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Abstract: In this work, generalized Euler’s Φw-function of edge weighted graphs is defined which consists
of the sum of the Euler’s φ-function of the weight of edges of a graph and we denote it by Φw(G) and the
general form of Euler’s Φw-function of some standard edge weighted graphs is determined. Also, we define
the divisor sum Tkw -function Tkw(G) of the graph G, which is counting the sum of the sum of the positive
divisor σk-function for the weighted of edges of a graph G. It is determined a relation between generalized
Euler’s Φw-function and generalized divisor sum Tkw -function of edge weighted graphs.
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1. Introduction and Preliminaries

T he Euler φ-function, which is also known as the indicator function or totient function where the
symbol φ(n) is introduced by Gauss, which counts the positive integers up to a given integer n that

are relatively prime to n. If n is a prime p, then φ (p) = p − 1 and generally,for any positive integer k,
φ
(

pk
)
= pk − pk−1 . Then, we have that for any positive integer n φ (n) = n

(
1 − 1

p1

) (
1 − 1

p2

)
. . .
(

1 − 1
pt

)
where n = p1

a1 p2
a2 . . . pt

at [1,2].
The Möbius function [1] is denoted by µ(n) and defined as

µ(n) =


1, if n = 1,

(−1)t , if n is a product of distinct primes,

0, otherwise.

A function f is multiplicative if for all positive integers m, n such that m, n are co-primes, then f (mn) =
f (m) f (n). Both the Euler φ− function and the Möbius function are proved to be multiplicative [1].

The divisor sum T-function in number theory was first studied by Ramanujan, which is a number of
crucial congruences and identities were given by him; these are preserved separately in the article Ramanujan’s
lost notebook in [3]. The sum of the divisor σk-function is a related function to the divisor function, denoted
by σk(n) which is counting the sum of positive divisors of n to the power k, which was studied in [1]. If n

is a prime p, then σk(p) = pk + 1 and generally, σk(pa) = p(a+1)k−1
pk−1

for a positive integer a. Then we have

that, for any positive integer n, σk(n) = ∑
d|n

dk =
t

∏
i=1

p(ai+1)k−1
pk

i −1
, where n = pa1

1 pa2
2 . . . pat

t . The sum of the divisor

σk-function is multiplicative [1]. The generalized Euler’s Φ-function of a graph which is the summation of
the Euler’s ϕ-function of the degree of the vertices of a graph are defined by Salih and Ibrahim in [4] which
is denoted by Φ(G) and it determines the general form of generalized Euler’s Φ-function of some standard
graphs. Also, in [5] Salih and Ibrahim defined the generalized divisor sum Tk-function of a graph which is the
summation of σk-function of the degree of vertices of a graph and it is denoted by Tk(G) and it is determined
the general form of Tk-function of some standard graphs.
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Wiener in [6] defined the weight w(e) of an edge e = u, v as w(e) = deg(u) + deg(v) and the edge degree
weight sum w(G) of G relative to this edge weighting is w(G) = ∑

e∈E(G)
w(e). Wiener also defined the weighted

of a graph G which is the sum of square of the degree of vertex, thus

w(G) = ∑
e∈E(G)

w(e) = ∑
u∈V(G)

(deg(u))2.

For all other standard terminology and notations, see [7,8].
It is attempts, in this paper, to utilize two number theory functions called the Euler’s φ-function and

the divisor sum σk-function into graph theory. Suppose that G is a simple connected undirected graph. The
generalized Euler Φw and the divisor sum Tkw functions of any graph are defined. It is proved that for all
e ∈ E(G), w(e) ≥ 1 such that w(e) with at most 8 distinct prime factors, we have that Φw(G) > 1

6 ∑
e∈E(G)

w(e).

A relationship between the Möbius function and the Euler’s φ− function is also shown.

2. Generalized Euler’s Φ−function and divisor sum Tk- function of edge weighted graphs

This section shows that for all e ∈ (G), w(e) ≥ 1 such that w(e) with at most 8 distinct prime factors, we
have obtained that Φ(W(G)) > 1

6 ∑
u,v∈V(G)

d(u, v). A relationship between Möbius function and Euler’s φ−

function is also shown. Also, some new results of finding generalized divisor Tk-function of edge weighted
graph are given as well as giving a relationship between Euler’s φ-function and generalized divisor sum Tk-
function of edge weighted graphs, where k = 1.

