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Abstract

The new Hybrid Adams type Block Methods (HATBMs) for step length k=2,3 and 4 were
developed for the solution of first order ordinary differential equations. Collocation and
interpolation of Chebyshev polynomial approximation were adopted to derive some implicit
linear multi-step methods at different values of k. Analysis of all the methods show that they
were consistent, zero stable and convergent. All the newly constructed methods were
demonstrated with numerical experiments to ascertain their level of convergence.

Keywords: Chebyshev polynomials, hybrid Adams type, block methods, ordinary differential
equation.

1 Introduction

Numerical analysis is the area of mathematical and computer sciences that creates, analyses and
implements algorithms for solving numerically the problems of continuous mathematics. Such
problems originate from real world applications of algebra, geometry and calculus, these problems
occur throughout the natural sciences, social sciences, engineering, medicine and business
studies. Solutions to ordinary differential equations were derived using analytical or even exact
methods but many often cannot be solved analytically because most real life problems are

*Corresponding author: ademolabadmus@gmail.com;



Badmus et al.; BJIMCS, 6(6): 464-474, 2015, Article no.BJMCS.2015.093

modeled into non linear equations involve complex shapes and processes. Hence there is a great
need to develop an algorithm to cater for this type of differential equations.

Chebyshev polynomials are special group of polynomials whose properties and applications were
discovered a century ago by the Russian mathematician Patnuty Lvovich Chebyshev. Their
importance for practical computations was rediscovered 60 years ago by Comelious Lanczos the
father of Numerical Analysis (see [1]).

A simple way of constructing Chebyshev polynomials relies on the recurrence relation of the form
Tpp1(x) = 2xT, (x) — Tpy_ 1 (x). vn=>2.

However, Ty(x) and T,(x) are constant terms with respect to the recurrence relation as 1 and
x respectively.

Definition 1: Hybrid Linear Multistep method

The k step general linear multistep method can be written as

k k

D auey =1 ) By fusy+ By frso- &
j=0

j=0
where a;, # 0,a? +B¢ >0, u ¢ {0, k}
Definition 2: Zero Stable

The method in (1) is said to be zero stable if no root of the first characteristic polynomial
p(r) = Z}‘zo a]-rf has modulus greater than one and if every root with modulus one is simple

Definition 3: Order and Error Constants

A linear multistep method of the form

k

k
Z % Ynyj =h Bjfn+j
=0

j=0 Jj
k> 2 issaidtobeoforderPif C,b=C, =C,=-Cp, =0
but Cp,, # 0 and C,,, is called error constant (see [2]).

2 Background of the Study

Numerical methods for solving first order initial value problems often fall into two large categories,
linear multistep and Runge-Kutta methods. A further division could be realised by dividing methods
into those that are explicit and implicit methods. For example, an implicit linear multistep of Adams
Moulton is of the form

k
Vurk + sk = B Biffnsc - @
i=0
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Most resent researchers have worked in this area among them are ([1-5]) to mention only a few, in
their proposed methods the approximate solution ranges from power series, exponential functions,
Chebyshev polynomials. The aim of this research work is to use the Chebyshev polynomials
as our trial basis to develop some Adams type hybrid block methods at various values of step
length k.

Theorem 1: Well-Posed Condition

Suppose that f and f, , its first derivative with respect to y are continuous for x € [a, b]. Then the
initial value problem y'= f(x,y),a < x < b, y(a) = a has a unique solution

y(x) for a < x < b and the problem is well posed (see [6]).
Theorem 2: Fundamental Theorem of Dahlquist

The necessary and sufficient condition for linear multistep method to be convergent are that it be
consistent and zero- stable (see [6]).

