
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence
An International Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

Enhancing the Time Performance of Encrypting
and Decrypting Large Tabular Data

Nguyen Thon Da & Ho Trung Thanh

To cite this article: Nguyen Thon Da & Ho Trung Thanh (2021) Enhancing the Time
Performance of Encrypting and Decrypting Large Tabular Data, Applied Artificial Intelligence,
35:15, 1746-1754, DOI: 10.1080/08839514.2021.1991661

To link to this article: https://doi.org/10.1080/08839514.2021.1991661

Published online: 22 Oct 2021.

Submit your article to this journal

Article views: 685

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2021.1991661
https://doi.org/10.1080/08839514.2021.1991661
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2021.1991661
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2021.1991661
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1991661&domain=pdf&date_stamp=2021-10-22
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1991661&domain=pdf&date_stamp=2021-10-22

Enhancing the Time Performance of Encrypting and
Decrypting Large Tabular Data
Nguyen Thon Da a,b and Ho Trung Thanh a,b

aUniversity of Economics and Law, Ho Chi Minh City, Vietnam; bVietnam National University, Ho Chi Minh
City, Vietnam

ABSTRACT
In the field of data analysis, encrypting and decrypting datasets
must keep the information confidential. Currently, encrypting
sizable tabular datasets is time-consuming. This study proposes
a solution that helps encrypt extensive tabular data in lesser
time than that required in conventional methods while preser-
ving data analysis information. We use the feature by which
a large dataset can be split into many files in hdf5 format and
choose an encrypted algorithm to solve it. The study contribu-
ted to information technology knowledge management. We
introduce a solution for small-scale companies to encrypt their
extensive tabular data economically. The experimental results
on three large datasets showed that our solution has
a processing time between 1.2–5 times faster than the conven-
tional processing time under some specific situations. The
research results assist companies or individuals with a limited
financial capacity to deploy data security and analysis at a low
cost with time efficiency. The study opens several research
opportunities in protecting large datasets and analyzing them
in less time.

ARTICLE HISTORY
Received 9 February 2021
Revised 5 October 2021
Accepted 6 October 2021

Introduction

Currently, processing and analyzing big data are compelling issues. Numerous
massive datasets consist of up to billions of rows. Many of them contain
critical and private information and need to be strictly protected. However,
encrypting data’s timely execution is one of the severe issues during data
processing and transmission (Gai et al. 2016). Several small and limited
financial capacity startups face the processing and analysis of extensive data.
If they hire compute processing services on a computer network or cloud
services, they must pay a prohibitive fee. (Mazrekaj, Shabani, and Sejdiu 2016)
Compared and discussed several models and pricing schemes from different
cloud computing vendors. Their study indicated that the customers must
spend vast amounts of money on hiring such services. Thus, a cost-effective
solution is required for small-scale companies or startups. The proposed
solution is to apply the veax technique that operates on Python and Jupiter

CONTACT Nguyen Thon Da dant@uel.edu.vn University of Economics and Law, Ho Chi Minh City, Vietnam

APPLIED ARTIFICIAL INTELLIGENCE
2021, VOL. 35, NO. 15, 1746–1754
https://doi.org/10.1080/08839514.2021.1991661

© 2021 Taylor & Francis

http://orcid.org/0000-0002-2660-5011
http://orcid.org/0000-0002-9033-3735
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1991661&domain=pdf&date_stamp=2022-03-08

Notebook environments. It performs specific stages of splitting data into hdf5
format and then encrypting, decrypting, and opening data. This study secures
data with time efficiency while ensuring no loss of information in preparation
for the following data analysis phase. The proposed solution can significantly
help individuals or companies with limited capital. Besides, it can perform
extensive data analysis without spending much money to invest in information
technology infrastructure.

Literature Review

Recently, several researchers have proposed various methods to solve the
problems regarding data security. (Hazra et al. 2015) suggested
a pseudorandom permutation method. They proposed an attached algorithm
that produces a block cypher using the mentioned procedure.

(Jueneman et al. 2016) proposed a method for encrypting and sealing
a plaintext file by hashing it.

(Gai et al. 2016) proposed a method to address the privacy issues of big data
for application in cloud computing. They introduced an algorithm known as
D2ES (Dynamic Data Encryption Strategy) to maximize the efficiency of
privacy protection. The experimental evaluations showed that the proposed
algorithm had an adaptive and superior performance.

(Vishwanath, Peruri, and He 2016) considered data security a critical factor
and implemented the AES (Advanced Encryption Standard) algorithm in fog
computing. The experimental results showed that all datasets could be pro-
cessed within a fraction of time, irrespective of their size and type.

