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Abstract

In this paper we focus on solving doubly bordered tridiagonal linear systems of equations via
transformation. It investigates numeric and symbolic algorithms for solving such systems. The
computational cost of the algorithms are given. A MAPLE procedure based on these algorithms is
listed. Some illustrative examples are introduced.
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1 Introduction and Basic Definitions
We begin this section by giving the following definitions:

Definition 1.1 [1]. An n x n matrix A = (ai;)7 ;=1 iS said to have upper bandwidth p if p is the
smallest integer such that:

Aij = 07 .7 -1 2 D,
and similarly, to have lower bandwidth ¢ if ¢ is the smallest integer such that:

ai; =0, i—j=q
The bandwidth, w for the matrix A is definedtobe w =p+ ¢ — 1.
Definition 1.2 [2]. The symmetric matrix A = (as;);;—, is called positive definite if and only if

xTAx >0, foral xeR", x=0.

Definition 1.3 [2]. An n x n matrix A is called diagonally dominant if

n
lasi| > Z lai;], holds foreachi=1,2,...,n,
=1

Jj=1,
J#i
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and strictly diagonally dominant if

|ais| > Z |a;;|, holds foreachi=1,2,....n.

Jj=1,
i

In many scientific and engineering applications, different special linear systems of equations arise.
For such systems the coefficient matrix has special structure. Sparse matrices which contain a
majority of zeros occur are often encountered. It is usually more efficient to solve these systems
using tailor-made algorithms, much faster and with less storage than a full matrix. This can be
achieved by taking advantage of the special structure of the coefficient matrix. Important examples
are band matrices, and the most common cases are the matrices of tridiagonal type for which
p =q=w — 1= 2. Tridiagonal systems of linear equations take the form:

Tx=f (1.1)
where
i d1 al 0 0 ]
by d2 a2
T=1|, o | (1.2)

L0 ... 0 bu—r  dn |
X = [z1, x2, ..., x,)" and f = [f1, fo, ..., fu]" . The superscript T' corresponds to the transpose
operation. This type of matrices frequently appears in many applications. For example in parallel
computing, telecommunication system analysis, solving differential equations using finite differences,
heat conduction and fluid flow problems. A general n x n tridiagonal matrix of the form (1.2) can be
stored in 3n — 2 memory locations, rather than n?> memory locations for a full matrix, by using three
vectors a = [a1,a2,...,an-1], b = [b1,b2,...,bn_1],and d = [d1,do, ..., d,]. This is always a good
habit in computation in order to save memory space. To study tridiagonal matrices it is convenient to
introduce vector ¢ defined by ([3], [4]):

c=ci,c2,...,cnl, (1.3)

where
da, fori=1 14
€= di_%, fori =2,3,...,n. (14)

In [5] it is shown that the tridiagonal matrix (1.2) is positive definite if and only if ¢; > 0, for all
1 =1,2,...,n. This is an easy way to check weather a tridiagonal matrix is positive definite or not. For
some important results concerning tridiagonal matrix the reader may refer to ([6], [7], [8], [5], [9], [10],
[4], [11], [12], [13], [14], [15], [16], [17], [18], [19]). The motivation of the current paper is to derive
algorithms for solving doubly bordered tridiagonal linear systems of two types of the forms:
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r d1 ail 0 P . O P1 ]
. ; [ 21 ] i
b1 da a2 . . D2 ZTo f2
0 by ds as p3 3 f3
. : = : , 1.5
. : (1.5)
In—2 fn—2
bn—S dn—2 an—2 Pn-—2 Tn—1 fnfl
0 e e 0 bn—2 dn—1 an-1 L Tn ] L fn |
L1 ¢ g ... Gon-2 bup1  dn |
and
d1 air  Pn-2 b3 p2 pr ]
by do az 0 A A 0 [ a1 ] i g1 1
.. . T2 92
gn—2 b2 dS as . . xs3 g3
g3 . bpes dn—a G2 0 Tn—2 gn—2
. . Tn—1 gn-1
q2 . i bn—2 dnfl An—1 L Tn | L 9gn |
L @ 0 e e 0 bn—1 dn |

respectively. The linear systems (1.5) and (1.6) frequently occur in engineering computation and
analysis, e.g. in computation of electric power system and in solution of partial differential equations,
as referred in ([20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30]). The linear systems defined
by (1.5) and (1.6) are called doubly bordered tridiagonal linear systems of type (A) and of type (B),
respectively.

