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Abstract
The main goal of this paper is the investigation of the E-hyperstability of an Euler-Lagrange type
quadratic functional equation

f(x+ y) +
1

2

[
f(x− y) + f(y − x)

]
= 2f(y) + 2f(x)

in the class of functions from an abelian group into a Banach space.
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1 Introduction and Preliminaries
In 1940, S. M. Ulam [1] gave a talk before the Mathematics Club of the University of Wisconsin in
which suggested the following stability problem, well-known as Ulam stability problem:
Let G1 be a group and let G2 be a metric group with the metric d(., .). Given ε > 0, does there exist
a δ > 0 such that if a mapping h : G1 → G2 satisfies the inequality d(h(xy), h(x)h(y)) < δ for all

*Corresponding author: E-mail: sirounim@gmail.com

www.sciencedomain.org


Sirouni & Kabbaj; BJMCS, 6(6), 481-493, 2015; Article no.BJMCS.2015.095

x, y ∈ G1, then there is a homomorphism H : G1 → G2 with d(h(x), H(x)) < ε for all x ∈ G1?

In 1941, D. H. Hyers provided in [2] a first partial answer to Ulam’s problem for Banach spaces.
Hyers’ theorem was generalized by T. Aoki [3] for additive mappings and by Th. M. Rassias [4] for
linear mappings by considering an unbounded Cauchy difference. P. Găvruta [5] provided a further
generalization of the Rassias’ theorem by using a general control function.

A functional equation of the form

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (1.1)

is called the quadratic functional equation. Every solution of the quadratic functional equation is said
to be quadratic function. Quadratic functional equation was used to characterize inner product spaces
[6, 7, 8]. It is well known that a function f between real vector spaces is quadratic if and only if there
exists a unique symmetric bi-additive function B such that f(x) = B(x, x) for all x (see [6, 9]). The
bi-additive mapping is given by

B(x, y) =
1

4
[f(x+ y)− f(x− y)] .

The Hyers-Ulam stability problem for the above quadratic functional equation was proved by F. Skof
[10] for mapping f : X → Y , where X is a normed space and Y is a Banach space. P. W. Cholewa
[11] noticed that the theorem of F. Skof is still true if relevant domainX is replaced by an abelian group.
In [12], S. Cherwik proved the generalized Hyers-Ulam stability of the quadratic functional equation as
above. A. Grabiec [13] has generalized these results mentioned above. Several functional equations
have been investigated in [14, 15, 16, 17, 18, 19].

M. J. Rassias [20] introduced the Euler-Lagrange type quadratic functional equation

f(x+ y) +
1

2

[
f(x− y) + f(y − x)

]
= 2f(y) + 2f(x) (1.2)

and established the general solution and the “J. M. Rassias product-sum” stability for the functional
equation (1.2).
The above equation and his stability results have many applications in Mathematical Statistics, Stochastic
Analysis and Psychology. Every solution of (1.2) satisfies the quadratic functional equation (1.1).

In 2001, G. Maksa and Z. Páles [21] proved a new type of stability of a class of linear functional
equation

f(x) + f(y) =
1

n

n∑
i=1

f
(
xϕi(y)

)
, (1.3)

where f is a real-valued mapping defined on a semigroup S := (S, .) and where the maps ϕ1, · · · , ϕn:
S → S are pairwise distinct automorphisms of S. More precisely, they proved that if the error bound
for the difference of the two sides of (1.3) satisfies a certain asymptotic property, then in fact, the two
sides have to be equal. Such a phenomenon is called the hyperstability of the functional equation on
S. Further, J. Brzdȩk and K. Ciepliński [22] introduced the following definition, which describes the
main ideas of such a hyperstability notion for equations in several variables.

Throughout this paper, we will denote the set of natural numbers by N, the set of integers by Z
and the set of real numbers by R. Let N+ be the set of positive integers. By Nm, m ∈ N+, we will
denote the set of all integers greater than or equal to m. Let R0 := [0,∞) be the set of nonnegative
real numbers and R+ := (0,∞) the set of positive real numbers. We write BA to mean “ the family of
all functions mapping from a nonempty set A into a nonempty set B ”.
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Definition 1.1. Let X be a nonempty set, (Y, d) be a metric space, ε : Xn → R0 be an arbitrary
function, and let F1, F2 be two operators mapping from a nonempty set D ⊂ Y X into Y Xn

. We say
that the operator equation

F1ϕ(x1, . . . , xn) = F2ϕ(x1, . . . , xn), (x1, . . . , xn ∈ X) (1.4)

is ε-hyperstable provided that every ϕ0 ∈ D which satisfies

d
(
F1ϕ0(x1, . . . , xn),F2ϕ0(x1, . . . , xn)

)
≤ ε(x1, . . . , xn), (x1, . . . , xn ∈ X)

fulfills equation (1.4) on X.