Definition 1. Let G be a simple connected undirected graph. The generalized Φw-function is defined as the
sum of Euler’s ϕ-function of weight of edges e of a graph G which is denoted by Φw(G). That ia Φw(G) =

∑
e∈E(G)

φ(w(e)) or Φw(G) =
q
∑

i=1
φ(w(ei)) where q is size of a graph G.

Definition 2. Let G be a simple connected graph. The generalized Tkw -function is defined as the sum of divisor
σk-function of weighted edges e of a graph G which is denoted by Tkw(G). That is Tkw(G) = ∑

e∈E(G)
σk(w(e)).

Theorem 1. If G is regular graph of degree r, then w(e) = 2r for each e = u, v in E(G) and we have

Φw(G) = qφ(2r) =

{
2qφ(r), if r is even,

qφ(r), if r is odd.

Proof. By Definition 1, w(e) = 2r and we have

Φw(G) = ∑
e∈E(G)

φ(w(e)) = ∑
u,v∈V(G)

φ(deg(u) + deg(v)) = ∑
u∈V(G)

φ(2deg(u)) .

Since G is regular, so deg(u) = deg(v) = r, hence

Φw(G) = ∑
u∈V(G)

φ(2deg(u)) = ∑
deg(u)=deg(v)=r

φ(2r) = qφ(2r) =

{
2qφ(r), if r is even,

qφ(r), if r is odd.

Theorem 2. If G is regular graph of degree r, for each e = u, v in E(G), then we have

Tkw(G) = qσk(2r).

Proof. Similar to the proof of Theorem 1 and by using Definition 2, the result follows.
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Theorem 3. For any graph G with deg(u) ≥ 2 and p ≥ q, we have

Φw(G) = ∑
e∈E(G)

φ(w(e)) = ∑
u∈V(G)

φ((deg(u))2).

Proof. Since w(e) = deg(u) + deg(v) for edge e = u, v in E(G). Thus, each vertex u in V(G) contributes the
value deg(u) to the weights of deg(u) edges and thus contributes deg(u) to w(e). Hence,

Φw(G) = ∑
e∈E(G)

φ(w(e)) = ∑
u∈V(G)

φ((deg(u))2).

Theorem 4. For any graph G with deg(u) ≥ 2 and p ≥ q, we have

Tkw(G) = ∑
e∈E(G)

σk(w(e)) = ∑
u∈V(G)

σk((deg(u))2).

Proof. Similar to the proof of Theorem 3 and by using Definition 2, the result follows.

Lemma 1. Let G be a connected graph, then for all u, v ∈ V(G), we have

∑
d|w(e)

e∈E(G)

Φd(e) = ∑
e∈E(G)

∑
d|w(e)

φ(d) = ∑
e∈E(G)

w(e),

where the divisor of the weight of edges is denoted by d in a graph G.

Proof. Let, for e ∈ E(G), F(w(e)) = φ(d1) + φ(d2) + · · · + φ(dt), where dt is any divisor of (w(e)) for i =

1, 2, . . . , t and w(e) = pa1
1 pa2

2 . . . pat
t . Then, with the use of the telescoping series, we have F(pk) = 1+ (p − 1) +

(p2 − p) + (p3 − p2) + · · ·+ (pk − pk−1) = pk, where (1, p, p2, p3, . . . ) are counted as divisors of pk. As F is
multiplicative, so

∑
e∈E(G)

F(w(e)) = ∑
w(e)=p

a1
1 pa2

2 ...pat
t

F
(

pa1
1 pa2

2 . . . pat
t
)

= ∑
w(e)=p

a1
1 pa2

2 ...pat
t

(
F
(

pa1
1
)
∗ F
(

pa2
2
)
∗ · · · ∗ F

(
pat

t
))

= ∑
w(e)=p

a1
1 pa2

2 ...pat
t

(
pa1

1 ∗ pa2
2 ∗ · · · ∗ pat

t
)
= ∑

e∈E(G)

w(e) .

Lemma 2. For all e ∈ E(G) and w(e) ≥ 1, we have

Φw(G) = ∑
e∈E(G)

φ(w(e)) = ∑
e∈E(G)

w(e) ∗ ∏
p|w(e)

(
1 − 1

p

) ,

where w(e) = pa1
1 pa2

2 . . . pat
t .