Throughout this paper, the word 'simplify’ means simplify the expression under consideration to its
simplest rational form.

The organization of the paper is as follows. The main results are given in Section 2 and Section 3. In
Section 4, a MAPLE procedure is introduced. Some illustrative examples are given in Section 5.

2 Algorithms for Solving Doubly Bordered Tridiagonal Linear
Systems of Type (A)

In this section, we are going to consider the construction of new algorithms for solving doubly bordered

tridiagonal linear systems of type (A) via transformation. For this purpose it is convenient to introduce

the vector ¢ = [c1, ¢a, ..., ¢n] Whose first (n — 1) components, c1, ¢z, ..., cn—1 are given by (1.4). The
system (1.5) can be completely described by the augmented matrix, G given by:
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[ dy al 0 0 pP1 f1 T
b1 do as .. P2 f2
0 ba ds as p3 f3
G = [Tn,f] = . 0 (2.1)
. . bn—3 dn—2 an—-2 Pn-—2 fn—2
0 - cee 0 bnfg dnfl An—1 fnfl
L 41 q2 q3 ‘e qn—2 bnfl dn f'n i

The matrix G contains all the information about the system (1.5) that is necessary to determine its
solution, but in a compact form. Let R; denotes the i-th row of the matrix G. Performing the following
row operations on G, in the same order:
Rl — R1/C1
Fori=2,3,...n—1do
R; «— R; — b;—1Ri_1
End do.
Forj=1,2,..,n—1do
Rn — Rn — hj Rj
End do.
R, +— R, /cn.
Then we have the resulting transformed linear system of the form:

M1 Y1 0 0 V1 Z1 T
0 1 y - V2 z2
0 , 2.2)
1 Yn—2 Un—2 Zn—2
1 Un—1 Zn—1
L O 0 1 Zn
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where

a1 D1 f1
ca=d, ypn=—, vi=—, 21="—, hi=q,
C1 C1 C1

Fori=2,3,..,n—2 do
¢ =di —bi—1yi-1,

v; = ?(pz —bi—1vi—1),
zi = ¢ (fi = bi—1zi-1).
hi=qi—hi—1yi—1,

End do
Cp—1 = dn—l - b’n—2 Yn—2, (23)
1
Up_1 = (an—1 — bn—2 Vn—2),
Cn—1
1
Zn—1 = 7(]“”—1 - bn—2 Zn—2)7
Cn—1

hnfl = bnfl - hn72 Yn—2,
n—1
Cn = dn - Z h'l Vi,
=1
1 n—1
" i=1

It is well known that [1] the reduced system (2.2) has the same solution as the original linear system
(1.5). At this stage, the determinant of the coefficient matrix in (1.5) can be computed using the
following computational symbolic algorithm. It is an extension of the DETGTRI algorithm in [3] and
the PERTRI algorithm in [10]. The parameter ’s’ in the algorithm is just a symbolic name. It is a
dummy argument and its actual value is zero.

Algorithm 2.1. An algorithm for computing the determinant of doubly bordered tridiagonal matrices
of type (A).

To compute the determinant of the coefficient matrix in (1.5), we may proceed as follows:

INPUT: Order of the coefficient matrix n and the components, a;, d;, bi, pi, ¢:.
OUTPUT: The determinant of the coefficient matrix in (1.5).
Step 1: Set ¢y = dy. Ifer =0then ¢y = sendif.
Step 2: Fori =2,3,...,n —1do

Compute and simplify:

ci = di — %=Lzl i, — 0then ¢, = s end if.

End do.

