due to an apparent 
saturation of the magnetic field sensors 
(measurements above 999.9 nT). Each time-
series was partitioned in three vectors related to 
the solar spots cycle: the 23rd increasing phase 
(from May 01 1996 to December 31 2002); the 
23rd decreasing phase (from January 01 2003 to 
January 03 2008); and the 24th increasing phase 
(from January 04 2008 to February 28 2014). 
Fig. 4 shows the data and Table 7 presents the 
results of the analysis as symbolic patterns. 
There are few cycles to analyze, so the results 
are more to appreciate an application of the tool 
and not for a full evaluation of the phenomenon 
itself.  

 

 
 

Fig. 3. Example of a heart rate series  
Cardiac frequency in bpm, data from subject 4. Histogram of data distribution in the inset 

 
Table 6. Symbolic representation of the correlation  between vector size and a1ApEn indicators 

for the <R-R> data of the seven experimental indivi duals 
 

Subject Maximum Mean Minimum Process alike 
1 - - 0  

Beta4/Lévy 3 - - 0 
4 - - 0 
6 - - 0 
5 - - + none 
2 0 0 0 AR1 / Beta2 
7 - 0 0 

Symbols are the same as in Tables 3 and 4 
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Table 7.  Symbolic representation of the correlation between vector size and a1ApEn indicators 
for the solar wind data. MF: magnetic field; PT: pl asma temperature 

 
Variable Cycle   Maximum Mean Minimum Process alike  
MF  23rd increasing - - 0 Beta4/Lévy 

23rd decreasing 0 - - none 
24th increasing - - 0 Beta4/Lévy 

 
PT 

23rd increasing - - + none 
23rd decreasing - - 0 Beta4/Lévy 
24th increasing - - 0 Beta4/Lévy 

Symbols are the same as in Tables 3 and 4 
 

 
 

Fig. 4.  Solar wind data. The whole series was 
partitioned in three sequential sub-series 

(grey-black-grey) accordingly to the cycle and 
phase  

(A) Magnetic field [nT]; (B) Plasma temperature [K]. 
Data from NASA 

(http://omniweb.gsfc.nasa.gov/form/dx1.html). 
 
To ascribe a degree of organization for a given 
time-series is an ever-challenging task. In some 
specific cases, it is quite simple, indeed. 
However, in a vast majority, there seems to be a 
great number of ways to give a quantitative 
estimation to the behavior of the series, but these 
estimators are not necessarily concordant one 
each other. In addition, a single value of a 
measure may be misleading for a more deep 
identification of primary processes that forge the 
data under analysis. In this sense, the present 
study shows the importance of the size-related 

properties of the estimator a1ApEn to a most 
comprehensive characterization of the 
organization of time-series.  
 
Information entropy estimators have no a priori 
rule for their scaling properties. Shannon’s 
uncertainty measure is extensive in relation to 
the size of the “alphabet” originating the 
message, but not in relation to the size of the 
data [16]. Approximate Entropies are expected to 
grow logarithmically with size, at least from 
Rukhin analysis [7]. From a different perspective, 
Costa et al. constructed vectors of decreasing 
sizes and increasing grainy from an original one, 
and employed Sample Entropy [17], from the 
ApEn family, as a measure to address heart rate 
variability and other biological processes [18,19]. 
However, due to the concomitant change in          
size and grainy, it is not possible to discern 
scaling properties of the measure in these 
reports. 
 
Here we studied how three values (minimum, 
mean and maximum) of a1ApEn are related to 
the size of the series under analysis. We call 
these values as “indicators”. We employed time-
series created in machina from some specific 
generating processes and obtained the 
correlations of the indicators in relation to the 
logarithm of the size.  
 
The correlation can be positive, negative or zero 
(i.e., non-significant) for each indicator. This 
creates a pattern and we show that different 
generating processes present different patterns 
of correlations. Moreover, for similar generating 
processes, the emerging pattern is the same.  
 
Therefore, independently of a single plain value 
of the estimator, and independently of the values 
of the correlations, the patterns identify the 
processes. In other words, we use patterns of 
correlations to identify sets of processes and 
plain values to locate the level of organization of 
the data within a given set. To our knowledge, 
this is the first time an approach like this is 
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employed with an information measure. This is 
the main point of the present study. 
 
Despite the fact that a1ApEn has consistency 
[14], a single a1ApEn value might not be enough 
to explore the underlying process that generates 
a time-series. This is also true for other 
information measures, but the issue is seldom 
put forward (see, for example, [9,19]).  
 
