SCIENCEDOMAIN *international* <www.sciencedomain.org>

The E**-Hyperstability of an Euler-Lagrange Type Quadratic Functional Equation in Banach Spaces**

Mohamed Sirouni¹[∗](#page-0-0) **and Samir Kabbaj**¹

¹ *Faculty of Sciences, Department of Mathematics, Ibn Tofail University, BP:14000, Kenitra, Morocco.*

Article Information

DOI: 10.9734/BJMCS/2015/14474 *Editor(s):* (1) Kai-Long Hsiao, Taiwan Shoufu University, Taiwan. *Reviewers:* (1) Anonymous, Mexico. (2) Anonymous, China. (3) Anonymous, South Korea. Complete Peer review History: http://www.sciencedomain.org/review-history.php?iid=736&id=6&aid=7824

Original Research Article

Received: 30 September 2014 Accepted: 22 November 2014 Published: 20 January 2015

Abstract

The main goal of this paper is the investigation of the \mathcal{E} -hyperstability of an Euler-Lagrange type quadratic functional equation

$$
f(x + y) + \frac{1}{2} \Big[f(x - y) + f(y - x) \Big] = 2f(y) + 2f(x)
$$

in the class of functions from an abelian group into a Banach space.

Keywords: Quadratic functional equation, stability, hyperstability, banach space. 2010 Mathematics Subject Classification: 39B52; 39B82; 39B72.

1 Introduction and Preliminaries

In 1940, S. M. Ulam [1] gave a talk before the Mathematics Club of the University of Wisconsin in which suggested the following stability problem, well-known as Ulam stability problem: Let G_1 be a group and let G_2 be a metric group with the metric $d(.,.)$. Given $\varepsilon > 0$, does there exist a $\delta > 0$ such that if a mapping $h: G_1 \to G_2$ satisfies the inequality $d(h(xy), h(x)h(y)) < \delta$ for all

^{}Corresponding author: E-mail: sirounim@gmail.com*

 $x, y \in G_1$, then there is a homomorphism $H: G_1 \to G_2$ with $d(h(x), H(x)) < \varepsilon$ for all $x \in G_1$?

In 1941, D. H. Hyers provided in [2] a first partial answer to Ulam's problem for Banach spaces. Hyers' theorem was generalized by T. Aoki [3] for additive mappings and by Th. M. Rassias [4] for linear mappings by considering an unbounded Cauchy difference. P. Găvruta [5] provided a further generalization of the Rassias' theorem by using a general control function.

A functional equation of the form

$$
f(x + y) + f(x - y) = 2f(x) + 2f(y)
$$
\n(1.1)

is called the quadratic functional equation. Every solution of the quadratic functional equation is said to be quadratic function. Quadratic functional equation was used to characterize inner product spaces [6, 7, 8]. It is well known that a function f between real vector spaces is quadratic if and only if there exists a unique symmetric bi-additive function B such that $f(x) = B(x, x)$ for all x (see [6, 9]). The bi-additive mapping is given by

$$
B(x, y) = \frac{1}{4} [f(x + y) - f(x - y)].
$$

The Hyers-Ulam stability problem for the above quadratic functional equation was proved by F. Skof [10] for mapping $f: X \to Y$, where X is a normed space and Y is a Banach space. P. W. Cholewa [11] noticed that the theorem of F. Skof is still true if relevant domain X is replaced by an abelian group. In [12], S. Cherwik proved the generalized Hyers-Ulam stability of the quadratic functional equation as above. A. Grabiec [13] has generalized these results mentioned above. Several functional equations have been investigated in [14, 15, 16, 17, 18, 19].

M. J. Rassias [20] introduced the Euler-Lagrange type quadratic functional equation

$$
f(x+y) + \frac{1}{2} \Big[f(x-y) + f(y-x) \Big] = 2f(y) + 2f(x)
$$
\n(1.2)

and established the general solution and the "J. M. Rassias product-sum" stability for the functional equation [\(1.2\)](#page-1-0).

The above equation and his stability results have many applications in Mathematical Statistics, Stochastic Analysis and Psychology. Every solution of [\(1.2\)](#page-1-0) satisfies the quadratic functional equation [\(1.1\)](#page-1-1).

In 2001, G. Maksa and Z. Páles [21] proved a new type of stability of a class of linear functional equation

$$
f(x) + f(y) = \frac{1}{n} \sum_{i=1}^{n} f(x\varphi_i(y)),
$$
\n(1.3)

where f is a real-valued mapping defined on a semigroup $S := (S, .)$ and where the maps $\varphi_1, \dots, \varphi_n$. $S \rightarrow S$ are pairwise distinct automorphisms of S. More precisely, they proved that if the error bound for the difference of the two sides of [\(1.3\)](#page-1-2) satisfies a certain asymptotic property, then in fact, the two sides have to be equal. Such a phenomenon is called the hyperstability of the functional equation on $S.$ Further, J. Brzdęk and K. Ciepliński [22] introduced the following definition, which describes the main ideas of such a hyperstability notion for equations in several variables.

Throughout this paper, we will denote the set of natural numbers by $\mathbb N$, the set of integers by $\mathbb Z$ and the set of real numbers by R. Let N_+ be the set of positive integers. By N_m , $m \in N_+$, we will denote the set of all integers greater than or equal to m. Let $\mathbb{R}_0 := [0, \infty)$ be the set of nonnegative real numbers and $\mathbb{R}_+ := (0,\infty)$ the set of positive real numbers. We write B^A to mean " the family of all functions mapping from a nonempty set A into a nonempty set B ".