Step 3: Compute ¢, using (2.3).
Step 4: Compute and simplify:

P(s) = rli[l Cr.
Step 5: det(7},) = P(0).

The Algorithm 2.1, will be referred to as DETDBTRI-A algorithm. The transformed system (2.2)
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is triangular and easy to solve by backward substitution. Consequently, the linear system (1.5) can
be solved using the following algorithm:

Algorithm 2.2. Numeric algorithm for solving doubly bordered tridiagonal linear system of type (A).

To solve the linear system of the form (1.5), we may proceed as follows:

INPUT: Order of the coefficient matrix n and the components, a;, d;, bi, fi, pi, qi-

OUTPUT: The determinant of the coefficient matrix in (1.5) and the solution vector
X=[x1,%2,... ,xn}T.

Step 1: Setci =di,y1 = L, v =

Step 2: Fori=2,3,...,n—2do
Compute and simplify:
¢ =di —bi—1yi-1,

zZ1 = 717 and hl =q1.

p1
c1’? c1

Yi = %7

vy = C%(pz —bi—1vi—1),
zi = C%(fz —bi—12i-1),
hi =qi — hi—1yi—1,

Step 3: Set Cne1 =0dp-1—bp_o Yn—2,

Up_1 = (an—1 = bp—2Vn_2),

Cn—1
Zn—1 = ﬁ(fnfl —bn—2 Zn72)7
h/nfl - bnfl - hn72yn72~

n—1
Step 4: Setc, =d, — . hivi,
i=1

1 n—1
Zn = Cfn(fn — Zl hi Zi).
Step 5: Use the DETDBTRI-A algorithm to check the non-singularity of the coefficient
matrix of the system (1.5).
Step 6: If the determinant of the coefficient matrix in (1.5) equals zero, then Exiterror('No
solutions’) end if.
Step 7: Compute the solution vector X = [z1, z2, . .., z,]” using
ITn = Zn
Tn—1 = Zn—1 — Un—-1Tn
Step8: Fori=n—2,n—3,...,1do
Ti = 25 — Yi Ti+1 — Viln

End do.

The Algorithm 2.2, will be referred to as TRANSDBTRI-AI algorithm. The cost of the algorithm is
(11n — 16) multiplications/divisions and (8n — 13) addtions/subtractions.
Note that the algorithm TRANSDBTRI-AIl works properly only if ¢; # 0 foralli = 1,2, ..., n.

The following symbolic version algorithm is developed in order to remove the cases where the numeric
algorithm TRANSDBTRI-AI fails.

Algorithm 2.3. Symbolic version algorithm for TRANSDBTRI-AI algorithm.

To solve the linear system of the form (1.5), we may proceed as follows:
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INPUT: Order of the matrix n and the components, a;, di, b;, fi, pi, G-
OUTPUT: The determinant of the coefficient matrix in (1.5) and the solution vector

X=[z1,22,... 7:cn}T.
Step 1: Setc; =d;. lfc; =0thenc; = sendif. Y1 = %11, v = %, z21 = f717 and h; = q1.
Step 2: Fori=2,3,...,n—2do

Compute and simplify:

Cc; = dl — bi_1 Yi—1. If Cc; = 0 then C;i = S end if.

yi = ¢,

1 ) .

Vi = ¢; (pi — bi—1vi—1),

2 = C%.(fi —bi—1zi-1),

hi =qi — hq‘,—lyi—h

End do.

Step 3: Setc,—1 =dpn—1 — bpn—2yn—2. lfcr,_1 =0thenc,_1 = sendif.