In this article, we introduce the following definition, which describes the main ideas of the concept
of hyperstability for equations in several variables.

Definition 1.2. Let X be a nonempty set, (Y, d) be a metric space, E ⊂ RXn

+ be a nonempty subset,
and F1, F2 be operators mapping from a nonempty set D ⊂ Y X into Y Xn

. We say that the operator
equation

F1ϕ(x1, . . . , xn) = F2ϕ(x1, . . . , xn), (x1, . . . , xn ∈ X) (1.5)

is E-hyperstable for the pair (X,Y ) provided for any ε ∈ E and ϕ0 ∈ D satisfies the inequality

d
(
F1ϕ0(x1, . . . , xn),F2ϕ0(x1, . . . , xn

)
≤ ε(x1, . . . , xn), (x1, . . . , xn ∈ X) (1.6)

fulfills equation (1.5).

In [23], J. Brzdȩk proved the hyperstability of the Cauchy’s functional equation by an idea based
on a fixed point result that can be derived from Theorem 1([24]). E. Gselmann [25] investigated
the hyperstability of parametric fundamental equation of information. M. Piszczek in [26] proved the
hyperstability of the general linear equation. In 2014, A. Bahyrycz and M. Piszczek in [27] studied
the hyperstability of the Jensen’s equation on a restricted domain. M. Piszczek and J. Szczawińska
in [28] studied the hyperstability of the Drygas equation.

A functionH : R2
0 → R0 is called homogeneous of degree a real number p if it satisfiesH(tu, tv) =

tpH(u, v) for all t ∈ R+ and u, v ∈ R0. In the sequel, we assume that G = (G,+) is an abelian group,
E is an arbitrary real Banach space, H : R2

0 → R0 is a symmetric homogeneous function of degree
p < 0 for which there exists a positive integer n0 such that

inf {ε((m+ 1)x,−mx) : m ∈ Nn0} = 0 (1.7)

for all x ∈ G, and γ : G→ R+ is a function satisfying:

(C1) γ(kx) = |k| γ(x) for all k ∈ Z\{0} and all x ∈ G,

(C2) γ(x+ y) ≤ γ(x) + γ(y) for all x, y ∈ G.

We will denote by E the set of all functions ε : G2 → R0 for which there exist a constant c ∈ R0

such that
ε(x, y) = cH(γ(x), γ(y)) x, y ∈ G. (1.8)

Remark 1.1. Note that conditions (C1) and (C2) imply the following equality

ε(kx, ky) = |k|p ε(x, y)

for all k ∈ Z\{0} and all x, y ∈ G.
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The aim goal of the paper is to establish the E-hyperstability of (1.2) in the class of functions from
a commutative group (G,+) into a Banach space E by a fixed point method that can be derived from
[22].

Before proceeding to the main results, we will prove the general solution of the functional equation
(1.2) on an abelian group and state the fixed point theorem (Theorem 1.2) which is useful to our
purpose.

We first obtain the general solution of the proposed functional equation (1.2).

Lemma 1.1. Let (G,+) be an abelian group and E be a real vector space. A function f : G → E
satisfies the functional equation

f(x+ y) +
1

2

[
f(x− y) + f(y − x)

]
= 2f(x) + 2f(y) (1.9)

for all x, y ∈ G if and only if it satisfies

f(x+ y) + f(x− y) = 2f(x) + 2fy) (1.10)

for all x, y ∈ G.

To present the fixed point theorem, we need the following three hypothesis [22]:

(H1) U is a nonempty set, E2 is a Banach space, f1, . . . , fk : U → U and L1, . . . , Lk : U → R+ are
given.

