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Abstract: In this investigation, we aim to investigate the novel exact solutions of nonlinear partial differential
equations (NLPDEs) arising in electrical engineering via the -expansion method. New acquired solutions are
kink, particular kink, bright, dark, periodic combined-dark bright and combined-dark singular solitons, and
hyperbolic functions solutions. The achieved distinct types of solitons solutions contain critical applications
in engineering and physics. Numerous novel structures (3D, contour, and density plots) are also designed
by taking the appropriate values of involved parameters. These solutions express the wave show of the
governing models, actually.
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1. Introduction

C urrent nonlinear science, mathematical physics, and engineering phenomena are associated with
NLPDEs. These are much meaningful in describing everyday difficulties arising in nonlinear science

and nature, such as computer science, waves, biology, geology, birefringent fibers, population ecology, fluid
dynamics, solid-state physics, wave propagation, and many more. Numerous mathematical procedures
have been efficiently implemented to investigate the important results of NLPDEs [1–23]. Utilizing these
procedures, numerous new features of wave performance of these NLPDEs have been found. The results
have much influence on diverse experimental phenomena such as long-distance high-speed transmission lines,
optics, and optics as temporal or spatial optical solitons and optical fibers.

The purpose of this paper is to give the (Ψ − Φ)-expansion method [24] and the Hamiltonian system
[25,26] to determine ESs for a discrete non-linear transmission line model [27–29]. The proposed equation
is also known via the MZK model that assistances in defining the device of various characteristics [30–33]
and describes the evolution of weakly non-linear ion-acoustic waves in a plasma involving hot iso-thermal
electrons and cold-ions in the existence of a uniform-magnetic field in the x-direction. NLPDEs have been
deliberate as essential in numerous applications. The proposed equation has been implemented to define
natural, mechanical, multiple physical phenomena, and engineering. That performs because it contains
beforehand unknown multi-variable tasks and their derivatives, such as the electrical transmission lines, which
are proposed as a good standard of systems for examining non-linear excitations, behave inside non-linear
media, as nominated in Figure 1.

The nonlinear electrical transmission line is proposed based on periodically loading with var-actors or
organizing inductors and var-actors in a 1D lattice. The nonlinear network with some couple nonlinear LC with
a dispersive transmission line has consisted of this equation. Numerous identical dispersive lines are coupled
with capacitance Cs at each node, as denoted in Figure 1, where a conductor L and a nonlinear capacitor of
capacitance C

(
vp,q
)

are in each line in the shunt branch. The scientific equation which denotes the discrete
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nonlinear transmission is given via the MZK equation that is defined through Duan when he applied the
Kirchhoff law on the equation, which as

∂2Rp,q

∂S2 =
1
L
(
Vp+1,q − 2Vp,q + Vp−1,q

)
+ Cs

∂2

∂S2

(
Vp,q+1 − 2Vp,q + Vp,q−1

)
, (1)

where Vp,q = Vp,q (S) is the voltage so that the non-linear charge is find as

Rp,q = C0

(
Vp,q +

α1

2
V2

p,q +
α2

3
V3

p,q

)
, (2)

where α1,α2 are arbitrary constants. Substituting Eq. (2) into Eq. (1), we have

C0
∂2

∂S2

(
Vp,q +

α1

2
V2

p,q +
α2

3
V3

p,q

)
=

1
L
(
Vp+1,q − 2Vp,q + Vp+1,q

)
+ Cs

∂2

∂S2

(
Vp,q+1 − 2Vp,q + Vp,q−1

)
. (3)

Replacing Vp,q (S) = V (p, q, S), leads to

C0
∂2

∂S2

(
V +

α1

2
V2 +

α2

3
V3
)
=

1
L

∂2

∂p2

(
V +

1
12

∂2

∂p2

)
+ Cs

∂4

∂S2∂q2

(
V +

1
12

∂2V
∂q2

)
. (4)

Based on the reductive perturbation technique, Eq. (4) is reduced to the following model:

φt + f1 φφx + qφ2 φx + dφxxx + gφxyy = 0, (5)

where y =
√

γq, x =
√

γ(p − νsS), t =
√

γS, V(p, q, S) = γφ(x, y, t), ν2
s = 1

LC0
, f1 = −α1νs, q = −α2νs,

d = 1
24αα1Lνs

, g = α1
288L2νsC2

0
.

Figure 1. Linear representation of the nonlinear electrical transmission line.