(Panda 2016) evaluated both symmetric (AES, DES, Blowfish) and asym-
metric (RSA) cryptographic algorithms by taking different files (binary,
text, and image files). The experimental results showed that AES performs
better than other algorithms for throughput and encryption-decryption
time.

(Erofeev and Pawar 2016) introduced for automatically encrypting files. The
method can detect access to a first file and determine whether the entry
contains convenient access. Besides, it can determine whether the file metadata
satisfies the set of encryption rules.

(Maitri and Verma 2016) proposed a security mechanism that requires less
time compared to other algorithms, such as AES and Blowfish.

(Aono et al. 2017) presented a privacy-preserving deep learning system in
which several learning participants perform neural network-based deep
learning.

(Harba 2017) proposed three types of encryption to exploit the advantages
of each one in developing a high-security system. They concluded that the
overall encryption run is fast and straightforward with low computational
costs and provides high system security.

APPLIED ARTIFICIAL INTELLIGENCE 1747

(Rachmawati et al. 2018) They have proposed a hybrid encryption algo-
rithm to address security issues of lightweight data on cloud storage ser-
vices. They improved the AES algorithm by merging AES and RSA
algorithms.

(Yang et al. 2018) introduced a File Remotely keyed Encryption and Data
Protection scheme. The technique consists of three-party interactions:
a mobile terminal, private clouds, and public clouds.

(Liu et al. 2018) proposed a multi-user verifiable searchable symmetric
encryption scheme that achieves all the desirable features of a verifiable
searchable symmetric encryption and allows multiple users to perform
searches. The experimental results indicated that their scheme shows high
performance on some real datasets.

(Sajay, Babu, and Vijayalakshmi 2019) have proposed a hybrid algorithm
to improve RSA encryption and decryption speed. Their algorithm also
solves the fundamental management problem in the AES algorithm.
Besides, it can provide security for users’ lightweight data stored in the
cloud environment.

(Zou et al. 2020) presented a hybrid encryption algorithm by combining AES
and RSA algorithms to solve file encryption efficiency and security problems.
Their experimental results showed that RSA and AES’s hybrid encryption
algorithm has the advantages of algorithm performance and security.

(Mahmoud, Hegazy, and Khafagy 2018) proposed an approach to improve
the performance of encrypting/decrypting files using AES and OTP (One
Time Passcodes) algorithms integrated on Hadoop. Encryption/decryption
in the previous studies used the AES algorithm; the encrypted file size
increased by 50% from the original file size. They concluded that their pro-
posed approach improved this ratio because the encrypted file size increased
by 20% from the original file size.

Some drawbacks of the existing methods are (1) Encryption, and decryption
in the cloud environment cost IT infrastructure-leasing outside; (2) Equipping
a multi-computer system for distributed processing, grid computing is also an
expensive solution.

Most researchers admitted that the AES algorithm is essential for encryp-
tion and decryption. In the scope of this study, we use the AES algorithm for
encrypting and decrypting datasets.

Proposed Model

For the tabular data encryption and decryption model for data analysis,
encryption will require much time processing big data. The typical model
has four main phases: Transforming, encrypting (using AES), decrypting
(using AES), and opening. However, this method also faces a significant

1748 N. T. DA AND H. T. THANH

problem because it takes a long time to encrypt and decrypt data in hdf5. To
solve this, several researchers converted data to hdf5 format to retrieve and
analyze data more efficiently.

In Phase 1 (transforming), the large dataset is split into a unique hdf5 file. In
Phases 2 and 3 (encrypting and decrypting), the large file is encrypted and
decrypted. The sizable hdf5 file is opened in the final phase to prepare for the
following process, i.e., the data analysis process.

The proposed model divides tabular data into multiple smaller sized hdf5
files. Then, the smallest size hdf5 file is encoded and decoded.

The proposed model has four main phases: Splitting, encrypting, decrypt-
ing, and opening.

In Phase 1 (splitting), the large dataset is split into N parts. Each part is
a small hdf5 file. In Phases 2 and 3 (encrypting and decrypting), the smallest
file with the smallest size is encrypted and decrypted. In the final phase, by
applying the values technology, all hdf5 files are collected to prepare for the
following process, i.e., the data analysis process.

Experimental Evaluation

The experiments have conducted on a laptop (Lenovo 541 w) with an Intel i7
processor (8 cores), 32 GB of available RAM, and an SSD drive connected with
SATA (Serial Advanced Technology Architecture) in format. The program
implements a 64-bit version of Ubuntu 16.04.5 LTS (Xenial Xerus) and the
Python programming environment with Anaconda and Jupiter Notebook.