(H2) T : EU
2 → EU

2 is an operator satisfying the inequality

‖T ξ(x)− T µ(x)‖ ≤
k∑

i=1

Li(x) ‖ξ(fi(x))− µ(fi(x))‖ ξ, µ ∈ EU
2 , x ∈ U.

(H3) Λ: RU
+ → RU

+ is defined by

Λδ(x) :=

k∑
i=1

Li(x)δ(fi(x)) δ ∈ RU
+, x ∈ U.

Now we present the mentioned fixed point theorem.

Theorem 1.2. [22]. Let hypotheses (H1)-(H3) be valid and functions ε : U → R+ and ϕ : U → E2

satisfy the following two conditions

‖T ϕ(x)− ϕ(x)‖ ≤ ε(x) x ∈ U,

ε∗ :=

∞∑
n=1

Λnε(x) <∞ x ∈ U.

Then there exists a unique fixed point ψ of T with

‖ϕ(x)− ψ(x)‖ ≤ ε∗(x) x ∈ U.

Moreover,
ψ(x) := lim

n→∞
T nϕ(x) x ∈ U.
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2 E-Hyperstability of (1.2)

Using Theorem (1.2), we prove that the functional equation (1.2) is E-hyperstable for the pair (G,E).

Theorem 2.1. Let G be an abelian group, E be a Banach space. Let a function f : G→ E satisfy∥∥∥∥f(x+ y) +
1

2
[f(x− y) + f(y − x)]− 2f(y)− 2f(x)

∥∥∥∥ ≤ ε(x, y) (2.1)

for all x, y ∈ G and for some ε ∈ E . Then f satisfies the functional equation (1.2) on G.

Proof. Not that for some p < 0, we have

lim
m→∞

(2(m+ 1)p + 2mp + (2m+ 1)p) = 0.

Then, there exists n0 ∈ N such that

2(m+ 1)p + 2(m)p + (2m+ 1)p < 1 (2.2)

for all m ≥ n0.

Let ε ∈ E , then there exists c ∈ R0 such that ε(x, y) = cH(γ(x), γ(y)). Let f : G → E be a
function satisfy the inequality∥∥∥∥f(x+ y) +

1

2
[f(x− y) + f(y − x)]− 2f(y)− 2f(x)

∥∥∥∥ ≤ ε(x, y)

for all x, y ∈ G. Let us fix m ∈ Nn0 . Replacing x by (m+ 1)x and y by −mx in (2.1), we get∥∥∥∥f(x)− 2f((m+ 1)x)− 2f(−mx) +
1

2
f((2m+ 1)x) +

1

2
f((−2m− 1)x)

∥∥∥∥
≤ ε
(
(m+ 1)x,−mx

)
= H

(
γ((m+ 1)x), γ(−mx)

)
:= εm(x)

(2.3)

for all x ∈ G.
Putting

Tmξ(x) := 2ξ((m+ 1)x) + 2ξ(−mx)− 1

2
ξ((2m+ 1)x)− 1

2
ξ((−2m− 1)x) (2.4)

for all x ∈ G and ξ ∈ EG. Then the inequality (2.3) becomes

‖Tmf(x)− f(x)‖ ≤ εm(x) x ∈ G. (2.5)

Now, we define an operator Λm : RG
+ → RG

+ by

Λmη(x) := 2η((m+ 1)x) + 2η(−mx) +
1

2
η((2m+ 1)x) +

1

2
η((−2m− 1)x) (2.6)

for all x ∈ G and η ∈ RG
+. This operator has the form described in (H3) with k = 4 and f1(x) =

(m + 1)x, f2(x) = −mx, f3(x) = (2m + 1)x, f4(x) = (−2m − 1)x, L1(x) = L2(x) = 2 and
L3(x) = L4(x) = 1

2
for all x ∈ G.
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Further ,

∥∥∥Tmξ(x)− Tmµ(x)
∥∥∥ =

∥∥∥2ξ((m+ 1)x) + 2ξ(−mx)

− 1

2
ξ((2m+ 1)x)− 1

2
ξ((−2m− 1)x)

− 2µ((m+ 1)x)− 2µ(−mx)

+
1

2
µ((2m+ 1)x) +

1

2
µ((−2m− 1)x)

∥∥∥
≤ 2
∥∥∥(ξ − µ)((m+ 1)x)

∥∥∥+ 2
∥∥∥(ξ − µ)(−mx)