3 Methodology

a) Two step Adams type hybrid block method at (k = 2)

Given an approximate solution of the form

P(x) = Z a,T, . 3)
n=0

P'(x) = Z a,T', . 4)
n=0

From equation (3) and (4)

> T = fxy) ©)
n=1

where a,, are the parameters to be determined and T,, are Chebyshev polynomial. We collocate
(4) at x = x,,5,j = (0, 1,v,2), specifically m = 5,u = % andv = % and interpolate (3) at x = x,,,¢
to have the following non linear system of equations of the form

5

Z anTn(x) = Yn+1

n=0
5

Z anTn(X) = fnyy, J=@1,v,2). (6)

n=1

Our propose continuous formulation of the two step Adams type hybrid block method will be of the
form
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2
Y = s Oir + 1 ) B sy + L i + BB f s ™
j=0

By using maple 17 mathematical software to determine the values of a and B's and substituting to
obtain the following continuous formula of the method as

_ _ 29 _ 25 (x—xn)? E(x_xn)3 _ E(x_xn)4 i(x_xn)s _ 31
y&) = y"+1+[ 1soh+(x Xn) = h 18 n2 6 n3 15 p* ]f" [ Sh+
3(95_’511)4 4(x— xn) _E(X xn) _i(x xn) ]f 1
h3 h 9 h? 15 nty
3(x— xn)z 19 (x— )% 4(x—xp)* 2 4 (x- xn) 4 (x— xn)2 28 (x—xp)3 18 (x—xp)° 1
[ 3 n2 [E 15h 5 : ]f”+1+[3 h 9 2 15 ht 14h+
7(95 xn) _l(x_xn) 1 2 (x— xn) E(x Xn) 1(x xn)
3 ]fn+— [ 4 +180h+ n4 +18 h2 2 ]f"+2 (8)
Equation (8) is evaluated at x = x,,,;,j = 0, ; 5,210 obtain the following discrete schemes as our
two step Adams type hybrid methods (ATHBMs).
19 173 73
Vsl = Yns1 = h [—mof ~ 2 - o Tt 12 = 730 st + 0 s3]
2 31 1
Yn—Yn1=h [ 180 Efn+1 180 fn+Z 15 fn.‘% - Efn+
11 37 173
Va3 = Yar1 = h [—1440 Fut o furt — T Fuvz = %f,ﬁé ra0S s (9)

1
Yn+2 = Yn+1 _h[_afn'i_ fn+1+180fn+2+45fn+_ Efn+%
Equation (9) is of order [5,5,5,5]T with error constants of

[1.1194x107% —1.7361x107%,1.1194x107%,—1.7361x10~*]”

b) Schemes as our three step Adams type hybrid block methods (HTHBMs) at (k = 3).
Equation (4) is collocated at x = x,,,;,j = 0,v,w, 2 and 3, specially m = 6,v = %,w = ;

Also equation (3) is interpolated at x = x,,,4 to obtain the following system of non linear equation
of the form

6

Z anTn(x) =Yn+1 -

n=0

6

Y aT® = fuy,  J=@1,23). (10)

n=1

Our propose continuous formula of three step Adams type hybrid block method is of the form

3
YOO = @1 s + 1Y B0 ey + BB i + () i (1
j=0

By using maple 17 mathematical software to determine the value of @ and B's and substituting in
(11) to obtain the continuous formula of the method as
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29(9* 29()° 31(H* 4> 1 @F°

y<x>=yn+1+[ 20" O 0w i 2w T s 135k

152 1913, 119* 673 6 (5)5 1" 40 (z)Z 136 (§)° | 104 104 (§)*
+[2 h 2 h2 + 24 h3 360h 5 ht 9 h5]f"+1 +[ 45 [T 9 K3
536 (93 8 (s)ﬁ]f [—ﬂh+ﬁﬁ_ 18(5)° | 91 (H* E(x 5)5 1(x-9° f
27 K2 27 BS 1) nel 4 h h? T 5 mt T3 om n+2

32 16 @O* 24 8 ®°  8©®8 8(5) 43 71O 1@ 7@ 145
+[45h 3 h3 5 h 45h5+ h2 5h4 f [ 360h+72 h3+27h5 54 h2 45h4+
5(5)2

] frrs - (12)

where & = (x — x,,)

Equation (12) is evaluated at x=xn+]-,j=(0,;,2,;,and 3) to obtain the following discrete

schemes as our three Adams type hybrid block method (HATBMs)