Datasets

Green-trip data (2017–2020) dataset (Number of rows: 27,817,909. Size: 2.69
GB): The green taxi trip records include fields capturing pick-up and drop-off
dates/times, pick-up and drop-off locations, trip distances, itemized fares, rate
types, payment types, and driver-reported passenger counts. The data used in
the attached datasets were collected and provided to the NYC Taxi and
Limousine Commission.1

ATC-tracking (2012) dataset (Number of rows: 47,398,149. Size: 2.92 GB):
The ATC pedestrian-tracking dataset is provided as CSV files; one file for
each day (file names are in the format atc-YYYYMMDD.csv).2

Power-networks (2015) dataset (Number of rows: 167,932,474. Size: 10.7
GB): UK Power Networks is a distribution network operator for electricity
covering South East England, the East of England and London.3

APPLIED ARTIFICIAL INTELLIGENCE 1749

Experimental Results

We have conducted some experiments to compare the performance of the
existing model and the proposed solution.

(1) After converting the ATC-tracking (2012) into one file in hdf5 format,
we obtain the time execution as follows:

Transforming: 62.24916 (seconds)
Encrypting: 89.59078 (seconds)
Decrypting: 39.39382 (seconds)
Opening: 0.03440 (seconds)
Let T_ACT be the total execution time for the four phases (transformation,

encrypting, decrypting, and opening) of converting the ATC-tracking (2012)
dataset in CSV format into a unique hdf5 file. Thus, T_ATC = 191.26816
(seconds).

Assuming T1_ATC (CHUNK_SIZE = 10_000_000), T2_ATC
(CHUNK_SIZE = 1000_000), and T3_ATC (CHUNK_SIZE = 100_000),
respectively, to be the total execution time for the four phases (splitting,
encrypting, decrypting, and opening) of converting the ATC-tracking (2012)
dataset in CSV format into a smaller set of hdf5 files. Thus, T1_ATC, T2_ATC,
and T3_ATC are 61.30306, 39.08126, and 100.64416 seconds, respectively
(Table 1).

(1) After converting the green-trip data (2017–2020) into one file in hdf5
format, we obtain the time execution as follows:

Transforming: 93.39398 (seconds)
Encrypting: 71.80500 (seconds)
Decrypting: 105.71326 (seconds)
Opening: 0.06859 (seconds)

Table 1. Time execution on ATC-tracking (2012) dataset.

CHUNK_SIZE PHASES
EXECUTION TIME

(seconds)

10_000_000
(5 small files)

Splitting 50.00743
Encrypting 6.03345
Decrypting 5.06743
Opening 0.19475

1000_000
(48 small files)

Splitting 37.41191
Encrypting 0.456137
Decrypting 0.39903
Opening 0.81419

100_000
(474 small files)

Splitting 91.03008
Encrypting 0.22482
Decrypting 0.21703
Opening 9.17223

1750 N. T. DA AND H. T. THANH

Assuming T_TRIP to be the total execution time for the four phases
(transformation, encrypting, decrypting, and opening) of converting the ATC-
tracking (2012) dataset in CSV format into a unique hdf5 file. Thus,
T_TRIP = 270.98083 (seconds).

Assuming T1_TRIP (CHUNK_SIZE = 10_000_000), T2_ TRIP
(CHUNK_SIZE = 1000_000), and T3_ TRIP (CHUNK_SIZE = 100_000),
respectively, to be the total execution time for the four phases (splitting,
encrypting, decrypting, and opening) of converting the green-trip data
(2017–2020) dataset in CSV format into a smaller set of hdf5 files. Thus,
T1_TRIP, T2_TRIP, and T3_TRIP are 152.36212, 133.39129, and
223.21883 seconds, respectively (Table 2).

(1) After converting the power-networks (2015) dataset into one file in hdf5
format, we obtain the time execution as follows:

Transforming: 802.47295 (seconds)
Encrypting: 416.06674 (seconds)
Decrypting: 388.74097 (seconds)
Opening: 0.31182 (seconds)
Assuming T_POW to be the total execution time for the four phases

(transformation, encrypting, decrypting, and opening) of converting the
power-networks (2015) dataset in CSV format into a unique hdf5 file. Thus,
T_POW = 1607.59248 (seconds).