∥∥∥
+

1

2

∥∥∥(ξ − µ)((2m+ 1)x)
∥∥∥

+
1

2

∥∥∥(ξ − µ)((−2m− 1)x)
∥∥∥

=

4∑
i=1

Li(x)
∥∥∥(ξ − µ)(fi(x))

∥∥∥

(2.7)

for all x ∈ G and all ξ, µ ∈ EG. Therefore, In view of (2.6) and (1.8), it is easily to check that

Λmεm(x) = 2εm((m+ 1)x) + 2εm(−mx) +
1

2
εm((2m+ 1)x)

+
1

2
εm((−2m− 1)x)

= 2H
(
γ((m+ 1)(m+ 1)x), γ(−m(m+ 1)x)

)
+ 2H

(
γ((m+ 1)(−mx)), γ(−m(−mx))

)
+

1

2
H
(
γ((m+ 1)(2m+ 1)x), γ(−m(2m+ 1)x)

)
+

1

2
H
(
γ((m+ 1)(−2m− 1)x), γ(−m(−2m− 1)x)

)
= 2H

(
(m+ 1)γ((m+ 1)x), (m+ 1)γ(−mx)

)
+ 2H

(
mγ((m+ 1)x),

mγ(−mx)
)

+H
(

(2m+ 1)γ((m+ 1)x), (2m+ 1)γ(−mx)
)

= 2(m+ 1)pH
(
γ((m+ 1)x), γ(−mx)

)
+ 2mpH

(
γ((m+ 1)x), γ(−mx)

)
+ (2m+ 1)pH

(
γ((m+ 1)x), γ(−mx)

)
=
(

2(m+ 1)p + 2mp + (2m+ 1)p
)
H
(
γ((m+ 1)x), γ(−mx)

)
=
(

2(m+ 1)p + 2mp + (2m+ 1)p
)
εm(x).

(2.8)

Then,
n∑

k=0

Λk
mεm(x) = εm(x)

n∑
k=0

(2(m+ 1)p + 2mp + (2m+ 1)p)k (2.9)
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for all x ∈ G and n ∈ N. As m ∈ Nn0 , we have

ε∗m(x) :=

∞∑
k=0

Λk
mεm(x)

= εm(x)

∞∑
k=0

(
2(m+ 1)p + 2mp + (2m+ 1)p

)k
=

εm(x)

1− 2(m+ 1)p − 2mp − (2m+ 1)p

< ∞

for all x ∈ G. Now, it follows from Theorem (1.2) that there exists a unique solution Fm : G → E of
the functional equation

Fm(x) = 2Fm((m+ 1)x) + 2Fm(−mx)

− 1

2
Fm((2m+ 1)x)− 1

2
Fm((−2m− 1)x) x ∈ G,

(2.10)

which is a fixed point of Tm, such that

‖Fm(x)− f(x)‖ ≤ εm(x)

1− 2(m+ 1)p − 2(m)p − (2m+ 1)p
(2.11)

for all x ∈ G. Moreover,

Fm(x) = lim
n→∞

T n
mf(x) x ∈ G.

To prove that the function Fm satisfies the functional equation (1.2) on G, it suffices to prove the
following inequality∥∥∥T n

mf(x+ y) +
1

2
T n
mf(x− y) +

1

2
T n
mf(y − x)− 2T n

mf(x)− 2T n
mf(y)

∥∥∥
≤
(

2(m+ 1)p + 2(m)p + (2m+ 1)p
)n
ε(x, y)

(2.12)

for all x, y ∈ G, and n ∈ N.
Indeed, if n = 0, then (2.12) is simply (2.1). So, take n ∈ N+ and suppose that (2.12) holds for
n ∈ N+ and x, y ∈ G. Then, using (2.4) and (2.12), we have

∥∥∥T n+1
m f(x+ y) + 1

2
T n+1
m f(x− y) + 1

2
T n+1
m f(y − x)− 2T n+1

m f(x)

−2T n+1
m f(y)

∥∥∥ =
∥∥∥2T n

mf((m+ 1)(x+ y)) + 2T n
mf(−m(x+ y))

− 1
2
T n
mf((2m+ 1)(x+ y))− 1

2
T n
mf((−2m− 1)(x+ y))

+T n
mf((m+ 1)(x− y)) + T n

mf(−m(x− y))