104 32 43
Yn = Yni1 = h[_Efn ~ 360 n+1 +Efn+§ 120fn+2 45fn+; _%fnﬁi]

1139 139 13 31
3 — =h|—-—— 3 ——— +—h 5 ———
yn+2 Yn+1 [ sofnt g ot 3G fn+5 1920 f"” 360 fn+5 5760/ n+3

1
Yn+2=Yn+1 = h[ 1080 —fat 4_0fn+1 + 135 fn+ 20 fn+2 1080fn+3]

23 7
yn+5 Yn+1 64-0f 640 f"“ 40 fn+— 640 f"’fz * 1 40 n+; o10 [ n+3

Yuss = Vs = h| g fues + 32 f s + 15 farz + 52 fn+;+gfn+3]- (13)

Equation (13) is of order [6,6,6,6,6] T with error constant of
[1.9428(—03),5.9420(—05), 2.4802(—05),6.9754(—05),6.6138(—05)]T

c) Schemes as our four step Adams type hybrid block method (HATBMs) at (k = 4).

Equation (4) is collocated at = x,,;,j = (1,v,2,w,3,4) , specially m=7,v = ; andw = ; . Also
(3) is interpolated at x = x,,,, to obtain the following system of linear equation of the form

7

Z anTn(xn+1) = Yn+1

n=0

7

Z T w(Xns)) = frsyr J = (L1,2,w,3,4) (14)

n=1

Our propose continuous formula of the four step Adams type hybrid block method is of the form

4
V) = Yusr + 1 ) BiCOF sy + hBo ) i + BB () i (15)
n=1

By using maple 17 to determine the values of a and B's substituting them in (15) to obtain the
continuous formula of the method as
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_ 63 (x—xp)% | 1421 (x—xp)3 91 (x—x,)* 7 (x=xn)® 7 (x-xp)° 3923
Yn=Vns1 [_E h 080 w1 @ XTIt T T s et T
1 (x— xn) ] [lo(x xn) 16483 , E(J\c—;\cn)5 _ i(x—xn)7 ﬂ(x xn)4 _ E(x—xn) 13 (x— xn) ]
630 fut 7560 90 h*t 63 h® 72 k3 3 k2 27 [

[g (x xn)5 g 3124, 6t (x=xn)® | 32 (x—xn)7 40 (x—xn)® | 4768 (x-xn)3 220 (x- xn)‘*] f

15  h* 945 3 h 315 hé 27 kS 135  hZ n+—

59 (x—xp)* 219 (x—x)° 1 (x—xp)? | 45 (x-xp)2 159 (x—xp)3 2(x-xp)® 221 h 164 (x—x)%
+[7 B 20 hK* 7 hS 2 rR 4 R h5 ]f’”z [ 9 3
64 (x—xn)% | 32 (x=xn)7 64 (x—xp)® | 352 (x—xp)3 | 1612, 184 (x- xn) ] 361 (x—xp)* | 10 (x—xp)®
9 hnt + 315 h® 5 h 15 k2 + 945 = 135 fn+— 72 B3 + 3 h
2 (x=xp)7 61 (x—xp)5 | 11 (x—x,)® 3253, 169 (x- x,,) ] [ 29 (x- xn)4 31 (x—xp)° 1 (x—x,)?

X—Xn X—Xn X—Xn

szt @ e s Tz ]fn+4' (16)

Evaluating equation (16) at x = xp.;,j = (0,2,2,;, 3and 4) to have the following discrete
schemes as our four steps Adams type hybrid block method

3923 16483 3124 1612 3253
Yne1 — Yn = [15120 fot o~ 7560 fni1— 945 fn+% + 70 [ni2 945 fn+— 7560 T ni3 — 3024 fn+4—]
263 22769 3149 349 503 1801
_ 263 22769 5 — 29 503 _ 1801
yn+2 Yn+1 = [ 2219207 Ta0e00 T+t T 7560 fn+5 a0 ne2 ¥ 75 fn+; 20060 Jn+3 +

