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Abstract 
 

In this paper, an optimal control parabolic problem is studied. The existence and uniqueness 
theorem for the solving optimal control parabolic problem is proved. Also, a theorem for the 
sufficient differentiability conditions of the functional and its gradient formulae has been proved. 

 

Keywords: Optimal control parabolic problems, existence and uniqueness theorems, adjoint 
system, sufficient differentiability conditions, gradient formulae. 

 

1 Introduction and Statement of the Optimal Control Problem 
 
The optimal control of systems described by partial differential equations has received increasing 
attention in recent years. Many of the problems of control in air-frames design, shipbuilding 
industry, magneto- hydrodynamics and other engineering field are problems of control of systems 
with distributed parameter systems [1-4]. In [4], the existence and uniqueness theorem is proved 

under constrained problem with closed bounded space of NE
 
but here the controls )(2 Lv  are 
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respected to tx, . In [4] the coefficients )),,(( vtxu  and xuvuB ),( were respected to ),( txu  

and these coefficients also had constraints but in the present paper ),,( vtx does not depend 

on ),( txu . Also, in [4] the sufficient differentiability conditions of the functional and its gradient 

formulae proved using the modified functional which has given by helping the penalty function 
method. In this paper, an optimal control parabolic problem is studied. The existence and 
uniqueness theorem for the solving optimal control parabolic problem is proved. Also, a theorem 
for the sufficient differentiability conditions of the functional and its gradient formulae has been 
proved. 
 

Let D   be a bounded domain of the N-dimensional Euclidean space in NE , let  Tl ,  are given 

positive numbers, ],0[,],0(,0 lDTDTt  .Throughout this paper, we adopt the 

following function spaces [5] :- 
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is the N-dimensional Euclidean space with
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7) )(2 V
 
is a Banach space consisting of elements of the space )(0,1

2
W

 
with the norm  
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8)  )(0,12 V is a subspace of )(2 V , the elements of which have in sections 

 tDxxDt   ,:),(
 
traces from )(2 DL at all ],0[ Tt  continuously changing 

from ],0[ Tt  in the norm )(2 DL . 

 

Let the controlled process be considered in     by the initial boundary value problem for the 
parabolic equation 
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Here 2,1,),0()(,)()( 22  mTLtgDLx m  are given functions, the function ),,,( 1vutxf is 

measurable in ),( tx and all ),( tx It is continuous and has continuous derivatives in 

1,vu  and 
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 are bounded. Besides, the function ),,( 0vtx is 
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space of controls. We consider the following problem: minimize the functional 
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on the set V under the conditions (1)-(3), where ),0()(,)( 210 TLtyty   are given functions, 0

and 0,1,0,0 10   mm  are given numbers,  are also given:
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Under the solution of problem (1)-(3) for given admissible control Vv , we mean a function 

)();,( 0,1
2  Vvtxuu  satisfying the integral identity 
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(5) 

 

for all )(),( 1,1
2  Wtx  that is equal to zero for Tt   .  

 

2 The Correctness of the Optimal Control Problem 
 
At first we consider the correctness of the boundary value problem (1)-(4) for given Vv . 

 
Proposition 1: On the assumptions of the considering optimal control problem (1)-(4) and from [6] 
follows that the boundary problem for a given Vv  has existence, uniqueness solution and the 

following estimation holds: 
 

.,
);,(
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                                                                              (6) 

 
Above and everywhere below positive constants are independent of the estimated quantities and 

admissible controls are denoted by ,2,1, mCm . 

 
Further we need the following theorem. 

Theorem A:(a corollary of the Goebel theorem [7]).Assume that 
~

X is a uniformly convex space,

U is a closed bounded set on 
~

X , a functional )(vI is lower semi continuous and bounded from 

below on U , and 0 is a given number. Then there exists a dense subset K of the space 
~

X

such that for any K the functional
2
~)()(

X
vvIvJ   attains its minimal value on 

U at a unique element. 
 
Optimal control problems of the coefficients of differential equations do not always have solution 
[8]. In this section, we will prove the existence and uniqueness of the solution of problem (1)-(4). 
 

Theorem 1: There is an everywhere dense subset )(2  LK such that problem (1)-(4) has a 

unique solution for K and 0 . 