− 1
4
T n
mf((2m+ 1)(x− y))− 1

4
T n
mf((−2m− 1)(x− y))

+T n
mf((m+ 1)(y − x)) + T n

mf(−m(y − x))

− 1
4
T n
mf((2m+ 1)(y − x))− 1

4
T n
mf((−2m− 1)(y − x))
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−4T n
mf((m+ 1)x)− 4T n

mf(−mx)

+T n
mf((2m+ 1)x) + T n

mf((−2m− 1)x)

−4T n
mf((m+ 1)y)− 4T n

mf(−my)

+T n
mf((2m+ 1)y) + T n

mf((−2m− 1)y)
∥∥∥

≤ 2
∥∥∥T nf((m+ 1)(x+ y)) + 1

2
T nf((m+ 1)(x− y))

+ 1
2
T nf((m+ 1)(y − x))− 2T nf((m+ 1)x)− 2T nf((m+ 1)y)

∥∥∥
+2
∥∥∥T nf(−m(x+ y)) + 1

2
T nf(−m(x− y))

+ 1
2
T nf(−m(y − x))− 2T nf(−mx)− 2T nf(−my)

∥∥∥
+ 1

2

∥∥∥T nf((2m+ 1)(x+ y)) + 1
2
T nf((2m+ 1)(x− y))

+ 1
2

∥∥∥T nf((2m+ 1)(y − x))− 2T nf((2m+ 1)x)− 2T nf((2m+ 1)y)
∥∥∥

+ 1
2

∥∥∥T nf((−2m− 1)(x+ y)) + 1
2
T nf((−2m− 1)(x− y))

+ 1
2
T nf((−2m− 1)(y − x))− 2T nf((−2m− 1)x)− 2T nf((−2m− 1)y)

∥∥∥
≤
(

2(m+ 1)p + 2mp + (2m+ 1)p
)n(

2(m+ 1)p + 2mp + (2m+ 1)p
)
ε(x, y)

=
(

2(m+ 1)p + 2(m)p + (2m+ 1)p
)n+1

ε(x, y).

By induction, we have shown that (2.12) holds for all x, y ∈ G. Letting n→∞ in (2.12), we get

Fm(x+ y) +
1

2
[Fm(x− y) + Fm(y − x)] = 2Fm(x) + 2Fm(y) (2.13)

for all x, y ∈ G. Thus, we have proved that for every m ∈ Nn0 there exists a function Fm : G → E
which is a solution of the functional equation (1.2) on G and satisfies

‖f(x)− Fm(x)‖ ≤ εm(x)

1− 2λ(m+ 1)− 2λ(m)− λ(2m+ 1)
(2.14)

for all x ∈ G. Next, we prove that Fm = Fk for all m, k ∈ Nn0 .
Let us fix m, k ∈ Nn0 . Note that Fm and Fk satisfy (2.13). Hence, by replacing x by (m + 1)x and y
by −mx in (2.13), we get,

Fm(x) = 2Fm((m+ 1)x) + 2Fm(−mx)− 1

2
Fm((2m+ 1)x)− 1

2
Fm((−2m− 1)x),

Fk(x) = 2Fk((m+ 1)x) + 2Fk(−mx)− 1

2
Fk((2m+ 1)x)− 1

2
Fk((−2m− 1)x)

for all x ∈ G, that is TmFm = Fm, TmFk = Fk and

‖Fm(x)− Fk(x)‖ ≤ εm(x)

1− 2λ(m+ 1)− 2λ(m)− λ(2m+ 1)

+
εk(x)

1− 2λ(k + 1)− 2λ(k)− λ(2k + 1)
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for all x ∈ G. Hence, by linearity of Λm and (2.8), we get

‖Fm(x)− Fk(x)‖ = ‖T n
mFm(x)− T n

mFk(x)‖

≤ Λn
mεm(x)

1− 2λ(m+ 1)− 2λ(m)− λ(2m+ 1)

+
Λn

mεk(x)

1− 2λ(k + 1)− 2λ(k)− λ(2k + 1)

≤

(
2(m+ 1)p + 2(m)p + (2m+ 1)p

)n
εm(x)

1− 2λ(m+ 1)− 2λ(m)− λ(2m+ 1)

+

(
2(m+ 1)p + 2(m)p + (2m+ 1)p

)n
εk(x)

1− 2λ(k + 1)− 2λ(k)− λ(2k + 1)

for all x ∈ G and n ∈ N. Now letting n→∞ we get Fm = Fk =: F . Thus, in view of (2.14), we have

‖f(x)− F (x)‖ ≤ εm(x)

1− 2λ(m+ 1)− 2λ(m)− λ(2m+ 1)

for all x ∈ G and all m ∈ Nn0 .
Since (2.13), the function F is a solution of (1.2).