Definition 1.1. Let X be a nonempty set, (Y, d) be a metric space, $\varepsilon \colon X^n \to \mathbb{R}_0$ be an arbitrary function, and let \mathcal{F}_1 , \mathcal{F}_2 be two operators mapping from a nonempty set $\mathcal{D} \subset Y^X$ into Y^{X^n} . We say that the operator equation

$$
\mathcal{F}_1\varphi(x_1,\ldots,x_n)=\mathcal{F}_2\varphi(x_1,\ldots,x_n),\quad (x_1,\ldots,x_n\in X)\tag{1.4}
$$

is ε -hyperstable provided that every $\varphi_0 \in \mathcal{D}$ which satisfies

$$
d(\mathcal{F}_1\varphi_0(x_1,\ldots,x_n),\mathcal{F}_2\varphi_0(x_1,\ldots,x_n))\leq \varepsilon(x_1,\ldots,x_n),\quad (x_1,\ldots,x_n\in X)
$$

fulfills equation [\(1.4\)](#page-2-0) on X .

In this article, we introduce the following definition, which describes the main ideas of the concept of hyperstability for equations in several variables.

Definition 1.2. Let X be a nonempty set, (Y, d) be a metric space, $\mathcal{E} \subset \mathbb{R}_+^{X^n}$ be a nonempty subset, and \mathcal{F}_1 , \mathcal{F}_2 be operators mapping from a nonempty set $\mathcal{D} \subset Y^X$ into Y^{X^n} . We say that the operator equation

$$
\mathcal{F}_1\varphi(x_1,\ldots,x_n)=\mathcal{F}_2\varphi(x_1,\ldots,x_n),\quad (x_1,\ldots,x_n\in X)
$$
\n(1.5)

is $\mathcal E$ -hyperstable for the pair (X, Y) provided for any $\varepsilon \in \mathcal E$ and $\varphi_0 \in \mathcal D$ satisfies the inequality

$$
d\big(\mathcal{F}_1\varphi_0(x_1,\ldots,x_n),\mathcal{F}_2\varphi_0(x_1,\ldots,x_n)\leq \varepsilon(x_1,\ldots,x_n),\quad (x_1,\ldots,x_n\in X)\tag{1.6}
$$

fulfills equation [\(1.5\)](#page-2-1).

In [23], J. Brzdęk proved the hyperstability of the Cauchy's functional equation by an idea based on a fixed point result that can be derived from Theorem 1([24]). E. Gselmann [25] investigated the hyperstability of parametric fundamental equation of information. M. Piszczek in [26] proved the hyperstability of the general linear equation. In 2014, A. Bahyrycz and M. Piszczek in [27] studied the hyperstability of the Jensen's equation on a restricted domain. M. Piszczek and J. Szczawinska ´ in [28] studied the hyperstability of the Drygas equation.

A function $H\colon\mathbb{R}_0^2\to\mathbb{R}_0$ is called homogeneous of degree a real number p if it satisfies $H(tu,tv)=$ $t^pH(u,v)$ for all $t\in\mathbb{R}_+$ and $u,v\in\mathbb{R}_0.$ In the sequel, we assume that $G=(G,+)$ is an abelian group, E is an arbitrary real Banach space, $H\colon\mathbb{R}^2_0\to\mathbb{R}_0$ is a symmetric homogeneous function of degree $p < 0$ for which there exists a positive integer n_0 such that

$$
\inf \left\{ \varepsilon((m+1)x, -mx) : m \in \mathbb{N}_{n_0} \right\} = 0 \tag{1.7}
$$

for all $x \in G$, and $\gamma: G \to \mathbb{R}_+$ is a function satisfying:

- **(C1)** $\gamma(kx) = |k| \gamma(x)$ for all $k \in \mathbb{Z} \setminus \{0\}$ and all $x \in G$,
- **(C2)** $\gamma(x+y) \leq \gamma(x) + \gamma(y)$ for all $x, y \in G$.

We will denote by $\mathcal E$ the set of all functions $\varepsilon\colon G^2\to\R_0$ for which there exist a constant $c\in\R_0$ such that

$$
\varepsilon(x, y) = cH(\gamma(x), \gamma(y)) \qquad x, y \in G. \tag{1.8}
$$

Remark 1.1*.* Note that conditions (C1) and (C2) imply the following equality

$$
\varepsilon(kx, ky) = |k|^p \, \varepsilon(x, y)
$$

for all $k \in \mathbb{Z} \backslash \{0\}$ and all $x, y \in G$.

The aim goal of the paper is to establish the \mathcal{E} -hyperstability of [\(1.2\)](#page-1-0) in the class of functions from a commutative group $(G,+)$ into a Banach space E by a fixed point method that can be derived from [22].

Before proceeding to the main results, we will prove the general solution of the functional equation [\(1.2\)](#page-1-0) on an abelian group and state the fixed point theorem (Theorem [1.2\)](#page-3-0) which is useful to our purpose.

We first obtain the general solution of the proposed functional equation [\(1.2\)](#page-1-0).