Assuming T1_POW (CHUNK_SIZE = 10_000_000), T2_ POW
(CHUNK_SIZE = 1000_000), and T3_POW (CHUNK_SIZE = 100_000),
respectively, to be the total execution time for the four phases (splitting,
encrypting, decrypting, and opening) of converting the power-networks
(2015) dataset in CSV format into a smaller set of hdf5 files. Thus,
T1_POW, T2_POW, and T3_TRIP are 469.64353, 517.81159, and
1007.14603 seconds, respectively (Table 3).

Table 2. Time execution on green-trip data (2017–2020)
dataset.

CHUNK_SIZE PHASES
EXECUTION TIME

(seconds)

10_000_000
(3 small files)

Splitting 119.23783
Encrypting 17.47493
Decrypting 15.06482
Opening 0.58454

1000_000
(28 small files)

Splitting 125.13555
Encrypting 2.00561
Decrypting 1.67345
Opening 4.57668

100_000
(279 small files)

Splitting 187.14510
Encrypting 0.16527
Decrypting 0.16704
Opening 35.74142

APPLIED ARTIFICIAL INTELLIGENCE 1751

Experimental Evaluation

● With the green-trip data (2017–2020) dataset, when CHUNK_SIZE is
10_000_000, the total time (to split into multiple smaller files hdf5,
encrypt, decrypt files smallest hdf5, and data presentation) is 1.78 times
faster than that required to convert the dataset into a single hdf5 file.
When CHUNK_SIZE is 1000_000, the total time (to split into multiple
smaller files hdf5, encrypt, decrypt files smallest hdf5, and data presenta-
tion) is 2.03 times faster than that required to convert the dataset into
a single hdf5 file. When CHUNK_SIZE is 100_000, the total time (to split
into multiple smaller files hdf5, encrypt, decrypt files smallest hdf5, and
data presentation) is 1.21 times faster than that required to convert the
dataset into a single hdf5 file.

● With power-networks (2015) dataset, when CHUNK_SIZE is
10_000_000, the total time (to split into multiple smaller files hdf5,
encrypt, decrypt files smallest hdf5, and data presentation) is 3.42 times
faster than that required to convert the dataset into a single hdf5 file.
When CHUNK_SIZE is 1000_000, the total time (to split into multiple
smaller files hdf5, encrypt, decrypt files smallest hdf5, and data presenta-
tion) is 3.11 times faster than that required to convert the dataset into
a single hdf5 file. When CHUNK_SIZE is 100_000, the total time (to split
into multiple smaller files hdf5, encrypt, decrypt files smallest hdf5, data
presentation) is 1.6 times faster than that required to convert the dataset
into a single hdf5 file.

● With ATC-tracking (2012) dataset, when CHUNK_SIZE is 10_000_000,
the total time (to split into multiple smaller files hdf5, encrypt, decrypt
files smallest hdf5, and data presentation) is 3.12 times faster than that
required to convert the dataset into a single hdf5 file. When
CHUNK_SIZE is 1000_000, the total time (to split into multiple smaller
files hdf5, encrypt, decrypt files smallest hdf5, and data presentation) is
4.89 times faster than that required to convert the dataset into a single

Table 3. Time execution on power-networks (2015) dataset.

CHUNK_SIZE PHASES
EXECUTION TIME

(seconds)

10_000_000
(17 small files)

Splitting 446.26111
Encrypting 11.21199
Decrypting 9.32258
Opening 2.84785

1000_000
(168 small files)

Splitting 502.80226
Encrypting 1.17626
Decrypting 1.00076
Opening 12.83231

100_000
(1680 small files)

Splitting 851.45472
Encrypting 0.16392
Decorating 0.15133
Opening 155.37606

1752 N. T. DA AND H. T. THANH

hdf5 file. When CHUNK_SIZE is 100_000, the total time (to split into
multiple smaller files hdf5, encrypt, decrypt files smallest hdf5, data
presentation) is 1.9 times faster than that required to convert the dataset
into a single hdf5 file.

The test results showed that when CHUNK_SIZE is 1000_000 (in all three
cases handled more than three datasets), the total processing time is best
(effective in terms of time) because the proposed model always processes the
time 2–5 times faster than conventional models.

Conclusion and Future Work

This study proposed a solution to improve the encryption and decryption of
sizable tabular datasets on three real tabular datasets. To improve the perfor-
mance in terms of time, we split the original file into many parts, encrypted
and decrypted the smallest file, then used the vaex technology to open them
quickly. The experimental results showed that the proposed approach per-
forms better than the existing methods based on execution time. The proposed
solution can help small-scale companies to secure their data before transmis-
sion via the internet without spending much time and money.

In the future study, we plan to improve this solution to address similar
issues regarding large multimedia datasets by developing the existing encryp-
tion algorithms.