48384 f "+4]

11 37 1
Va2 = Yusr = h| = o fa Zmofn+1+945fn+z+ vz + gy S5 = o Fuvs + s Fuval

9 71 1053 73 99 1
5= Va1 = M| fn F o frgr o f 34 5= ——fpiz+ o
Vnsl ™ Y1 [ so60/ 4—480f"+1 280 fn+5 2200 n2 T o fn+— aaso ) n+3 T 7gp Fnea

128 128 1
Yuss = Yusr = |~ o+ S frr + 1f,gf,l+s+35fn+z i+ ot Fass = o
9 36 92
Vs = Yurt = h|= oo fu+ 5ot Fuet = 3eF 3+ e fur = R F s + oo fuss + g funs] (1)

Equation (17) is of order [7,7,7,7,8,7]", with error constant

[1.0045(—03),—2.3542(—05), —1.2401(—05), 3.8508 (—05), —1. 0044 (—03)]”

4 Convergence Analysis of the Two Step Hybrid Adams Type
Block Method (HATBMs)

The two step hybrid Adams type block method is expressed in the form

-173 -19 37 -11

1 -1 0 o][ned 00 0 012 73210 63 7210 1_4140 fn+%
0 =1 0 Of|¥n+s|_|0 0 0 Iff¥n-sf |55 35 35 180 |[fawa|
0 —1 1 Off¥ns3[ |0 0 0 Off¥nt %g%%fmg
0 -1 0 1lly,, 00 0 O0lly, 1 2 31 29 (Lo
) » 45 15 45 180
00 0 —— fs
2

00 0 =g

180 n-1 (18)
00 0 —|[fauz

1440 2
- 180
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1-1 0 0 0000
@_l0-1 0 0| ,_|0 001
where A 0-1 1 ol 0000
0-1 0 1 0000
-7 19 3 - 00 o0 22
720 60 720 1440 1440
BO =|_ 80 | p(1) —
-37 19 173 -19 0 0 0 11
720 60 720 1440 1440
1oz mo» o 0 0 =L
45 15 45 180 180

We normalized the block method (18) with the inverse of A and applied the condition

p(D) = det[24@AO) ! — AW AP ] = 0

100 0 00 0 0
o1 0 0/ o1 o-1ffl_
PA=1U0 0 1 o 00 o of°
00 0 1 00 0 0
10 0 0 00 0 0
o2 o of  fo1oo-1f|_,
00 2 0 00 0 0
0 0 0 2 00 0 0
2 0 0 0

o a=-vo 1]_

detO 0 AO_O

0 0 0 2
=B1—-1)=0

=22=0 and 12— 1=0
Therefore, A, =1, =1;=0, 4, =1.

From definition (2), the method (9) is zero stable and since the order of the method is p = 1, the
method is consistent, thus convergent.

Similarly methods (13) and (17) were treated in the same manner and have shown their
consistencies and convergent.

5 Numerical Experiments

All the three newly constructed Adams type hybrid block method at various values of k =
2,3 and 4, were demonstrated with three different linear and one non linear problems