Lemma 1.1. Let $(G, +)$ be an abelian group and E be a real vector space. A function $f: G \to E$ *satisfies the functional equation*

$$
f(x+y) + \frac{1}{2} \Big[f(x-y) + f(y-x) \Big] = 2f(x) + 2f(y)
$$
\n(1.9)

for all $x, y \in G$ *if and only if it satisfies*

$$
f(x+y) + f(x-y) = 2f(x) + 2fy \tag{1.10}
$$

for all $x, y \in G$ *.*

To present the fixed point theorem, we need the following three hypothesis [22]:

- **(H1)** U is a nonempty set, E_2 is a Banach space, $f_1, \ldots, f_k : U \to U$ and $L_1, \ldots, L_k : U \to \mathbb{R}_+$ are given.
- **(H2)** $\mathcal{T}: E_2^U \to E_2^U$ is an operator satisfying the inequality

$$
\|\mathcal{T}\xi(x) - \mathcal{T}\mu(x)\| \le \sum_{i=1}^k L_i(x) \|\xi(f_i(x)) - \mu(f_i(x))\| \qquad \xi, \mu \in E_2^U, x \in U.
$$

(H3) $\Lambda: \mathbb{R}^U_+ \to \mathbb{R}^U_+$ is defined by

$$
\Lambda \delta(x) := \sum_{i=1}^k L_i(x) \delta(f_i(x)) \qquad \delta \in \mathbb{R}^U_+, x \in U.
$$

Now we present the mentioned fixed point theorem.

Theorem 1.2. *[22].* Let hypotheses (H1)-(H3) be valid and functions $\varepsilon: U \to \mathbb{R}_+$ and $\varphi: U \to E_2$ *satisfy the following two conditions*

$$
\begin{aligned} \|\mathcal{T}\varphi(x) - \varphi(x)\| &\leq \varepsilon(x) & x \in U, \\ \varepsilon^* &:= \sum_{n=1}^{\infty} \Lambda^n \varepsilon(x) < \infty & x \in U. \end{aligned}
$$

Then there exists a unique fixed point ψ *of* T *with*

$$
\|\varphi(x) - \psi(x)\| \le \varepsilon^*(x) \qquad x \in U.
$$

Moreover,

$$
\psi(x) := \lim_{n \to \infty} \mathcal{T}^n \varphi(x) \qquad x \in U.
$$

2 $\mathcal{E}\text{-Hypers}$ *E*-Hyperstability of (1.2)

Using Theorem [\(1.2\)](#page-1-0), we prove that the functional equation (1.2) is $\mathcal E$ -hyperstable for the pair (G, E) .

Theorem 2.1. *Let* G *be an abelian group,* E *be a Banach space. Let a function* $f: G \to E$ *satisfy*

$$
\left\| f(x+y) + \frac{1}{2} \left[f(x-y) + f(y-x) \right] - 2f(y) - 2f(x) \right\| \le \varepsilon(x,y)
$$
\n(2.1)

for all $x, y \in G$ *and for some* $\varepsilon \in \mathcal{E}$. Then f satisfies the functional equation [\(1.2\)](#page-1-0) *on* G.

Proof. Not that for some $p < 0$, we have

$$
\lim_{m \to \infty} (2(m+1)^p + 2m^p + (2m+1)^p) = 0.
$$

Then, there exists $n_0 \in \mathbb{N}$ such that

$$
2(m+1)^p + 2(m)^p + (2m+1)^p < 1\tag{2.2}
$$

for all $m \geq n_0$.

Let $\varepsilon \in \mathcal{E}$, then there exists $c \in \mathbb{R}_0$ such that $\varepsilon(x, y) = cH(\gamma(x), \gamma(y))$. Let $f: G \to E$ be a function satisfy the inequality

$$
\left\| f(x+y) + \frac{1}{2} \left[f(x-y) + f(y-x) \right] - 2f(y) - 2f(x) \right\| \le \varepsilon(x,y)
$$

for all $x, y \in G$. Let us fix $m \in \mathbb{N}_{n_0}$. Replacing x by $(m + 1)x$ and y by $-mx$ in [\(2.1\)](#page-4-0), we get

$$
\left\| f(x) - 2f((m+1)x) - 2f(-mx) + \frac{1}{2}f((2m+1)x) + \frac{1}{2}f((-2m-1)x) \right\|
$$

\n
$$
\leq \varepsilon((m+1)x, -mx)
$$

\n
$$
= H(\gamma((m+1)x), \gamma(-mx)) := \varepsilon_m(x)
$$
\n(2.3)

for all $x \in G$. Putting

$$
\mathcal{T}_{m}\xi(x) := 2\xi((m+1)x) + 2\xi(-mx) - \frac{1}{2}\xi((2m+1)x) - \frac{1}{2}\xi((-2m-1)x)
$$
 (2.4)

for all $x \in G$ and $\xi \in E^G.$ Then the inequality [\(2.3\)](#page-4-1) becomes

$$
\|\mathcal{T}_{m}f(x) - f(x)\| \le \varepsilon_{m}(x) \qquad x \in G. \tag{2.5}
$$

Now, we define an operator $\Lambda_m \colon \mathbb{R}_+^G \to \mathbb{R}_+^G$ by

$$
\Lambda_m \eta(x) := 2\eta((m+1)x) + 2\eta(-mx) + \frac{1}{2}\eta((2m+1)x) + \frac{1}{2}\eta((-2m-1)x)
$$
 (2.6)

for all $x \in G$ and $\eta \in \mathbb{R}_+^G$. This operator has the form described in $(H3)$ with $k=4$ and $f_1(x)=$ $(m + 1)x$, $f_2(x) = -mx$, $f_3(x) = (2m + 1)x$, $f_4(x) = (-2m - 1)x$, $L_1(x) = L_2(x) = 2$ and $L_3(x) = L_4(x) = \frac{1}{2}$ for all $x \in G$.