VUn—1 = m(an,1 — bn72 vn72)7

Zn—1 = %(fnfl —bn—2 Zn—2),
hn—l = bn—l - hn—2yn—2-
n—1
Step 4: Setc, =dn — > hiv;. If co = 0thenc, = s endif.
1 =t n—1
Zn = ¢ (fn— 21 hi zi).
Step 5: Use the DETDBTRI-A algorithm to check the non-singularity of the coefficient
matrix of the system (1.5).
Step 6: If the determinant of the coefficient matrix in (1.5) equals zero, then Exiterror(No
solutions’) end if.
Step 7: Compute the solution vector x = [z, x2,. .., z,]" using
Tn = Zn
Tn—1 = Zn—-1 — Un—-12Tn
Step8: Fori=n—2,n-3,...,1do
Ti = Z2i — YiTit1 — ViTn
End do.
Step 9: Substitute s = 0 in all expressions of the solution vector z;,7 = 1,2, ..., n. The Algorithm 2.3,
will be referred to as TRANSDBTRI-AII algorithm. At this point it is worth mentioned that:

e The values z;, i = 1,2, ...,n in (2.3) satisfy:

B C1 0 0 7
. : [z ] [ fi
by 2 : 22 2
0 b2 cs zZ3 f3
- (2.4)
. . Zn—2 fn72
. - bn73 Cn—2 T : Zn—1 fn—l
0 ... ... 0 bp—2 cn—1 0 L 2n L fn
L h1 ha h3 ce hn—2 hn_1 cn i
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e The solution vector, X = [z1, x2, ..., z,]T of the system (1.5) satisfies:

B 1 yl O O Ul ] B 1‘1 T B Zl ]
O 1 yg U2 T2 #2
0 =] . (2.5)
1 Yn—2 Un—2 Tn_o Zn_o
1 Un—1 Tn—1 Zn—1
L O . 0 1L Zn | L ?*n ]
Hence using (2.4) and (2.5), we get
i 0 01 - oo - _
“ 1y 0 ... 0 v - A
by C2 0 1 s Vo T2 f2
0 bz C3 0 B
1 Yoo Vne :
. b . Yn=z Un=2 Tn—2 fn—2
. n—3 Cn—2 . . Tpn— n—
0 0 bn_g Cn—1 0 0 (1) Un—1 mnl ffnl
L hi ha hs hn2 hn-1 cn | - - -
(2.6)
From (1.5) and (2.6), we obtain the Crout LU factorization [1] of the matrix in (1.5) in the form:
T, = LU,y
where
c1 0 0 "1 oy 0 0 o1
b1 €2 0 1 Y2 V2
O bg C3 O
L= and U; =
1 Yn—2 Un—2
. bn73 Cn—2 - . 1 v
0 P e 0 bnfz Cn—1 0 O 0 n-1
L hi1 ho hg hn—2 hn—l Cn | B B
(2.7)

The Doolittle LU factorization of the coefficient matrix in (1.5) is given by:

T, = LaUs
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where
M1
by
c1
0
Lo =
0
hy
L ¢c1

bn—3

Cn—3

0
1
bp_2 1 0
Cn—2
hn—2 hn—1 1
Cn—2 Cn—1

e The values v;, i = 1,2,...,n — 1in (2.3) satisfy:

C1

b1

Cc2

b2

C3

bn—S
0

Cn—2
bn—Q

e The values h;, i1 =1,2,...,n — 1 in (2.3) satisfy:

Yn—3
0

1
Yn—2

[c1 a1 O 0 c1v1
0 C2 a2 C2V2
and Uz = 0
Cn—2 An—2 Cn—2Un—2
Cn—1 Cn—1Un—1
L 0 0 Cn
i (2.8)
0 -
v1 P1
V2 D2
U3 D3
= . (2.9)
Un—2 pn—2
O Un—1 Gn—1
Cn—1 J
0
ha qQ
ha q2
hs g3
. = (2.10)
hn72 qn—2
0 hn—l bn—l
1]

Armed with (2.7)-(2.10) we may write the partitioned forms:

M d1 ai 0 0 P1
br d2 a2 D2
0 by ds as p3
0 .