Proof. Let e ∈ E(G),
(
w(e) = pa1

1 pa2
2 . . . pat

t
)
≥ 1 and since φ is multiplicative, thus

Φw(G) = ∑
e∈E(G)

φ(w(e)) = ∑
w(e)=p

a1
1 pa2

2 ...pat
t

φ
(

pa1
1 pa2

2 . . . pat
t
)

= ∑
w(e)=p

a1
1 pa2

2 ...pat
t

(
φ
(

pa1
1
)
∗ φ
(

pa2
2
)

. . . φ
(

pat
t
))

= ∑
w(e)=p

a1
1 pa2

2 ...pat
t

((
pa1

1 − pa1−1
1

)
∗
(

pa2
2 − pa2−1

2

)
∗ · · · ∗

(
pat

t − pat−1
t

))
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= ∑
w(e)=p

a1
1 pa2

2 ...pat
t

(
pa1

1

(
1 − 1

p1

)
∗ pa2

2

(
1 − 1

p2

)
∗ · · · ∗ pat

t

(
1 − 1

pt

))

= ∑
w(e)=p

a1
1 pa2

2 ...pat
t

((
pa1

1 ∗ pa2
2 ∗ · · · ∗ pat

t
) (

1 − 1
p1

)(
1 − 1

p2

)(
1 − 1

pt

))

= ∑
e∈E(G)

w(e)=p
a1
1 pa2

2 ...pat
t

(
w(e) ∗

(
1 − 1

p1

)(
1 − 1

p2

)(
1 − 1

pt

))

= ∑
e∈E(G)

w(e) ∗ ∏
p|w(e)

(
1 − 1

p

) .

Lemma 3. For all e ∈ E(G) and w(e) ≥ 1, we have

Φw(G) = ∑
e∈E(G)

φ(w(e)) = ∑
e∈E(G)

 ∑
d|w(e)

(
µ(d) ∗ w(e)

d

) ,

where µ is Möbius function.

Proof. Let e ∈ E(G), w(e) ≥ 1. Then by using Lemma 2, we have

Φ(G) = ∑
e∈E(G)

φ(d(u, v)) = ∑
e∈E(G)

d(u, v) ∗ ∏
p|d(u,v)

(
1 − 1

p

)
= ∑

e∈E(G)

w(e)=p
a1
1 pa2

2 ...pat
t

(
d(u, v) ∗

(
1 − 1

p1

)(
1 − 1

p2

)(
1 − 1

pt

))

= ∑
e∈E(G)

w(e)=p
a1
1 pa2

2 ...pat
t

(
d(u, v) ∗

(
1 − ∑

i

1
pi

+ ∑
i ̸=j

1
pi pj

+ · · ·+ (−1)t 1
p1 p2 . . . pt

))
.

Let
(

1 − ∑i
1
pi
+ ∑i ̸=j

1
pi pj

+ · · ·+ (−1)t 1
p1 p2 ...pt

)
= A, then each term in A is ±1

d , where d is 1 in the

leading (first) term or a product of distinct primes. The signs before each term are being alternated by (−1)k

according to the primes p′s which is precisely done by the Möbius function. Hence,

Φw(G) = ∑
e∈E(G)

φ(w(e)) = ∑
e∈E(G)

w(e) ∑
d|w(e)

µ(d)
d

 = ∑
e∈E(G)

 ∑
d|w(e)

µ(d) ∗ w(e)
d

 .

Theorem 5. For all e ∈ E(G) and w(e) ≥ 1 such that w(e) with at most 8 distinct prime factors,

Φw(G) = ∑
e∈E(G)

φ(w(e)) >
1
6 ∑

e∈E(G)

w(e).

Proof. First of all, a result for w(e) with 8 distinct prime factors will be shown. Let w(e) = p1
a1 p2

a2 . . . pt
at ,

then, by using Lemma 2 for the generalized Euler Φ-function, we obtain

Φw(G) = ∑
e∈E(G)

φ(w(e))

= ∑
e∈E(G)

w(e) ∗ ∏
p|w(e)

(
1 − 1

p

)
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= ∑
e∈E(G)

w(e)=p
a1
1 pa2

2 ...pat
t

(
p1

a1 p2
a2 . . . pt

at ∗
(

1 − 1
p1

)(
1 − 1

p2

)(
1 − 1

pt

))
.