In the realm of empirical time-series, one has 
often to face the problem of having vectors of 
very different sizes. So, what one should do? To 
discard part of the data to have all vectors of the 
same size in order to make comparisons reliable 
seems a not quite cunning procedure (cf. [9] in 
Introduction), since data are not easily acquired 
most of the time. A useful procedure, sometimes 
employed, is to fix a “small N” and to obtain 
multiple values of the estimator along the series 
by a moving window ([20–22]). The present study 
offers an alternative and complementary 
approach that adds new information to the 
analysis, without discarding data. 
 
Let us show some practical examples. Table 8 
contains mean values of a1ApEn computed for N 
= 200. Clearly, the logistic map with control 
parameter µ = 3.6 is recognized as “less 
complex” than the one with µ = 3.99. This is a fair 
conclusion, but it says nothing more than                
this. However, when we take the pattern of 
correlations into account, a much more 
interesting picture emerges: the same process 
might originate these two time-series (obviously, 
here, we know that this is the case, indeed).  
 
Consider the plain values of a1ApEn of the heart 
rate data (Table 8). It is tempting to classify them 
within the range of the deterministic maps set. 
This would incite heated debates regarding the 
origin of such a deterministic process underlying 
heart rate control ([23–27]). On the other hand, 
when we exam the pattern of the size-related 
behavior of a1ApEn for these time-series, we see 
that these empirical data resemble unlimited 
random processes. A similar conclusion is put 
forward by Lake [28], who concludes that                   
the Gaussianity of heart rate complexity is 
associated with adequate physiological 
responses. The reasons for that are beyond the 
scope of the present study. 
 
An analogous argument occurs regarding the 
interpretation of solar wind data, with some 
advocating a deterministic origin of the process 
that generates variability [29–31] while others 
consider it as a stochastic process [32–35]. From 

the values in Table 8, one would consider the 
process as belonging to the deterministic set. On 
the other hand, as Table 7 shows, the patterns 
detected belong to unlimited random processes 
and the size-related behavior of a1ApEn strongly 
suggests that the process is from a stochastic 
nature. Once again, it is not our purpose to take 
one side in the debate. Instead, our focus is to 
demonstrate the usefulness of the present 
approach and its potential to unveil additional 
information even in commonly studied 
processes. 
 

Table 8. Mean a1ApEn values for the 
resampling procedure with N = 200 

 

 Data source a1ApEn 
  N = 200 
in machina 
generated 
processes 

Beta2 0.381 
  
Henon 0.325 
L3.6 0.147 
L3.68 0.232 
L3.9 0.313 
L3.99 0.382 
  
AR1 0.340 
AR2 0.335 
Beta4 0.246 
Lévy 0.077 
NDRN 0.344 

 Beta1 0.669 
Beta3 0.729 
UDRN 0.536 

<R-R> interval 1 0.298 
2 0.201 
3 0.233 
4 0.288 
5 0.276 
6 0.171 
7 0.197 

Solar wind MF(23rd inc) 0.254 
MF(23rd dec ) 0.261 
MF(24th inc) 0.283 

 PT(23rd inc) 0.260 
PT(23rd dec) 0.283 
PT(24th inc) 0.253 

 
4. CONCLUSION  
 
The combination of plain values of a1ApEn and 
the pattern of the correlations of its size-related 
properties are highly informative in terms of the 
identification of the underlying process that 
generates a given time-series. 
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APPENDIX 
 

SUPPORTING INFORMATION - CODE FOR COMPUTING TOLERAN CES 
 
function [ro,rn,GG] = tolerances_a1(x,LL) 
%Computes tolerances (absolute and relative) covering 
%the whole interval from 0% to 100% of equality among the values in the 
%time series. 
% 
%Call: 
%[r_orig , r_norm] = tolerances_a1(x , grain_level); 
% 
%Input 
%x = time series (vector with length = N) 
% 
%grain_level = a value between 0 and 1 (exclusive) that allows the user to 
%set a level to generate a "coarse grainy" warning (without halting the 
%computations) - default = 0.9 
% 
%%Output: 
%r_orig = tolerance vector 
% 
%r_norm = normalized tolerance vector 
% 
%grainy of the series - the finest the grainy, the more diverse are 
%the values in the data (more number of states). 
%The maximum value GRAIN may attain is (N-1)/N, 
%corresponding to a binary series (and a coarse grainy). The minumum value is 
%1/N, corresponding to a fine grainy (and, in such a case, all the elements 
%of the series are different from each other). 
 