bn_g dn_z An—2 Pn—2

0 e . 0 bn72 dn—l An—1
L ¢ ¢ Gn—2 bn—1 dn
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r C1 0 0 0 17T71 Y1 0 O V1 ]
b1 Co 0 1 Y2 V2
0 b2 C3 1 Y3 V3
= O 5
. - bn_z cn-2 0 . 1 Yn—2 Un—2
0o ... ... 0 bn—2 Cn-1 0 o ... ... ... 0 1 Un—1
L hi ha hs ... hp_2 hp_a cn 1 LO .o Ll 0 1 ]
2.11)
and
[ di a1 0 e 0 p1 ]
bl d2 az N P2
0 ba ds as D3
0 =
: . bn73 dn72 Anp—2 Pn—2
0 e P 0 bnfz dnfl An—1
Lan ¢ g ... Gun-2 bp—1 dn,
1 0 0 0 M C1 al 0 0 U1 b
b .
o 1 0 ¢ a2 U2
b . . . . .
0 i 1 . . . Cc3 as . . V3
- 0
by : . .
Cn—; 1 0 . . " Cn—2 Qan-2 Un—2
0o . 0 bn—2 0 0O ... ... ... 0 cn- Vn—1
Cn—2
i hl h2 h3 hn72 hnfl 1 I 0 0 Cn n
2.12)

3 Algorithms for Solving Doubly Bordered Tridiagonal Linear
Systems of Type (B)

In this section, we are going to consider the construction of new algorithms for solving doubly bordered
tridiagonal linear systems of type (B) via transformation. For this purpose it is convenient to introduce
the vector e = [e1, e2, ..., e,] Whose components e, e,,—1, ..., e2 are given by:

_ d'll7 fori=n 3.1
€= d—% fori=n—1,n-2,..,2. (3-1)
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The system (1.6) can be completely described by the augmented matrix, H given by:

di a1 pn—2 ... p3 D2 p1 g1
b1 da as 0 e A 0 g2
Gn—2 b2 ds as g3
H:=[Tn,g] = : 0o . T e : : . (3.2)
qs o bz dp—2 an—2 0 In—2
q2 - . bn72 dnfl An—1 gn—1
L @1 0 0 bn-1 dn gn |

The matrix H contains all the information about the system (1.6) that is necessary to determine its
solution, but in a compact form. Let R; denotes the i-th row of the matrix H. Performing the following
row operations on H, in the same order:
R, +— R,/en
Fori=n—-—1,n—-2,...,2do
R; «<— Ri —a;Ri11
End do.
Forj=1,2,...n—1do
R1 < R1 — UjRn_j+1
End do.
Rl — R1/€1.
Then we have the resulting transformed linear system of the form:

1 0 0 A
B 1 - : Za
B Yo 1 . : Zs
0 , (3.3)
hs . Ya.s 1 RPN Zn—2
hy i Y. Yae 10 | Zna
hi 0 ... ... 0 Yo 1 Zn
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where
en=dn, =L Z,=9 4 —p,
€En €n
Fori=n—1,n-2,...,2 do
_ b
Y, = €l
ei =di —a; Y,
Z; = 6%.(91' —ai Zit1).
End do.
Fori=2,3,...,n—2 do
hi = enji+1 (i — hi—1 an—it1),
Vi = Pi — Yn—it1Vi—1, (3.4)
End do.
1
hn—1=—(b1 — hn—2 asz),
€2

Un—1 = a1 — Y2 Un—2,
n—1

€1 = dl - g hr Ur,
r=1

n—1
1
Zy = ;(91 - § (%3 Zn7r+1)«
1
r=1

At this stage, the determinant of the coefficient matrix in (1.6) can be computed using the following
computational symbolic algorithm.

Algorithm 3.1. An algorithm for computing the determinant of doubly bordered tridiagonal matrices
of type (B).

To compute the determinant of the coefficient matrix in (1.6), we may proceed as follows:

INPUT: Order of the coefficient matrix n and the components, a;, d;, b:, pi, ¢;-
OUTPUT: The determinant of the coefficient matrix in (1.6).
Step 1: Sete,, = d,,. If e, =0thene, = send if.
Step2: Fori=n—1,n—2,...,2do

Compute and simplify:

ei=d; — 20 If e; = 0 then e; = s end if

End do.

Step 3: Compute e; from (3.4).
Step 4: Compute and simplify:

P(s) = [T e
Step 5: det(7,,) = P(0).