Further ,

$$
\left\| \mathcal{T}_{m}\xi(x) - \mathcal{T}_{m}\mu(x) \right\| = \left\| 2\xi((m+1)x) + 2\xi(-mx) - \frac{1}{2}\xi((2m+1)x) - \frac{1}{2}\xi((-2m-1)x) - 2\mu((m+1)x) - 2\mu(-mx) + \frac{1}{2}\mu((2m+1)x) + \frac{1}{2}\mu((-2m-1)x) \right\|
$$

\n
$$
\leq 2 \left\| (\xi - \mu)((m+1)x) \right\| + 2 \left\| (\xi - \mu)(-mx) \right\| + \frac{1}{2} \left\| (\xi - \mu)((2m+1)x) \right\| + \frac{1}{2} \left\| (\xi - \mu)((-2m-1)x) \right\|
$$

\n
$$
= \sum_{i=1}^{4} L_{i}(x) \left\| (\xi - \mu)(f_{i}(x)) \right\|
$$

\n
$$
= \sum_{i=1}^{4} L_{i}(x) \left\| (\xi - \mu)(f_{i}(x)) \right\|
$$

for all $x \in G$ and all $\xi, \mu \in E^G.$ Therefore, In view of [\(2.6\)](#page-4-2) and [\(1.8\)](#page-2-2), it is easily to check that

$$
\Lambda_{m\epsilon_{m}}(x) = 2\varepsilon_{m}((m+1)x) + 2\varepsilon_{m}(-mx) + \frac{1}{2}\varepsilon_{m}((2m+1)x)
$$

+ $\frac{1}{2}\varepsilon_{m}((-2m-1)x)$
= $2H(\gamma((m+1)(m+1)x), \gamma(-m(m+1)x))$
+ $2H(\gamma((m+1)(-mx)), \gamma(-m(-mx)))$
+ $\frac{1}{2}H(\gamma((m+1)(2m+1)x), \gamma(-m(2m+1)x))$
+ $\frac{1}{2}H(\gamma((m+1)(-2m-1)x), \gamma(-m(-2m-1)x))$
= $2H((m+1)\gamma((m+1)x), (m+1)\gamma(-mx)) + 2H(m\gamma((m+1)x),$
 $m\gamma(-mx) + H((2m+1)\gamma((m+1)x), (2m+1)\gamma(-mx))$
= $2(m+1)^{p}H(\gamma((m+1)x), \gamma(-mx)) + 2m^{p}H(\gamma((m+1)x), \gamma(-mx))$
+ $(2m+1)^{p}H(\gamma((m+1)x), \gamma(-mx))$
= $(2(m+1)^{p} + 2m^{p} + (2m+1)^{p})H(\gamma((m+1)x), \gamma(-mx))$
= $(2(m+1)^{p} + 2m^{p} + (2m+1)^{p})\varepsilon_{m}(x).$

Then,

$$
\sum_{k=0}^{n} \Lambda_m^k \varepsilon_m(x) = \varepsilon_m(x) \sum_{k=0}^{n} \left(2(m+1)^p + 2m^p + (2m+1)^p \right)^k
$$
 (2.9)

for all $x \in G$ and $n \in \mathbb{N}$. As $m \in \mathbb{N}_{n_0}$, we have

$$
\varepsilon_m^*(x) := \sum_{k=0}^{\infty} \Lambda_m^k \varepsilon_m(x)
$$

= $\varepsilon_m(x) \sum_{k=0}^{\infty} \left(2(m+1)^p + 2m^p + (2m+1)^p \right)^k$
= $\frac{\varepsilon_m(x)}{1 - 2(m+1)^p - 2m^p - (2m+1)^p}$
< ∞

for all $x \in G$. Now, it follows from Theorem [\(1.2\)](#page-3-0) that there exists a unique solution $F_m : G \to E$ of the functional equation

$$
F_m(x) = 2F_m((m+1)x) + 2F_m(-mx)
$$

$$
- \frac{1}{2}F_m((2m+1)x) - \frac{1}{2}F_m((-2m-1)x) \quad x \in G,
$$
 (2.10)

which is a fixed point of \mathcal{T}_m , such that

$$
||F_m(x) - f(x)|| \le \frac{\varepsilon_m(x)}{1 - 2(m+1)^p - 2(m)^p - (2m+1)^p}
$$
\n(2.11)

for all $x \in G$. Moreover,

$$
F_m(x) = \lim_{n \to \infty} \mathcal{T}_m^n f(x) \qquad x \in G.
$$

To prove that the function F_m satisfies the functional equation [\(1.2\)](#page-1-0) on G , it suffices to prove the following inequality

$$
\left\| \mathcal{T}_{m}^{n} f(x+y) + \frac{1}{2} \mathcal{T}_{m}^{n} f(x-y) + \frac{1}{2} \mathcal{T}_{m}^{n} f(y-x) - 2 \mathcal{T}_{m}^{n} f(x) - 2 \mathcal{T}_{m}^{n} f(y) \right\|
$$
\n
$$
\leq \left(2(m+1)^{p} + 2(m)^{p} + (2m+1)^{p} \right)^{n} \varepsilon(x,y) \tag{2.12}
$$

for all $x, y \in G$, and $n \in \mathbb{N}$.