As of the 8 distinct prime factors of p1, p2, p3, p4, p5, p6, p7, p8, we realize that p1 ≥ 2, p2 ≥ 3, p3 ≥ 5, p4 ≥
7, p5 ≥ 11, p6 ≥ 13, p7 ≥ 17, p8 ≥ 19, since the first 8 primes are distinct. Thus,

1
p1

≤ 1
2

,
1
p2

≤ 1
3

,
1
p3

≤ 1
5

,
1
p4

≤ 1
7

,
1
p5

≤ 1
11

,
1
p6

≤ 1
13

,
1
p7

≤ 1
17

,
1
p8

≤ 1
19

, (1)

so
(

1 − 1
2

)
≥
(

1 − 1
2

) (
1 − 1

3

)
. . .
(

1 − 1
19

)
≥
(

1 − 1
19

)
. We can now substitute (1) into the equation Φw(G) =

∑e∈E(G) φ(w(e)), we obtain that

Φw(G) = ∑
e∈E(G)

φ(w(e)) ≥ ∑
e∈E(G)

(w(e)) ∗
(

1 − 1
2

)(
1 − 1

3

)
. . .
(

1 − 1
19

)

= ∑
e∈E(G)

(w(e)) ∗
(

1
2
∗ 2

3
∗ 4

5
∗ 6

7
∗ 10

11
∗ 12

13
∗ 16

17
∗ 18

19

)
=

1658880
9699690 ∑

e∈E(G)

(w(e)) = 0.171 ∗ ∑
e∈E(G)

(w(e)).

However,
1
6 ∑

e∈E(G)

(w(e)) ≈ 0.167 ∗ ∑
e∈E(G)

(w(e)).

This means that
Φw(G) = ∑

e∈E(G)

φ(w(e)) >
1
6 ∑

e∈E(G)

w(e).

Each of the following factors
(

1 − 1
p1

) (
1 − 1

p2

)
. . .
(

1 − 1
p8

)
is less than one because two is the smallest

prime. Hence, each term in the bracket will not be more than one, it means that once the product is multiplied
by it, its value will decline. Thus, if e ∈ E(G), w(e) has no more than 8 different prime factors. The value of the
generalized Euler Φw-function of w(e), for all e ∈ E(G) will be smaller than the value for its generalized Euler
Φw-function, with at most 8 different prime factors. Therefore, for all e ∈ E(G), such that w(e) with at most 8
different prime factors

Φw(G) = ∑
e∈E(G)

φ(w(e)) >
1
6 ∑

e∈E(G)

w(e).

Theorem 6. For all e ∈ E(G), we have

∑
e∈E(G)

w(e)
φ(w(e))

= ∑
e∈E(G)

∑
d|w(e)

µ2(d)
φ(d)

.

Proof. From Lemma 2, we observe that for each e ∈ E(G) w(e) = p1
a1 p2

a2 . . . pt
at we have

φ(w(e)) = w(e) ∗ ∏
p|w(e)

(
1 − 1

p

)
= w(e) ∗

(
1 − 1

p1

)
∗
(

1 − 1
p2

)
∗ · · · ∗

(
1 − 1

pt

)

=
w(e) ∗ (p1 − 1) ∗ (p2 − 1) ∗ · · · ∗ (pt − 1)

p1 ∗ p2 ∗ · · · ∗ pt
.

Hence, for each e ∈ E(G), we have that

w(e)
φ(w(e))

=
w(e)

w(e)∗(p1−1)∗(p2−1)∗···∗(pt−1)
p1∗p2∗···∗pt

=
p1 ∗ p2 ∗ · · · ∗ pt

(p1 − 1) ∗ (p2 − 1) ∗ · · · ∗ (pt − 1)
.
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If we take summation over the vertices e ∈ E(G), thus

∑
e∈E(G)

w(e)
φ(w(e))

= ∑
pi |w(e)

p1 ∗ p2 ∗ · · · ∗ pt

(p1 − 1) ∗ (p2 − 1) ∗ · · · ∗ (pt − 1)
.