To prove the uniqueness of the function F , let us assume that there exists a function F ′ : G→ E
which satisfies (1.2) and the inequality∥∥f(x)− F ′(x)

∥∥ ≤ εm(x)

1− 2λ(m+ 1)− 2λ(m)− λ(2m+ 1)

for all x ∈ G and all m ∈ Nn0 . Then it follows easily that∥∥F (x)− F ′(x)
∥∥ ≤ 2εm(x)

1− 2λ(m+ 1)− 2λ(m)− λ(2m+ 1)

for all x ∈ G and all m ∈ Nn0 . Further, TmF ′ = F ′ for each m ∈ Nn0 . Therefore, with a fixed
m ∈ Nn0 , ∥∥F (x)− F ′(x)

∥∥ =
∥∥T n

mF (x)− T n
mF
′(x)

∥∥
≤ 2Λn

mεm(x)

1− 2λ(m+ 1)− 2λ(m)− λ(2m+ 1)

≤

(
2(m+ 1)p + 2(m)p + (2m+ 1)p

)n
εm(x)

1− 2λ(m+ 1)− 2λ(m)− λ(2m+ 1)

for all x ∈ G and n ∈ N. By letting n→∞, we get F ′ = F , which yields

‖f(x)− F (x)‖ ≤ εm(x)

1− 2λ(m+ 1)− 2λ(m)− λ(2m+ 1)

for all x ∈ G and all m ∈ Nn0 . Next, in view of (1.7), we have

inf

{
εm(x)

1− 2λ(m+ 1)− 2λ(m)− λ(2m+ 1)
: m ∈ Nn0

}
= 0 (2.15)

for all x ∈ G, this means that f(x) = F (x) for x ∈ G, which implies that f satisfies the functional
equation (1.2) on G and the proof of the theorem is complete.
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In a similar way we can prove that Theorem (2.1) holds if the inequality (2.1) is defined on
G\{0} := G0.

Theorem 2.2. Let G be an abelian group, E be a Banach space. Let E be the set of all functions
ε : G2

0 → R0 which satisfy the conditions as stated in the beginning of Section (2). Let a function
f : G→ E satisfy∥∥∥∥f(x+ y) +

1

2
[f(x− y) + f(y − x)]− 2f(y)− 2f(x)

∥∥∥∥ ≤ ε(x, y)

for all x, y ∈ G0 and for some ε ∈ E . Then f satisfies the functional equation (1.2) on G0.

Theorem 2.3. Let G be an abelian group, E be a Banach space. Let E be the set of all functions
ε : G2

0 → R0 which satisfy the conditions as stated in the beginning of Section (2). Let a function
f : G→ E satisfy f(0) = 0 and∥∥∥∥f(x+ y) +

1

2
[f(x− y) + f(y − x)]− 2f(y)− 2f(x)

∥∥∥∥ ≤ ε(x, y)

for all x, y ∈ G0 and for some ε ∈ E . Then f satisfies the functional equation (1.2) on G.

Proof. It easy to see that if f(0) = 0, then f satisfies the functional equation (1.2) on the whole
G.

From Theorem (2.2), we can obtain the following three corollaries with the cases ε(x, y) =
c (‖x‖p + ‖y‖q), ε(x, y) = c ‖x‖p ‖y‖q and ε(x, y) = c

(
‖x‖p + ‖y‖q + ‖x‖p ‖y‖q

)
as natural results.

Corollary 2.4. Let E and F be a normed space and a Banach space, respectively. Assume that
X := (X,+) is a subgroup of the group (E,+), p < 0, q < 0 and c ≥ 0. If a function f : X → F
satisfies the inequality∥∥∥f(x+ y) +

1

2
[f(x− y) + f(y − x)]− 2f(x)− 2f(y)

∥∥∥ ≤ c( ‖x‖p + ‖y‖q
)

(2.16)

for all x, y ∈ X\{0}. Then the function f is a solution of the functional equation (1.2) on X\{0}.