Indeed, if $n = 0$, then [\(2.12\)](#page-6-0) is simply [\(2.1\)](#page-4-0). So, take $n \in \mathbb{N}_+$ and suppose that (2.12) holds for $n \in \mathbb{N}_+$ and $x, y \in G$. Then, using [\(2.4\)](#page-4-3) and [\(2.12\)](#page-6-0), we have

$$
\left\| \mathcal{T}_{m}^{n+1} f(x+y) + \frac{1}{2} \mathcal{T}_{m}^{n+1} f(x-y) + \frac{1}{2} \mathcal{T}_{m}^{n+1} f(y-x) - 2 \mathcal{T}_{m}^{n+1} f(x) \right\}
$$

$$
-2 \mathcal{T}_{m}^{n+1} f(y) \left\| = \left\| 2 \mathcal{T}_{m}^{n} f((m+1)(x+y)) + 2 \mathcal{T}_{m}^{n} f(-m(x+y)) \right\}
$$

$$
-\frac{1}{2} \mathcal{T}_{m}^{n} f((2m+1)(x+y)) - \frac{1}{2} \mathcal{T}_{m}^{n} f((-2m-1)(x+y))
$$

$$
+ \mathcal{T}_{m}^{n} f((m+1)(x-y)) + \mathcal{T}_{m}^{n} f(-m(x-y))
$$

$$
-\frac{1}{4} \mathcal{T}_{m}^{n} f((2m+1)(x-y)) - \frac{1}{4} \mathcal{T}_{m}^{n} f((-2m-1)(x-y))
$$

$$
+ \mathcal{T}_{m}^{n} f((m+1)(y-x)) + \mathcal{T}_{m}^{n} f(-m(y-x))
$$

$$
-\frac{1}{4} \mathcal{T}_{m}^{n} f((2m+1)(y-x)) - \frac{1}{4} \mathcal{T}_{m}^{n} f((-2m-1)(y-x))
$$

$$
-4\mathcal{T}_{m}^{n}f((m+1)x) - 4\mathcal{T}_{m}^{n}f(-mx)
$$

+ $\mathcal{T}_{m}^{n}f((2m+1)x) + \mathcal{T}_{m}^{n}f((-2m-1)x)$
- $4\mathcal{T}_{m}^{n}f((m+1)y) - 4\mathcal{T}_{m}^{n}f(-my)$
+ $\mathcal{T}_{m}^{n}f((2m+1)y) + \mathcal{T}_{m}^{n}f((-2m-1)y)\Big\|$
 $\leq 2\Big\|T^{n}f((m+1)(x+y)) + \frac{1}{2}T^{n}f((m+1)(x-y))$
+ $\frac{1}{2}T^{n}f((m+1)(y-x)) - 2T^{n}f((m+1)x) - 2T^{n}f((m+1)y)\Big\|$
+ $2\Big\|T^{n}f(-m(x+y)) + \frac{1}{2}T^{n}f(-m(x-y))$
+ $\frac{1}{2}T^{n}f(-m(y-x)) - 2T^{n}f(-mx) - 2T^{n}f(-my)\Big\|$
+ $\frac{1}{2}\Big\|T^{n}f((2m+1)(x+y)) + \frac{1}{2}T^{n}f((2m+1)(x-y))$
+ $\frac{1}{2}\Big\|T^{n}f((2m+1)(y-x)) - 2T^{n}f((2m+1)x) - 2T^{n}f((2m+1)y)\Big\|$
+ $\frac{1}{2}\Big\|T^{n}f((-2m-1)(x+y)) + \frac{1}{2}T^{n}f((-2m-1)(x-y))$
+ $\frac{1}{2}T^{n}f((-2m-1)(y-x)) - 2T^{n}f((-2m-1)x) - 2T^{n}f((-2m-1)y)\Big\|$
 $\leq (2(m+1)^{p} + 2m^{p} + (2m+1)^{p})^{n} (2(m+1)^{p} + 2m^{p} + (2m+1)^{p})\varepsilon(x,y)$
 $(2(m+1)^{p} + 2(m)^{p} + (2m+1)^{p})^{n+1}\varepsilon(x,y).$

By induction, we have shown that [\(2.12\)](#page-6-0) holds for all $x, y \in G$. Letting $n \to \infty$ in (2.12), we get

$$
F_m(x+y) + \frac{1}{2} \left[F_m(x-y) + F_m(y-x) \right] = 2F_m(x) + 2F_m(y)
$$
\n(2.13)

for all $x, y \in G$. Thus, we have proved that for every $m \in \mathbb{N}_{n_0}$ there exists a function $F_m : G \to E$ which is a solution of the functional equation [\(1.2\)](#page-1-0) on G and satisfies

$$
||f(x) - F_m(x)|| \le \frac{\varepsilon_m(x)}{1 - 2\lambda(m+1) - 2\lambda(m) - \lambda(2m+1)}
$$
 (2.14)

for all $x \in G$. Next, we prove that $F_m = F_k$ for all $m, k \in \mathbb{N}_{n_0}$. Let us fix $m, k \in \mathbb{N}_{n_0}$. Note that F_m and F_k satisfy [\(2.13\)](#page-7-0). Hence, by replacing x by $(m + 1)x$ and y by $-mx$ in [\(2.13\)](#page-7-0), we get,

$$
F_m(x) = 2F_m((m+1)x) + 2F_m(-mx) - \frac{1}{2}F_m((2m+1)x) - \frac{1}{2}F_m((-2m-1)x),
$$

\n
$$
F_k(x) = 2F_k((m+1)x) + 2F_k(-mx) - \frac{1}{2}F_k((2m+1)x) - \frac{1}{2}F_k((-2m-1)x)
$$

for all $x \in G$, that is $\mathcal{T}_m F_m = F_m$, $\mathcal{T}_m F_k = F_k$ and