Problem 1
y'=-, y(0) =1, 0<x<1, h=01

Exact solution

y(x)=e*
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Problem 2

Exact solution

Problem 3

Exact solution

Problem 4

Exact solution

y'=xy, y(0) =1,
xZ

y(x) =ez

y=y—-x*+1,

1
y() = (x + 1) = e

y'=1-y%  y(0)=0,

-1

Yo = s

y(0) =+,

0<x<2,

h=0.1

h=0.1

Table 1. Approximate solutions to problem 1

Method of k=2

Method of k=3

Method of k=4

0.1000 0.904837417895975 0.904837417881202 0.904837418028227
0.2000 0.818730753110534 0.818730752939751 0.818730753071073
0.3000 0.740818220855484 0.740818220548903 0.740818220675358
0.4000 0.670320046323450 0.670320045918305 0.670320046037833
0.5000 0.606530660091209 0.606530659599218 0.606530659682672
0.6000 0.548811636543486 0.548811635994641 0.548811636211386
0.7000 0.496585304294834 0.496585303694640 0.496585303267860
0.8000 0.449328964660269 0.449328964033219 0.449328966406345
0.9000 0.406569660311169 0.406569659658082 0.406569649706824
1.0000 0.367879441759379 0.367879441100594 0.367879441171442
Table 2. Absolute errors of problem 1
x Method (OR) Error at k=2 Error at k=3 Error at k=4
0.1000 1.5490(-08) 1.3999(-10) 1.5476(-10) 7.7330(-12)
0.2000 9.3743(-09) -3.2552(-11) 1.3823(-10) 6.9090(-12)
0.3000 1.6932(-08) -1.7377(-10) 1.3282(-10) 6.3600(-12)
0.4000 1.6406(-08) -2.8781(-10) 1.1733(-10) -2.1940(-12)
0.5000 2.5228(-08) -3.7858(-10) 1.1342(-10) 3.1970(-12)
0.6000 1.9716(-08) -4.4946(-10) 9.9385(-11) 2.8320(-12)
0.7000 2.3504(-08) -5.0342(-10) 9.6770(-11) 2.6370(-12)
0.8000 2.1992(-08) -5.4305(-10) 8.4003(-11) 2.9400(-12)
0.9000 2.6862(-08) -5.7057(-10) 8.2517(-11) 8.1400(-13)
1.0000 2.2220(-08) -5.8794(-10) 7.0848(-11) 6.9600(-13)

Method (OR):- Method in Odekunleetal (2012)
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Table 3. Approximate solutions to problem 2

X Method k=2 Method k=3 Method k=4
0.1000 1.005012518167810 1.005012524024950 1.005012519628150
0.2000 1.020201340025330 1.020201343118400 1.020201338792430
0.3000 1.046027862950250 1.046027863348370 1.046027858627300
0.4000 1.083287074401830 1.083287071288450 1.083287067665950
0.5000 1.133148464484150 1.133148457147040 1.133148448352280
0.6000 1.197217380713540 1.197217367631370 1.197217379701250
0.7000 1.277621339108210 1.277621318512900 1.277621241114160
0.8000 1.377127803635090 1.377127770522030 1.377128070311000
0.9000 1.499302555226830 1.499302507651910 1.49930211675550
1.0000 1.648721347944550 1.648721280024100 1.648726712852990

Table 4. Absolute errors of problem 2
x Method (OR) Error at k=2 Error at k=3 Error at k=4
0.1000 3.1386(-07) 2.69159(-09) 3.16555(-09) 1.23125(-09)
0.2000 1.3364(-07) 1.43000(-12) 3.17164(-09) 1.23433(-09)
0.3000 3.1819(-07) 3.04153(-09) 3.43965(-09) 1.28142(-09)
0.4000 9.8972(-09) 6.72687(-09) 3.61349(-09) 9.01000(12)
0.5000 6.9521(-07) 1.14173(-08) 4.08021(-09) 3.3949(-09)
0.6000 4.0794(-07) 1.75917(-08) 4.50965(-09) 3.5428(-09)
0.7000 7.7319(-07) 2.59033(-08) 5.30801(-09) 3.8244(-09)
0.8000 7.0821(-07) 3.92991(-08) 6.18607(-09) 3.8275(-10)
0.9000 2.8682(-06) 5.51701(-08) 7.59514(-09) 1.3275(-08)
1.0000 2.0664(-06) 7.72444(-08) 9.32397(-09) 1.4427(-08)

Method (OR):- Method in Odekunleetal (2012)

Table 5. Approximate solutions to problem 3

x Method k=2 Method k=3 Method k=4
0.1000 0.657414541069634 0.657414616647980 0.657414540968716
0.2000 0.829298620944187 0.829298629148387 0.829298620927051
0.3000 1.015070596134470 1.015070596059230 1.015070596217970
0.4000 1.214087650978350 1.214087651011410 1.214087651181800
0.5000 1.425639364300310 1.425639480369200 1.425639364675610
0.6000 1.648940599300000 1.648940599593540 1.648940599730980
0.7000 1.88312364 3700000 1.883123646024930 1.883123646607190
0.8000 2.127229525000000 2.127229535488470 2.127229534342820
0.9000 2.380198432346940 2.381019844412120 2.380198450381810
1.0000 2.640859072215840 2.640859085437560 2.640859060719960