Notes

1. https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.
2. https://irc.atr.jp/crest2010_HRI/ATC_dataset/.
3. https://data.london.gov.uk/publisher/timeline/uk-power-networks.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the University of Economics and Law, VNUHCM.

ORCID

Nguyen Thon Da http://orcid.org/0000-0002-2660-5011
Ho Trung Thanh http://orcid.org/0000-0002-9033-3735

APPLIED ARTIFICIAL INTELLIGENCE 1753

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://irc.atr.jp/crest2010_HRI/ATC_dataset/
https://data.london.gov.uk/publisher/timeline/uk-power-networks

References

Aono, Y., T. Hayashi, L. Wang, and S. Moriai. 2017. Privacy-preserving deep learning via
additively homomorphic encryption. IEEE Transactions on Information Forensics and
Security 13 (5):1333–45.

Erofeev, A., and R. S. Pawar. 2016. Automatic file encryption: Google patents.
Gai, K., M. Qiu, H. Zhao, and J. Xiong. 2016. Privacy-aware adaptive data encryption strategy

of big data in cloud computing. Paper presented at the 2016 IEEE 3rd International
Conference on Cyber Security and Cloud Computing (CSCloud).

Harba, E. S. I. 2017. Secure data encryption through a combination of AES, RSA and HMAC.
Engineering, Technology & Applied Science Research 7 (4):1781–85. doi:10.48084/etasr.1272.

Hazra, T. K., R. Ghosh, S. Kumar, S. Dutta, and A. K. Chakraborty. 2015. File encryption using
fisher-yates shuffle. Paper presented at the 2015 International Conference and Workshop on
Computing and Communication (IEMCON).

Jueneman, R. R., D. J. Linsenbardt, J. N. Young, W. R. Carlisle, and B. G. Tregub. 2016. Method
for file encryption: Google patents.

Liu, X., G. Yang, Y. Mu, and R. H. Deng. 2018. Multi-user verifiable searchable symmetric
encryption for cloud storage. IEEE Transactions on Dependable and Secure Computing
17 (6):1322–32. doi:10.1109/TDSC.2018.2876831.

Mahmoud, H., A. Hegazy, and M. H. Khafagy. 2018. An approach for ample data security based
on Hadoop distributed file system. Paper presented at the 2018 International Conference on
Innovative Trends in Computer Engineering (ITCE).

Maitri, P. V., and A. Verma. 2016. Secure file storage in cloud computing using hybrid
cryptography algorithm. Paper presented at the 2016 International Conference on
Wireless Communications, Signal Processing and Networking (WiSPNET).

Mazrekaj, A., I. Shabani, and B. Sejdiu. 2016. Pricing schemes in cloud computing: An
overview. International Journal of Advanced Computer Science and Applications
7 (2):80–86. doi:10.14569/IJACSA.2016.070211.

Panda, M. 2016. Performance analysis of encryption algorithms for security. Paper presented at
the 2016 International Conference on Signal Processing, Communication, Power and
Embedded System (SCOPES).

Rachmawati, D., A. Sharif, Jaysilen, and M. A. Budiman. 2018. Hybrid cryptosystem using
a tiny encryption algorithm and Luc algorithm. Paper presented at the IOP Conference
Series: Materials Science and Engineering.

Sajay, K. R., S. S. Babu, and Y. Vijayalakshmi. 2019. Enhancing the security of cloud data using
a hybrid encryption algorithm. Journal of Ambient Intelligence and Humanized Computing
1–10.

Vishwanath, A., R. Peruri, and J. He. 2016. Security in fog computing through encryption.
DigitalCommons@ Kennesaw State University.

Yang, L., Z. Han, Z. Huang, and J. Ma. 2018. A remotely keyed file encryption scheme under
mobile cloud computing. Journal of Network and Computer Applications 106:90–99.
doi:10.1016/j.jnca.2017.12.017.

Zou, L., M. Ni, Y. Huang, W. Shi, and X. Li. 2020. Hybrid encryption algorithm based on AES
and RSA in file encryption. Paper presented at the International Conference on Frontier
Computing.

1754 N. T. DA AND H. T. THANH

https://doi.org/10.48084/etasr.1272
https://doi.org/10.1109/TDSC.2018.2876831
https://doi.org/10.14569/IJACSA.2016.070211
https://doi.org/10.1016/j.jnca.2017.12.017

	Abstract
	Introduction
	Literature Review
	Proposed Model
	Experimental Evaluation
	Datasets
	Experimental Results
	Experimental Evaluation

	Conclusion and Future Work
	Notes
	Disclosure Statement
	Funding
	ORCID
	References