=

$$
||F_m(x) - F_k(x)|| \leq \frac{\varepsilon_m(x)}{1 - 2\lambda(m+1) - 2\lambda(m) - \lambda(2m+1)}
$$

$$
+ \frac{\varepsilon_k(x)}{1 - 2\lambda(k+1) - 2\lambda(k) - \lambda(2k+1)}
$$

for all $x \in G$. Hence, by linearity of Λ_m and [\(2.8\)](#page-5-0), we get

$$
||F_m(x) - F_k(x)|| = ||\mathcal{T}_m^n F_m(x) - \mathcal{T}_m^n F_k(x)||
$$

\n
$$
\leq \frac{\Lambda_m^n \varepsilon_m(x)}{1 - 2\lambda(m+1) - 2\lambda(m) - \lambda(2m+1)}
$$

\n
$$
+ \frac{\Lambda_m^n \varepsilon_k(x)}{1 - 2\lambda(k+1) - 2\lambda(k) - \lambda(2k+1)}
$$

\n
$$
\leq \frac{\left(2(m+1)^p + 2(m)^p + (2m+1)^p\right)^n \varepsilon_m(x)}{1 - 2\lambda(m+1) - 2\lambda(m) - \lambda(2m+1)}
$$

\n
$$
+ \frac{\left(2(m+1)^p + 2(m)^p + (2m+1)^p\right)^n \varepsilon_k(x)}{1 - 2\lambda(k+1) - 2\lambda(k) - \lambda(2k+1)}
$$

for all $x \in G$ and $n \in \mathbb{N}$. Now letting $n \to \infty$ we get $F_m = F_k = F$. Thus, in view of [\(2.14\)](#page-7-1), we have

$$
||f(x) - F(x)|| \le \frac{\varepsilon_m(x)}{1 - 2\lambda(m+1) - 2\lambda(m) - \lambda(2m+1)}
$$

for all $x \in G$ and all $m \in \mathbb{N}_{n_0}$.

Since [\(2.13\)](#page-7-0), the function F is a solution of [\(1.2\)](#page-1-0).

To prove the uniqueness of the function F, let us assume that there exists a function $F' \colon G \to E$ which satisfies [\(1.2\)](#page-1-0) and the inequality

$$
||f(x) - F'(x)|| \le \frac{\varepsilon_m(x)}{1 - 2\lambda(m+1) - 2\lambda(m) - \lambda(2m+1)}
$$

for all $x\in G$ and all $m\in\mathbb{N}_{n_0}.$ Then it follows easily that

$$
||F(x) - F'(x)|| \le \frac{2\varepsilon_m(x)}{1 - 2\lambda(m+1) - 2\lambda(m) - \lambda(2m+1)}
$$

for all $x \in G$ and all $m \in \mathbb{N}_{n_0}$. Further, $\mathcal{T}_m F' = F'$ for each $m \in \mathbb{N}_{n_0}$. Therefore, with a fixed $m \in \mathbb{N}_{n_0}$,

$$
||F(x) - F'(x)|| = ||\mathcal{T}_m^n F(x) - \mathcal{T}_m^n F'(x)||
$$

\n
$$
\leq \frac{2\Lambda_m^n \varepsilon_m(x)}{1 - 2\lambda(m+1) - 2\lambda(m) - \lambda(2m+1)}
$$

\n
$$
\leq \frac{\left(2(m+1)^p + 2(m)^p + (2m+1)^p\right)^n \varepsilon_m(x)}{1 - 2\lambda(m+1) - 2\lambda(m) - \lambda(2m+1)}
$$

for all $x \in G$ and $n \in \mathbb{N}$. By letting $n \to \infty$, we get $F' = F$, which yields

$$
||f(x) - F(x)|| \le \frac{\varepsilon_m(x)}{1 - 2\lambda(m+1) - 2\lambda(m) - \lambda(2m+1)}
$$

for all $x \in G$ and all $m \in \mathbb{N}_{n_0}$. Next, in view of [\(1.7\)](#page-2-3), we have

$$
\inf \left\{ \frac{\varepsilon_m(x)}{1 - 2\lambda(m+1) - 2\lambda(m) - \lambda(2m+1)} : m \in \mathbb{N}_{n_0} \right\} = 0 \tag{2.15}
$$

for all $x \in G$, this means that $f(x) = F(x)$ for $x \in G$, which implies that f satisfies the functional equation [\(1.2\)](#page-1-0) on G and the proof of the theorem is complete.

 \Box

In a similar way we can prove that Theorem [\(2.1\)](#page-4-4) holds if the inequality [\(2.1\)](#page-4-0) is defined on $G\backslash\{0\} := G_0.$

Theorem 2.2. Let G be an abelian group, E be a Banach space. Let \mathcal{E} be the set of all functions $\varepsilon\colon G_0^2\to\mathbb{R}_0$ which satisfy the conditions as stated in the beginning of Section [\(2\)](#page-4-5). Let a function $f: G \to E$ *satisfy*

$$
\left\| f(x+y) + \frac{1}{2} \left[f(x-y) + f(y-x) \right] - 2f(y) - 2f(x) \right\| \le \varepsilon(x,y)
$$

for all $x, y \in G_0$ *and for some* $\varepsilon \in \mathcal{E}$. Then f satisfies the functional equation [\(1.2\)](#page-1-0) *on* G_0 .

Theorem 2.3. *Let* G *be an abelian group,* E *be a Banach space. Let* E *be the set of all functions* $\varepsilon\colon G_0^2\to\mathbb{R}_0$ which satisfy the conditions as stated in the beginning of Section [\(2\)](#page-4-5). Let a function $f: G \to E$ satisfy $f(0) = 0$ and

$$
\left\| f(x+y) + \frac{1}{2} \left[f(x-y) + f(y-x) \right] - 2f(y) - 2f(x) \right\| \le \varepsilon(x,y)
$$

for all $x, y \in G_0$ *and for some* $\varepsilon \in \mathcal{E}$. Then f satisfies the functional equation [\(1.2\)](#page-1-0) on G.