 
Proof: The proof of this theorem is divided to three parts: in the first part we prove estimation for

)();,( 0,1
2  Vvtxuu  , second part the continuity of the functional )(0 vJ and finally the 

existence and uniqueness solution of the optimal control (1)-(4) is proved. 
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Let )(2  Lv be an increment of the control at Vv such that Vvv  . Let );,( vtxuu 

and );,();,( vtxuvvtxuu   . It is clear that the function );,( vtxu satisfies the identity 
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),,(,],0[ 001 vvtxTt   . 

 

Hence at the made assumption 0,),,( 000  vvvtx  is positive number and applying 

Cauchy-Bunyakovsky Inequality, we obtain 
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Now we set  
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From the known estimate [6, p. 116-118] it follows that the following three inequalities 
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Applying Cauchy-Bunyakovsky Inequality and the estimation (16), we get the continuity of the 
functional (17).  
 

Now we prove the last part as follows: hence we get the continuity of the functional )(0 vJ on any 

element Vv  , i.e., on the set V . The latter set is a closed bounded convex subset of the 

uniformly convex space )(2 L [10]. Then due to Theorem A and the boundedness and continuity 

of the functional )(0 vJ on the set V , there exists an everywhere dense subset K of the space 

)(2 L such that K  with α >0 problem (1)–(4) has a unique solution. This completes the 

proof of Theorem 1. 
 

3 Sufficient differentiability conditions of the functional (4)  
 
Let the following conditions be fulfilled: 
 

Condition A1: The functions ),,,(,),,( 10 vutxfvtx  satisfy the Lipschitz condition for Vv  . 

 

Condition A2:  The first derivatives of the functions ),,,(,),,( 10 vutxfvtx with respect to 10 ,vv

are continuous functions in their domain of definition.
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are bounded in )(2 L . 

 
For finding the adjoint system for the problem (1)-(3), we define the Lagrangian function [11] as 
follows   
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Then the problem (1)-(3) we introduce the adjoint state )();,(),( 0,1
2  Vvtxtx as a 

solution of the problem 
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As a solution of the problem (20)-(22) for the given Vv  , we take the function );,( vtx  

from )(1,12 W  satisfying the integral identity 
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2  Wvtxtx  that is equal to zero for 0t  .  

 
Proposition 2: On the basis of adopted assumptions and the results of [12] follows that for every 

Vv  the solution of the adjoint problem (21)-(22) is existed, unique and 8
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The sufficient differentiability conditions of function (4) and its gradient formulae will be obtained by 
defining the Hamiltonian function  ),,,( vux   as [13]: 
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Theorem 2: Let the above assumptions A1-A2 be satisfied. Then the functional )(vJ  is 

continuously differentiable by Fréchetin V , and its gradient satisfies the equality 
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Proof: Let Vvvv  ),( 10   be an arbitrary increment of the control v  such that 

Vvv   . Using the formula of Lagrange's finite increments one can obtain that the function 

);,();,( vtxuvvtxuu   is a solution from the class )(0,12 V  of the following boundary 

value problem: 
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where ]1,0[,,),,,(,),,,( 2112121111   vvutxvvuutx and 

);,();,( 000 vtxvvtx   are some numbers. 
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Taking and from (35) and (31), we obtain  
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Hence, in the right hand side of the expression for the Hamilton-Pontryagin function, we obtain 
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And this proves the Fréchet differentiability of the functional (4) and also gives its gradient 
formulae. This completes the proof of the theorem. 
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4 Conclusion 
 
In [4], the existence and uniqueness theorem is proved under constrained problem with control 

space NE   but here the space of controls )(2 Lv  are respected to tx, . Also, in [4] the 

coefficient of higher-order derivatives was )),,(( vtxu , but in the present paper it is 

),,( vtx . In this paper, an optimal control parabolic problem is studied. The existence and 

uniqueness theorem for the solving optimal control parabolic problem is proved. Also, a theorem 
for the sufficient differentiability conditions of the functional and its gradient formulae has been 
proved. A parabolic optimal boundary control problem is accepted for publishing in International 
Journal of Computational Engineering Research. Therefore, the numerical solution of the 
considering optimal control problem will be reported later.    
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