This is what we have acquired from the left hand side of the above identity directly. Hereafter we will
represent ∑

e∈E(G)

w(e)
φ(w(e)) by LHS in this proof.

Also, we will represent the right hand side by RHS of above identity. It is clear from definition of Möbius
function, where w(e) = p1 p2 . . . pt, µ(w(e)) = (−1)t and µ(w(e)) = 0 if w(e) has a square term. Therefore,
µ2(d) = 1 if d has no any square term and µ2(d) = 0 if d has a square term. Hence, we at most have w(e)
which is able to be factorized as the product of distinct primes or the product of distinct primes is also called
square-free. Hereafter in this proof, we will represent ds as a square-free. Hence,

∑
ds |w(e)

µ2(ds)

φ(ds)
= ∑

ds |w(e)

1
φ(ds)

.

As ds is square-free, therefore, each prime in the factorization of w(e) is utilized once. Hence, the
meaning of the above expression is that each of the value 1, (p1, p2, . . . , pt) , (p1 ∗ p2, p2 ∗ p3, . . . , pt−1 ∗
pt), (p1 ∗ p2 ∗ · · · ∗ pt) is taken by ds. Thus, the RHS becomes

∑
ds |w(e)

1
φ(ds)

=
1

φ(1)
+

1
φ(p1)

+ · · ·+ 1
φ(p1 ∗ p2)

+ · · ·+ 1
φ(p1 ∗ p2 ∗ . . . pt)

= 1 +
1

p1 − 1
+ · · ·+ 1

(p1 − 1) ∗ (p2 − 1)
+ · · ·+ 1

(p1 − 1) ∗ (p2 − 1) ∗ · · · ∗ (pt − 1)

=
((p1 − 1) ∗ · · · ∗ (pt − 1)) + ((p2 − 1) ∗ · · · ∗ (pt − 1)) + · · ·+ ((pt − 1) + · · ·+ 1)

∏t
i=1(pi − 1)

=
1 + (p1 − 1) + · · ·+ (pt − 1) + (p1 − 1) ∗ (p2 − 1) + · · ·+ (p1 − 1) ∗ (p2 − 1) ∗ · · · ∗ (pt − 1)

∏t
i=1(pi − 1)

=
φ(1) + φ(p1) + · · ·+ φ(pt) + φ(p1) ∗ φ(p2) + · · ·+ φ(p1) ∗ φ(p2) ∗ · · · ∗ φ(pt)

∏t
i=1(pi − 1)

.

Since φ is multiplicative because all primes are co-primes. Therefore, the RHS will be

∑
ds |w(e)

1
φ(ds)

=
φ(1) + φ(p1) + · · ·+ φ(pt) + φ(p1 ∗ p2) + · · ·+ φ(p1 ∗ p2 ∗ · · · ∗ pt)

∏t
i=1(pi − 1)

=
∑dN |(p1∗p2∗···∗pt) φ(dN)

∏t
i=1(pi − 1)

.

Therefore, for each u, v ∈ V(G) we have, from Lemma 2,

∑dN |(p1∗p2∗···∗pt) φ(dN)

∏t
i=1(pi − 1)

=
w(e)

∏t
i=1(pi − 1)

.

By taking summation over all vertices e ∈ E(G), we have

∑
e∈E(G)

∑
ds |w(e)

1
φ(ds)

= ∑
e∈E(G),
pi |w(e)

w(e)
∏t

i=1(pi − 1)
= ∑

pi |w(e)

(p1 ∗ p2 ∗ · · · ∗ pt)

∏t
i=1(pi − 1)

,

when w(e) = (p1 ∗ p2 ∗ · · · ∗ pt), which is equal to the LHS. Hence,

∑
e∈E(G)

w(e)
φ(w(e))

= ∑
e∈E(G)

∑
d|w(e)

µ2(d)
φ(d)

.
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The following theorem is about an important properties of generalized the divisor Tkw -function for the
divisor sum of the wiener index of a graph.

Theorem 7. For each e ∈ E(G) and w(e) = pa1
1 pa2

2 . . . pat
t ≥ 1, we have

Tkw(G) = ∑
e∈E(G)

σk(w(e)) = ∑
e∈E(G)

 ∏
pi |w(e)

(
ai

∑
j=0

pjk
i

) = ∑
e∈E(G)

 t

∏
i=1,pi |w(e)

p(ai+1)k
i − 1

pk
i − 1

 .