Proof. It easy to see that if $f(0) = 0$, then f satisfies the functional equation [\(1.2\)](#page-1-0) on the whole G. \Box

From Theorem [\(2.2\)](#page-9-0), we can obtain the following three corollaries with the cases $\varepsilon(x, y)$ = $c(||x||^p + ||y||^q)$, $\varepsilon(x, y) = c||x||^p ||y||^q$ and $\varepsilon(x, y) = c(||x||^p + ||y||^q + ||x||^p ||y||^q)$ as natural results.

Corollary 2.4. *Let* E *and* F *be a normed space and a Banach space, respectively. Assume that* $X := (X, +)$ *is a subgroup of the group* $(E, +)$, $p < 0$, $q < 0$ and $c > 0$. If a function $f: X \to F$ *satisfies the inequality*

$$
\left\| f(x+y) + \frac{1}{2} \left[f(x-y) + f(y-x) \right] - 2f(x) - 2f(y) \right\| \le c \left(\|x\|^p + \|y\|^q \right) \tag{2.16}
$$

for all $x, y \in X \setminus \{0\}$ *. Then the function f is a solution of the functional equation* [\(1.2\)](#page-1-0) *on* $X \setminus \{0\}$ *.*

Proof. By taking $\mathcal E$ the set of all functions $\varepsilon \colon (X \setminus \{0\})^2 \to \mathbb{R}_0$ such that

$$
\varepsilon(x,y) = c(||x||^p + ||y||^q),
$$

for some $c\in\mathbb{R}_0$ and for all $(x,y)\in (X\backslash\{0\})^2.$ Define $H\colon\mathbb{R}_+^2\to\mathbb{R}_0$ by $H(u,v)=c(u^p+v^p)$ for some $p < 0$ and for all $u, v \in \mathbb{R}_+$ and $\gamma : E \to \mathbb{R}_0$ by $\gamma(x) = ||x||$ for all $x \in E$.

It is easily seen that H is monotonically symmetric homogeneous function of degree $p < 0$ and conditions indicated in the start of the second section are fulfilled. Therefore every function $f\colon E\to F$ satisfying [\(2.16\)](#page-9-1) is a solution of the functional equation [\(1.2\)](#page-1-0) on $X\backslash\{0\}$. \Box

Note that if $f(0) = 0$ and f satisfies [\(2.16\)](#page-9-1) on $X\setminus\{0\}$, then from Theorem [\(2.3\)](#page-9-2) we obtain the following hyperstabilty result for (1.2) on X .

Corollary 2.5. *Let* E *and* F *be a normed space and a Banach space, respectively. Assume that* X *is a subgroup of the group* $(E, +)$ *, and* $p < 0$ *, q < 0 and c* ≥ 0 *. Let a function* $f: X \to E$ *satisfy* $f(0) = 0$ *and*

$$
\left\| f(x+y) + \frac{1}{2} \left[f(x-y) + f(y-x) \right] - 2f(x) - 2f(y) \right\| \le c \left(\|x\|^p + \|y\|^q \right) \tag{2.17}
$$

for all $x, y \in X \setminus \{0\}$. Then f satisfies the functional equation [\(1.2\)](#page-1-0) on X.

In the case where functions $\varepsilon \in \mathcal{E}$ are given by

$$
\varepsilon(x,y) = c \|x\|^p \cdot \|y\|^q \qquad x, y \in X \backslash \{0\},\
$$

with some real $c \in \mathbb{R}_0$ and $p, q \in \mathbb{R}$ such that $p + q < 0$, we also get an analogous conclusion.

Corollary 2.6. *Let* E *and* F *be a normed space and a Banach space, respectively. Assume that* X *is a subgroup of the group* $(E, +)$ *, and* $c \ge 0$ *, p*, $q \in \mathbb{R}$ *, p* + $q < 0$ *are given. If* $f: X \to F$ *satisfies*

$$
\left\| f(x+y) + \frac{1}{2} \left[f(x-y) + f(y-x) \right] - 2f(y) - 2f(x) \right\| \le c \left\| x \right\|^p \cdot \left\| y \right\|^q \tag{2.18}
$$

for all $x, y \in E \setminus \{0\}$ *, then f satisfies the functional equation* [\(1.2\)](#page-1-0) *on* $X \setminus \{0\}$ *.*

Corollary 2.7. *Let* E *and* F *be a normed space and a Banach space, respectively. Assume that* X *is a subgroup of the group* $(E, +)$ *, and* $p < 0$ *,* $q < 0$ *,* $p + q < 0$ *and* $c \ge 0$ *. If* $f : X \rightarrow F$ *satisfies*

$$
\left\| f(x+y) + \frac{1}{2} \left[f(x-y) + f(y-x) \right] - 2f(y) - 2f(x) \right\|
$$

$$
\leq c \left(\|x\|^p + \|y\|^q + \|x\|^p \cdot \|y\|^q \right)
$$
 (2.19)

for all $x, y \in X \setminus \{0\}$, then f satisfies the functional equation [\(1.2\)](#page-1-0) on $X \setminus \{0\}$.

We know that any norm that satisfies the parallelogram law is bound to have been originated from a scalar product. The following corollary gives a characterization of the inner product space, which is one of the applications of Corollary [\(2.4\)](#page-9-3).