2. Description of the (Ψ − Φ)-expansion method

Consider
P(h̄, h̄x, h̄x x, h̄t, h̄t t, h̄xt., .....) = 0, (6)

where is a polynomial in h̄ as well as its derivatives.
Firstly, use the traveling variable:

h̄ = h̄(x, t) = h̄ (χ), χ = p3(x − Vt), (7)

wherep3 and V are a constant to be determine later. Using (7) into (6), we get
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R(h̄, p3h̄
′
, p2

3h̄
′′
,−p3Vh̄

′
, p2

3V2h̄
′′
,−p2

3V2h̄
′′
, .....) = 0. (8)

Secondly, consider

h̄(χ) =
M

∑
i=0

SiΨi +
M

∑
i=1

TiΨi−1Φ, (9)

where Ψ = (Θ
′
/Θ) and Φ = (Ω

′
/Ω). Now Θ = Θ(χ) and Ω = Ω(χ) are represent as

Θ
′
(χ) = −Θ(χ) Ω(χ),

Ω
′
(χ) = 1 − Ω(χ)2,

where Θ(χ) = ±sech(χ), Ω(χ) = tanh(χ), Θ(χ) = ±csch(χ), Ω(χ) = coth(χ).
Thirdly, a polynomial in Ψor Φ accomplised plugging Eq. (9) into Eq. (8). Defining the constant values

of the corresponding power of Ψor Φ yields a system of equations, which might be defined to make Si and Ti.
After getting Si and Ti in (9), the answers of the studied model complete the intention of the answers of the
proposed model.

3. Mathematical analysis

Since x, y, t are independent transformation variables. Employing φ = φ (x, y, t) = φ (η) , where η =

k1x + k2y + k3t into equation (5), we have

6k3 φ + 3 f1k1 φ2 + 2qk1 φ3 + 6k1

(
dk2

1 + gk2
2

)
φ” = 0. (10)

According the studied technique which we discuss in §2, we find

h̄(χ) = S0Ψ0 + S1Ψ1 + T1Ψ0Φ = S0 +
T1

Ω
− (S1 + T1) Ω . (11)

Collecting the coefficient of Ψ and Φ and solving the resulting system, we get

Cluster I: Substituting k2 = ±
√

−24dqk2
1+ f 2

1
24gq , k3 = 1

6
f 2
1 k1
q , S0 = − f1

2q ,S1 = − f1
2q ,T1 = 0 in Eq. (11), we get

h̄1(x, y, t) = − f1

2q
+

f1

2q
× tanh(k1x + k2y + k3t),

and
h̄2(x, y, t) = − f1

2q
+

f1

2q
× coth(k1x + k2y + k3t).

Cluster II: Substituting k2 = ±
√

−24dqk2
1+ f 2

1
24gq , k3 = 1

6
f 2
1 k1
q , S0 = − f1

2q and S1 = f1
2q ,T1 = 0 in Eq. (11), we get

h̄3(x, y, t) = − f1

2q
− f1

2q
× tanh(k1x + k2y + k3t),

and
h̄4(x, y, t) = − f1

2q
− f1

2q
× coth(k1x + k2y + k3t).

Cluster III: Substituting k2 = ±
√

−96dqk2
1− f 2

1
96gq , k3 = 1

6
f 2
1 k1
q , S0 = − f1

2q and S1 = − f1
2q ,T1 = f1

4q in Eq. (11), we get

h̄5(x, y, t) = − f1

2q
+

f1

2q
× tanh(k1x + k2y + k3t) +

f1

4q

(
1

tanh(k1x + k2y + k3t)
− tanh(k1x + k2y + k3t)

)
,

and

h̄6(x, y, t) = − f1

2q
+

f1

2q
× coth(k1x + k2y + k3t) +

f1

4q

(
1

tanh(k1x + k2y + k3t)
− tanh(k1x + k2y + k3t)

)
.
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Cluster IV: Substituting k2 = ±
√

−24dqk2
1− f 2

1
24gq , k3 = 1

6
f 2
1 k1
q , S0 = − f1

2q and S1 = − f1
2q ,T1 = f1

2q in Eq. (11), we get

h̄7(x, y, t) = − f1

2q
+

f1

2q
× tanh(k1x + k2y + k3t) +

f1

4q

(
1

tanh(k1x + k2y + k3t)
− tanh(k1x + k2y + k3t)

)
,

and

h̄8(x, y, t) = − f1

2q
+

f1

2q
× coth(k1x + k2y + k3t) +

f1

4q

(
1

tanh(k1x + k2y + k3t)
− tanh(k1x + k2y + k3t)

)
.

4. Numerical simulations

In this study, we effectively construct novel solitons and hyperbolic and trigonometric function solutions
for the proposed model using the (Ψ − Φ)-expansion method. This technique is measured as the most recent
scheme in this field, which has not been utilized in these equations earlier. For physical analysis, 3-D, 2-D,
and contour plots of some of these solutions are comprised of suitable parameters. The obtained solutions
discover their application in communication to convey information because solitons can spread over long
distances without reduction and without changing their forms. We only included specific figures in this paper
to avoid overloading the document. All the developed results are novel and distinct from the reported results.
For graphical representation for the studied model, the physical behavior of h̄1(x, y, t) using the proper values
of parameters k1 = 2, f1 = −1, f2 = 1, y = 1, q = 2, d = 5, and g = 2 are shown in Figures 2, 3 and 4. The
physical behavior of h̄2(x, y, t) using the appropriate values of parameters k1 = 2, f1 = −1, f2 = 1, y = 1,
q = 2, d = 0.5 and g = 0.2 are shown in Figures 5, 6 and 7.