Proof. Let e ∈ E(G), (w(e) = pa1
1 pa2

2 . . . pat
t ) ≥ 1 and since σk is multiplicative, thus

Tkw(G) = ∑
e∈E(G)

σk(w(e)) = ∑
e∈E(G)

σk(pa1
1 pa2

2 . . . pat
t )

= ∑
e∈E(G)

(
σk(pa1

1 ) ∗ σk(pa2
2 ) ∗ · · · ∗ σk(pat

t )
)

= ∑
e∈E(G)

((
p(a1+1)k

1 − 1

pk
1 − 1

)
∗
(

p(a2+1)k
2 − 1

pk
2 − 1

)
∗ · · · ∗

(
p(at+1)k

t − 1
pk

t − 1

))

= ∑
e∈E(G)

 t

∏
i=1,

pi |w(e)

p(ai+1)k
i − 1

pk
i − 1

 .

Or, we can use the geometric formula for series and the result follows.

Lemma 4. If w(e) = pa ≥ 1 for e ∈ E(G), then we have

Tkw(G) = ∑
d|pa

σk(pa) =

∑d|pa
p(a+1)k−1

pk−1
, if k ̸= 0,

∑d|pa(a + 1), if k = 0.

Proof. The proof follows directly from Theorem 7.

Theorem 8. For all e ∈ E(G) with w(e) ≥ 1, we have

Tkw(G) = ∑
e∈E(G)

 N

∑
w(e)=1

σk(w(e))

 = ∑
e∈E(G)

 N

∑
w(e)=1

(
(w(e))k

[
N

w(e)

]) ,

where
[

N
w(e)

]
is the greatest integer less than

(
N

w(e)

)
and N is a positive integer.

Proof. Set, for all e ∈ E(G), B(N,w(e)) =
[

N
w(e)

]
−
[

N−1
w(e)

]
for w(e) ≥ 1. Then

(w(e))k(B(N,w(e))) =

{
(w(e))k, when w(e)|N;

0 when w(e) ∤ N,

and then

Tkw(G) = ∑
e∈E(G)

 N

∑
w(e)=1

σk(w(e))

 = ∑
e∈E(G)

 N

∑
w(e)=1

(
w(e)

∑
k=1

kw(e)B(w(e),k)

)
= ∑

e∈E(G)

 N

∑
w(e)=1

(
w(e)

∑
k=1

kw(e)
([

w(e)
k

]
−
[

w(e)− 1
k

]))

= ∑
e∈E(G)

 N

∑
w(e),k=1

kw(e)
[

w(e)
k

]
− ∑

1≤k≤N,
1≤w(e)≤N−1

kw(e)
[

w(e)
k

]



Open J. Math. Sci. 2023, 7, 1-9 8

= ∑
e∈E(G)

∑
1≤k≤N,
w(e)=N

kw(e)
[

w(e)
k

]
. (2)

The results follows from Theorem 7 by exchanging k with w(e) and since w(e) = N, we obtain that

Tkw(G) = ∑
e∈E(G)

 N

∑
w(e)=1

σk(w(e))

 = ∑
e∈E(G)

 N

∑
w(e)=1

(
(w(e))k

[
N

w(e)

]) .

Lemma 5. For all e ∈ E(G), w(e) is a prime number if and only if

Tkw(G) = ∑
e∈E(G)

σk(w(e)) = ∑
e∈E(G)

(
(w(e))k + 1

)
.

Proof. If w(e) is a prime for all e ∈ E(G), then if we have t-vertices in the graph G,

Tkw(G) = ∑
e∈E(G)

σk(w(e))

= (σk(d(u1, u2)) + σk(d(u1, u3)) + · · ·+ σk(d(u1, un))) + · · ·+ σk(d(un−1, un)) .

Since e ∈ E(G), w(e) is a prime number, therefore d(u1, u2) = d(u1, u3) = · · · = d(u1, un) = · · · =

d(un−1, un) = p, so

Tkw(G) = ∑
e∈E(G)

σk(w(e)) = σk(p) + σk(p) + · · ·+ σk(p) = ∑
p

σk(p)

= ∑
p
(pk + 1) = ∑

e∈E(G)

(
(w(e))k + 1

)
.