Corollary 2.8. *Let* E *be a normed space and*

$$
\sup_{x,y\in E\setminus\{0\}}\frac{\||x+y\|^2 + \|x-y\|^2 - 2\|x\|^2 - 2\|y\|^2|}{\|x\|^p + \|y\|^p} < \infty \tag{2.20}
$$

for some p < 0*. Then* E *is an inner product space.*

Proof. Write $f(x) = ||x||^2$ for $x \in E$. Then from Corollary [\(2.5\)](#page-9-4), we have

$$
f(x + y) + \frac{1}{2}[f(x - y) + f(y - x)] = 2f(x) + 2f(y) \qquad x, y \in E.
$$

That implies

$$
||x+y||^{2} + \frac{1}{2} \Big[||x-y||^{2} + ||y-x||^{2} \Big] = 2 ||x||^{2} + 2 ||y||^{2} \qquad x, y \in E.
$$

Thus, the norm $\|.\|$ on E obeys the parallelogram low:

$$
||x + y||2 + ||x - y||2 = 2 ||x||2 + 2 ||y||2 \qquad x, y \in E.
$$

Therefore, E is an inner product space.

Competing Interests

The authors declare that no competing interests exist.

 \Box

References

- [1] Ulam SM. A collection of mathematical problems. Interscience Publishers New York. 1960; 8.
- [2] Hyers DH. On the stability of the linear functional equation. Proceedings of the National Academy of Sciences of the United States of America. 1941;27(4):222-224.
- [3] Aoki T. On the stability of the linear transformation in Banach spaces. Journal of the Mathematical Society of Japan. 1950;2(1-2):64-66.
- [4] Rassias TM. On the stability of the linear mapping in Banach spaces. Proceedings of the American Mathematical Society. 1978;72(2):297-300.
- [5] Găvrută PA. Generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, Journal of Mathematical Analysis and Applications. 1994;184(3):431-436.
- [6] Aczél J, Dhombres JD. Functional equations in several variables. Encyclopedia of Mathematics and its Applications, Cambridge University Press; 1989.
- [7] Amir D. Characterizations of inner product spaces. Operator theory, Birkhauser Verlag; 1986.
- [8] Jordan P, Neumann JV. On inner products in linear, metric spaces. Annals of Mathematics. 1935;36(3):719-723.
- [9] Kannappan PL. Quadratic functional equation and inner product spaces. Results in Mathematics. 1995;27(3-4):368-372.
- [10] Skof F. Proprieta' locali e approssimazione di operatori. Rendiconti del Seminario Matematico e Fisico di Milano. 1983;53(1):113-129.
- [11] Cholewa PW. Remarks on the stability of functional equations. Aequationes Mathematicae. 1984;27(1):76-86.
- [12] Czerwik S. On the stability of the quadratic mapping in normed spaces. Abhandlungenaus dem Mathematischen Seminar der Universitat Hamburg. 1992;62(1):59- ¨ 64.
- [13] Grabiec A. The generalized Hyers-Ulam stability of a class of functional equations. Publicationes Mathematicae Debrecen. 1996;48(3-4):217-235.
- [14] Park C. Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras. Fixed Point Theory and Applications. 2007;1:1-15.
- [15] Park C. Generalized Hyers-Ulam stability of quadratic functional equations: a fixed point approach. Taiwanese Journal of Mathematics. 2010;14(4):1591-1608.
- [16] Rassias TM. On the stability of the quadratic functional equation and its applications. Studia Univ. Babes-Bolyai. 1998;43:89-124.
- [17] Rassias TM. On the stability of functional equations and a problem of Ulam. Acta Applicandae Mathematica. 2000;62(1):23-130.
- [18] Rassias T. M. On the stability of functional equations in Banach spaces. Journal of Mathematical Analysis and Applications. 2000;251(1):264-284.
- [19] Rassias TM, Šemrl P. On the Hyers-Ulam stability of linear mappings. Journal of Mathematical Analysis and Applications. 1993;173(2):325-338.
- [20] Rassias M. J. J. M. Rassias product-sum stability of an Euler-Lagrange functional equation. The Journal of Nonlinear Sciences and its Applications. 2010;3(4):265-271.
- [21] Maksa G, Páles Z. Hyperstability of a class of linear functional equations. Acta Math. Acad. Paedagogiecae Nyíregyháziensis. 2001; 17: 107-112.
- [22] Brzdek J, Ciepliński K. Hyperstability and superstability. Abstract and Applied Analysis. Special Issue. 2013;1-13.
- [23] Brzdek J. Hyperstability of the Cauchy equation on restricted domains. Acta Mathematica Hungarica. 2013;142(1-2):58-67.
- [24] Brzdęk J, et al. A Fixed point approach to stability of functional equations. Nonlinear Analysis: Theory, Methods Applications. 2011;74(17):6728-6732.
- [25] Gselmann E. Hyperstability of a functional equation. Acta Mathematica Hungarica. 2009;124(1- 2):179-188.
- [26] Piszczek M. Remark on hyperstability of the general linear equation, Aequationes mathematicae. 2014;88(1-2):163-168.
- [27] Bahyrycz A, Piszczek M. Hyperstability of the Jensen functional equation. Acta Mathematica Hungarica. 2013;142(2):353-365.
- [28] Piszczek M, Szczawińska J. Hyperstability of the Drygas functional equation, Journal of Function Spaces and Applications, Hindawi Publishing Corporation. 2013;1-4.

——–

 c *2015 Sirouni Mohamed & Samir Kabbaj; This is an Open Access article distributed under the terms of the Creative Commons Attribution License [http://creativecommons.org/licenses/by/4.0,](http://creativecommons.org/licenses/by/4.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.*

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)

www.sciencedomain.org/review-history.php?iid=736&id=6&aid=7824