%Checking the grainy level input 
if nargin == 1 
    LL = 0.9; 
else 
    if LL >=1 | LL <= 0 
        LL = 0.9; 
    end 
end 
 
Tam = length(x); 
 
%Deltas in the time series  
z = sort(x); 
zz=z; 
z(Tam)=[]; 
zz(1)=[]; 
%delta vector 
D = zz-z; 
 
%Maximum distance between values in the time series 
Dmax = sum(D); 
 
%Preparing for next steps 
D = sort(D); 
 
%Finding zeros (if there are equal values in the time series) 
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a = find(D == 0); 
 
%deltas' base 
Da = D; 
 
%extracting the zeros 
Da(a) = []; 
 
%Size of the non-zero elements 
CDelta = length(Da); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
%Grainy 
%Note: the time-series was sorted so elements of equal values are located 
%next to each other, generating deltas = 0. 
%The size of the non-zeros deltas (CDelta above) is, therefore, the number 
%of non-equal elements in the series minus one (because we need a pair of 
%values to generate one delta). The greater the size of CDelta, the more 
%grainy the series is. 
%Thus, the grainy is defined as a ratio between the size of the equal  
%elements and the size of the series. The closer such a ratio is to 1, the 
%less grainy the series is (i.e., coarse grain) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
 
gg = (Tam - CDelta)/Tam; 
 
%if gg == (Tam - 1)/Tam 
    %This is the highest value of gg in a series of size Tam 
%     error('Time series identified as binary. Use adequate tools for analysis') 
      
 %    elseif gg >= LL*((Tam - 1)/Tam) 
      
 %    Grainy = gg 
 %    Number_of_states = CDelta 
      
 %    warning('Coarse grain detected. Be careful with analysis/interpretation') 
%end 
     
GG = [gg CDelta]; 
 
%Partitioning for the tolerance vector 
 
Dmin = min(Da); 
Amplitude = Dmax - Dmin; 
 
%Preparing, once again, the delta vector to construct the tolerance vector 
a = find(D == 0); 
Da = D; 
Da(a) = []; 
tamanho = length(Da); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
%   Absolute Tolerance Vector 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%The contruction of the tolerance vector will depend on the size of the 
%delta vector 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%% 
if tamanho <= 300 
    %The first value of the tolerance vector is zero 
    ro(1) = 0; 
    for nn = 2:tamanho 
        ro(nn,1) = sum(Da(1:nn-1)); 
    end 
    % Complete Original Tolerance Vector 
    ro(tamanho+1,1) = Dmax; 
     
else 
    %For time series with more than 300 delta values, the first 50 deltas 
    %are employed directly. The rest of the tolerance vector is constructed 
    %using fractions (e.g., 0.1 etc.) of the total amplitude. 
    for nn = 1:50 
        r1(nn) = sum(Da(1:nn)); 
    end 
     
    ref2 = sum(Da(1:51)); 
    ref1 = ref2/Amplitude; 
     
    if ref1 <= 0.02 
        pontos = 10*(1 + ceil((5-(100*ref1)))); 
        p5 = 0.05*Amplitude; 
        p35 = 0.35*Amplitude; 
        r3 = (ref2 : ((p5-ref2)/pontos) : p5); 
        r4 = (p5 : ((p35-p5)/200) : p35); 
        r5 = (p35 : ((Dmax-p35)/100) : Dmax); 
        r4(1) = []; 
        r5(1) = []; 
        r2 = [r3 r4 r5]; 
    elseif ref1 > 0.02 & ref1 < 0.1 
        pontos = 10*(1 + ceil((11-(100*ref1)))); 
        p11 = 0.11*Amplitude; 
        p35 = .35*Amplitude; 
        r3 = (ref2 : ((p11-ref2)/pontos) : p11); 
        r4 = (p11 : ((p35-p11)/150) : p35); 
        r5 = (p35 : ((Dmax-p35)/100) : Dmax); 
        r4(1) = []; 
        r5(1) = []; 
        r2 = [r3 r4 r5]; 
    elseif ref1 >= 0.1 & ref1 <= 0.2 
        p35 = .35*Amplitude; 
        r3 = (ref2 : ((p35-ref2)/150) : p50); 
        r4 = (p35 : ((Dmax-p35)/100) : Dmax); 
        r4(1) = []; 
        r2 = [r3 r4]; 
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    elseif ref1 > 0.2 & ref1 <= 0.35 
        p50 = .5*Amplitude; 
        r3 = (ref2 : ((p50-ref2)/150) : p50); 
        r4 = (p50 : ((Dmax-p50)/50) : Dmax); 
        r4(1) = []; 
        r2 = [r3 r4]; 
    elseif ref1 > 0.35 & ref1 <= 0.5 
        r2 = (ref2 : ((Dmax-ref2)/100) : Dmax); 
    elseif ref1 > 0.5 
        r2 = (ref2 : ((Dmax-ref2)/50) : Dmax); 
    end 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% 
    % Complete Original Tolerance Vector - note the first element is zero 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% 
    ro = [0 r1 r2]'; 
 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
% Relative Tolerances 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
rn = ro./Dmax; 
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