Table 6. Absolute errors of problem 3
X Error at k=2 Error at k=3 Error at k=4
0.1000 1.07459(-1 0) 1.22237(-10) -6.54100(-12)
0.2000 2.42720(-11) 1.33398(-10) -7.13600(-12)
0.3000 7.75300(-11) 1.52770(- 10) -7.97000(-12)
0.4000 2.01010(-10) 1.67950(-10) -2.44000(-12)
0.5000 3.49630(-10) 1.91450(-10) -2.56700(-11)
0.6000 5.27260(-10) 2.11200(-10) 7.37600(-11)
0.7000 7.38400(-10) 2.39830(- 10) -3.42430(-10)
0.8000 1.07538(-08) 2.65290(-10) 1.41094(-09)
0.9000 1.20746(-08) 3.00320(-10) -5.96029(-09)
1.0000 1.35546(-08) 3.32920(-10) 2.50505(-08)
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Table 7. Approximate solutions to problem 4

x Method k=2 Method k=3 Method k=4
0.1000 0.099667998229271 0.099667958427121 0.099667983956123
0.2000 0.197375318495844 0.197375285530702 0.197375309998647
0.3000 0.291312602600503 0.291312578047386 0.291312602567245
0.4000 0.37994894 3860190 0.379948931365855 0.379948964538561
0.5000 0.462117132110030 0.462117128154898 0.462117113959080
0.6000 0.537049538236968 0.537049538236968 0.537049729661565
0.7000 0.604367748161445 0.604367754450766 0.604367039621352
0.8000 0.664036743935206 0.664036751802030 0.664039991411427
0.9000 0.716297848263363 0.716297853189866 0.716283642731265
1.0000 0.761594139111875 0.761594142508150 0.761657006565570
Table 8. Absolute errors of problem 4
X Error at k=2 Error at k=3 Error at k=4
0.1000 -3.60432(-09) 3.61978(-08) 1.2312(-09)
0.2000 1.72906(-09) 3.46942(-08) 1.2343(-09)
0.3000 9.85108(-09) 3.44042(-08) 1.2814(-09)
0.4000 1.83950(-08) 3.08893(-08) 9.0100(-12)
0.5000 2.51500(-08) 2.91051(-08) 3.3949(-09)
0.6000 2.87611(-08) 2.46756(-08) 3.5428(-09)
0.7000 2.89557(-08) 2.26664(-08) 3.8244(-09)
0.8000 2.63326(-08) 1.84658(-08) 3.8293(-10)
0.9000 2.19357(-08) 1.70072(-08) 1.3275(-08)
1.0000 1.68439(-08) 1.34476(-08) 1.4427(-08)

6. Discussion of Results

Tables 1 shows the numerical results of problem 1while Table 2 displaces their absolute errors at
various values of k = 2,3 and 4 . Tables 3 shows the numerical results of problem 2, while Table
4 displaces their absolute errors at various values of k=2,3and 4. Tables 5 shows the
numerical results of problem 3, while Table 6 displaces their absolute errors at various values of
k = 2,3 and 4. Finally Tables 7 shows the numerical results of problem 4, while Table 8 displaces
their absolute errors at various values of k = 2,3 and 4. We observed that in problem 1 and 2
which were equally solved by Method OR, the result obtained from various values of k =
2,3 and 4 converges more accurately than the existing methods.

7 Conclusion

We conclude that this research paper demonstrates a successful derivation and implementation of
Adam’s type hybrid block linear multi-step method using Chebyshev polynomial as trial bases
functions. Based on the problems solved all the methods at various values of k = 2,3 and 4
performed better than the existing methods, particularly in problems 1 and 2, for example see
Method (OR). All the methods are stable, consistent and convergent.
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