The following theorem gives a relationship between generalized divisor sum Tkw -function and the Euler
ϕ-function of a graph, where k = 1.

Theorem 9. For all e ∈ E(G), w(e) ≥ 1, we have

T1w(G) = ∑
e∈E(G)

σ1(w(e)) = ∑
e∈E(G)

 ∑
d|w(e)

φ(d) ∗ σ0

(
w(e)

d

) ,

where d is the divisor of the vertices’ degree in a graph G.

Proof. Let (w(e)) = pa1
1 pa2

2 . . . pat
t . If we choose the left hand side (LHS) to be ∑

e∈E(G)
σ1(w(e)). Since the divisor

function σk and Euler φ-function are multiplicative, so from the Theorem 7, in the case when k = 1, we have

∑
e∈E(G)

σ1(w(e)) = ∑
w(e)={p1,p2,...,pt}

σ1(pa1
1 pa2

2 . . . pat
t ) = ∑

w(e)={p1,p2,...,pt}

(
t

∏
i=1

p(ai+1)k
i − 1

pk
i − 1

)
.

This side will be called the left hand side (LHS). If we see the right hand side (RHS), in our case, d is our
divisor of w(e) which has the form d = pi1

1 pi2
2 . . . pit

t where 0 ≤ i1, i2, . . . , it ≤ a1, a2, . . . , at respectively. The
representation of each divisor will be allowed because in this way the divisors with different primes can be
counted with different these primes could have. Since w(e) = pa1

1 pa2
2 . . . pat

t . Thus,

∑
e∈E(G)

 ∑
d|w(e)

φ(d) ∗ σ0

(
w(e)

d

) = ∑
{p1,p2,...,pt}

(
a1

∑
i1=0

a2

∑
i2=0

· · ·
at

∑
it=0

φ(pi1
1 pi2

2 . . . pit
t ) ∗ σ0

(
pa1

1 pa2
2 . . . pat

t

pi1
1 pi2

2 . . . pit
t

))
.
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Since φ and σ0 are multiplicative and by rearranging their terms, we obtain

RHS = ∑
{p1,p2,...,pt}

(
a1

∑
i1=0

a2

∑
i2=0

· · ·
at

∑
it=0

φ(pi1
1 )σ0(pa1−i1

1 ) ∗ φ(pi2
2 )σ0(pa2−i2

2 ) ∗ · · · ∗ φ(pit
t )σ0(pat−it

t )

)
.

Since we have t-terms and for each of them we only have two terms to be variable and the rest are constant
which can be obtained in front of the sum, so by applying this way t−times, we obtain that

RHS = ∑
{p1,p2,...,pt}

(
a1

∑
i1=0

φ(pi1
1 )σ0(pa1−i1

1 ) ∗
a2

∑
i2=0

φ(pi2
2 )σ0(pa2−i2

2 ) ∗ · · · ∗
at

∑
it=0

φ(pit
t )σ0(pat−it

t )

)
. (3)

If the first sum in the bracket is denoted by A, then

A =
a1

∑
i1=0

φ(pi1
1 )σ0(pa1−i1

1 )

= φ(1)σ0(pa1
1 ) + φ(p1)σ0(pa1−1

1 ) + · · ·+ φ(pi1−1
1 )σ0(p1) + φ(pa1

1 )σ0(1)

= 1 + p1 + p2
1 + p3

1 + · · ·+ pa1−1
1 + pa1

1 .

It can be seen that this is a geometric progression, so we can use its formula here,

A =
a1

∑
i1=0

φ(pi1
1 )σ0(pa1−i1

1 ) =
1 − pa1+1

1
1 − p1

=
pa1+1

1 − 1
p1 − 1

.

This result can be applied to all the t−terms in (3), so the RHS will be

RHS = ∑
{p1,p2,...,pt}

(
pa1+1

1 − 1
p1 − 1

∗
pa2+1

2 − 1
p2 − 1

∗ · · · ∗ pat+1
t − 1
pt − 1

)
= ∑

{p1,p2,...,pt}

(
t

∏
i=1

pai+1
i − 1
pi − 1

)
= LHS .
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