The physical behavior of h̄3(x, y, t) using the appropriate values of parameters k1 = 2, f1 = 20, f2 = 1,
y = 1, q = 2, d = 1 and g = 2 are shown in Figures 8, 9 and 10. The physical behavior of h̄6(x, y, t) using
the appropriate values of parameters k1 = 2, f1 = −0.5, f2 = 1, y = 1, q = 2, d = 1 and g = 2 are shown in
Figures 11, 12 and 13. The physical behavior of h̄7(x, y, t) using the appropriate values of parameters k1 = 2,
f1 = −0.5, f2 = 1, y = 1, q = 2, d = 5 and g = 2 are shown in Figures 14, 15 and 16.

Figure 2. 3D graph (Real, Imaginary and absolute value plot) of the solution h̄1 (x, y, t) with k1 = 2, f1 = −1,
f2 = 1, y = 1, q = 2, d = 5 and g = 2.

Figure 3. Contour graph (Real, Imaginary and absolute value plot) of the solution h̄1 (x, y, t) with k1 = 2,
f1 = −1, f2 = 1, y = 1, q = 2, d = 5 and g = 2.
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Figure 4. Density graph (Real, Imaginary and absolute value plot) of the solution h̄1 (x, y, t) with k1 = 2,
f1 = −1, f2 = 1, y = 1, q = 2, d = 5 and g = 2.

Figure 5. 3D graph (Real, Imaginary and absolute value plot) of the solution h̄2 (x, y, t) with k1 = 2, f1 = −1,
f2 = 1, y = 1, q = 2, d = 0.5 and g = 0.2.

Figure 6. Contour graph (Real, Imaginary and absolute value plot) of the solution h̄2 (x, y, t) with k1 = 2,
f1 = −1, f2 = 1, y = 1, q = 2, d = 0.5 and g = 0.2.

Figure 7. Density graph (Real, Imaginary and absolute value plot) of the solution h̄2 (x, y, t) with k1 = 2,
f1 = −1, f2 = 1, y = 1, q = 2, d = 0.5 and g = 0.2.
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Figure 8. 3D graph (Real, Imaginary and absolute value plot) of the solution h̄3 (x, y, t) with k1 = 2, f1 = 20,
f2 = 1, y = 1, q = 2, d = 1 and g = 2.

Figure 9. Contour graph (Real, Imaginary and absolute value plot) of the solution h̄3 (x, y, t) with k1 = 2,
f1 = 20, f2 = 1, y = 1, q = 2, d = 1 and g = 2.

Figure 10. Density graph (Real, Imaginary and absolute value plot) of the solution h̄3 (x, y, t) with k1 = 2,
f1 = 20, f2 = 1, y = 1, q = 2, d = 1 and g = 2.

Figure 11. 3D graph (Real, Imaginary and absolute value plot) of the solution h̄6 (x, y, t) with k1 = 2, f1 = −0.5,
f2 = 1, y = 1, q = 2, d = 1 and g = 2
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Figure 12. Contour graph (Real, Imaginary and absolute value plot) of the solution h̄6 (x, y, t) with k1 = 2,
f1 = −0.5, f2 = 1, y = 1, q = 2, d = 1 and g = 2.

Figure 13. Density graph (Real, Imaginary and absolute value plot) of the solution h̄6 (x, y, t) with k1 = 2,
f1 = −0.5, f2 = 1, y = 1, q = 2, d = 1 and g = 2.

Figure 14. 3D graph (Real, Imaginary and absolute value plot) of the solution h̄7 (x, y, t) with k1 = 2, f1 = −0.5,
f2 = 1, y = 1, q = 2, d = 5 and g = 2.

Figure 15. Contour graph (Real, Imaginary and absolute value plot) of the solution h̄7 (x, y, t) with k1 = 2,
f1 = −0.5, f2 = 1, y = 1, q = 2, d = 5 and g = 2.
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Figure 16. Density graph (Real, Imaginary and absolute value plot) of the solution h̄7 (x, y, t) with k1 = 2,
f1 = −0.5, f2 = 1, y = 1, q = 2, d = 5 and g = 2.

5. Conclusion

In this paper, we constructed new solitons solutions for the proposed model via the (Ψ − Φ)-expansion
method, in the form of kink, singular kink, bright, dark, mixed bright-dark solitons as well as hyperbolic,
rational and trigonometric functions solutions. By choosing the suitable values of parameters and to better
underst and the physical structures of the solutions, 3-d, contour and density graphs have been plotted. From
the acquired results and figures, it is observed that all solutions demonstrated wave behavior. Also, these
solutions yield traveling dark wave behaviors to the considered models, physically.
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