Proof. By taking E the set of all functions ε : (X\{0})2 → R0 such that

ε(x, y) = c
(
‖x‖p + ‖y‖q

)
,

for some c ∈ R0 and for all (x, y) ∈ (X\{0})2. Define H : R2
+ → R0 by H(u, v) = c(up + vp) for some

p < 0 and for all u, v ∈ R+ and γ : E → R0 by γ(x) = ‖x‖ for all x ∈ E.
It is easily seen that H is monotonically symmetric homogeneous function of degree p < 0 and
conditions indicated in the start of the second section are fulfilled. Therefore every function f : E → F
satisfying (2.16) is a solution of the functional equation (1.2) on X\{0}.

Note that if f(0) = 0 and f satisfies (2.16) on X\{0}, then from Theorem (2.3) we obtain the
following hyperstabilty result for (1.2) on X.

Corollary 2.5. Let E and F be a normed space and a Banach space, respectively. Assume that X
is a subgroup of the group (E,+), and p < 0, q < 0 and c ≥ 0. Let a function f : X → E satisfy
f(0) = 0 and∥∥∥f(x+ y) +

1

2
[f(x− y) + f(y − x)]− 2f(x)− 2f(y)

∥∥∥ ≤ c( ‖x‖p + ‖y‖q
)

(2.17)

for all x, y ∈ X\{0}. Then f satisfies the functional equation (1.2) on X.
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In the case where functions ε ∈ E are given by

ε(x, y) = c ‖x‖p . ‖y‖q x, y ∈ X\{0},

with some real c ∈ R0 and p, q ∈ R such that p+ q < 0, we also get an analogous conclusion.

Corollary 2.6. Let E and F be a normed space and a Banach space, respectively. Assume that X
is a subgroup of the group (E,+), and c ≥ 0, p, q ∈ R, p+ q < 0 are given. If f : X → F satisfies∥∥∥f(x+ y) +

1

2
[f(x− y) + f(y − x)]− 2f(y)− 2f(x)

∥∥∥ ≤ c ‖x‖p . ‖y‖q (2.18)

for all x, y ∈ E\{0}, then f satisfies the functional equation (1.2) on X\{0}.

Corollary 2.7. Let E and F be a normed space and a Banach space, respectively. Assume that X
is a subgroup of the group (E,+), and p < 0, q < 0, p+ q < 0 and c ≥ 0. If f : X → F satisfies∥∥∥f(x+ y) +

1

2
[f(x− y) + f(y − x)]− 2f(y)− 2f(x)

∥∥∥
≤ c
(
‖x‖p + ‖y‖q + ‖x‖p . ‖y‖q

) (2.19)

for all x, y ∈ X\{0}, then f satisfies the functional equation (1.2) on X\{0}.

We know that any norm that satisfies the parallelogram law is bound to have been originated from
a scalar product. The following corollary gives a characterization of the inner product space, which is
one of the applications of Corollary (2.4).

Corollary 2.8. Let E be a normed space and

sup
x,y∈E\{0}

∣∣‖x+ y‖2 + ‖x− y‖2 − 2 ‖x‖2 − 2 ‖y‖2
∣∣

‖x‖p + ‖y‖p <∞ (2.20)

for some p < 0. Then E is an inner product space.

Proof. Write f(x) = ‖x‖2 for x ∈ E. Then from Corollary (2.5), we have

f(x+ y) +
1

2
[f(x− y) + f(y − x)] = 2f(x) + 2f(y) x, y ∈ E.

That implies

‖x+ y‖2 +
1

2

[
‖x− y‖2 + ‖y − x‖2

]
= 2 ‖x‖2 + 2 ‖y‖2 x, y ∈ E.

Thus, the norm ‖.‖ on E obeys the parallelogram low:

‖x+ y‖2 + ‖x− y‖2 = 2 ‖x‖2 + 2 ‖y‖2 x, y ∈ E.

Therefore, E is an inner product space.
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[21] Maksa G, Páles Z. Hyperstability of a class of linear functional equations.
Acta Math. Acad. Paedagogiecae Nyı́regyháziensis. 2001; 17: 107–112.
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