The Algorithm 3.1, will be referred to as DETDBTRI-B algorithm.

The reduced transformed system (3.3) is triangular and easy to solve by forward substitution. Consequently,
the linear system (1.6) can be solved using the following symbolic algorithm:
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Algorithm 3.2. Symbolic version algorithm for solving doubly bordered tridiagonal linear
system of type (B).

To solve the linear system of the form (1.6), we may proceed as follows:

INPUT: Order of the matrix n and the components, a;, di, b;, gi, pi, g
OUTPUT: The determinant of the coefficient matrix in (1.6) and the solution vector
X =[z1,22,... 7:c,L}T.
Step 1: Sete, =dy. Ife, =0thene, =sendif. h1 =2, Z, =2 andwv; = p;.
Step2: Fori=n—1,n—2,...,2do " "
Compute and simplify:
Yi= g,
ei::di—-aiYLlfei::Othen &-::sendit
Z; = e%.(gi — i Ziy1).
End do.
Step 3: Fori =2,3,...,n —2do
Compute and simplify:

hi = ﬁ((h — On—i+1 hz‘fl),
Vi = Pi — Yn—it1Vi—1,
End do.

Step 4: Set h,,_1 = é(lh — a2 hnfg),
Un—1 = a1 — Y2 Up—2.

n—1
Step 5: Setes =di — Y. hrvr. If er =0thene; = sendif.

r=1

n—1
Zl - é(gl - Zl Ur Zn—r+1)~

Step 6: Use the DETDBTRI-B algorithm to check the non-singularity of the coefficient
matrix of the system (1.6).
Step 7: If the determinant of the coefficient matrix in (1.6) equals zero, then Exiterror('No
solutions’) end if.
Step 8: Compute the solution vector X = [z, x2, ..., z,]" using
xr1 = Zl
T2 =Zs—hn_171
Step 9: Fori=3,4,...,ndo
i =2 —Yi1Ti—1 — hn_iy121

End do.
Step 9: Substitute s = 0 in all expressions of the solution vector x;,i = 1,2,...,n. The Algorithm
3.2, will be referred to as TRANSDBTRI-BI algorithm. The cost of this algorithm is exactly the same
as the cost of the TRANSDBTRI-AI algorithm.

Similar to the situation with the doubly bordered tridiagonal linear systems of type (A), the following
points are worth to mention:
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e The solution vector, X = [z1, x2, ..., z,]T of the system (1.6) satisfies:

1
hn—l
hn—2

hs

ha
ha

e The values Z;, i = 1,2,...,nin (3.4) satisfy:

€1

0

0

Hence using (3.5) and (3.6), we get

€1 Un—1
0 €2 a2
L 0

0 0]
1 i I1 ) i Z1 1
Xro ZQ
Yo 1 T3 Z3
0 = :
Tn—2 Zﬁ*Z
Y3 1 Tp—1 Zn—1
: Yoo 1 0| L @ 1 L Zn |
0 0 Yuu 1|
Vn_1 V2 v |1 oz 7 [ g1 ]
€2 as 0 0 22 g2
Z3 93
B B 0 : - .
fn-2  An-2 Zﬁ—? gn—2
€n—1 An—1 Zn-1 gn—1
0 en | L Zn | L 9n |
1 0 0
. U2 V1 ]
0 0 Pn-r 1
hn—2 Ya 1
0
€n—2 Qan-2 0
h3 Y%fg 1
€n—1 Qn-1
0 en | ha : - Yo 1 0
h1 0o ... - 0 Y.-1 1

Tn—2
Tn—1

L ZTn |

(3.7)

From (1.6) and (3.7), we obtain the Doolittle U L factorization [1] of the matrix in (1.6) in the form:

where

Un—1

Uy

az

. V2
0
€n—2 QAn-2
€n—1
0

V1

An—1
€n

T, = ULy
1 0
hn_o1 1
hn72 }E 1
and L; = 0
hs Y._3
J ho N
h1 0

1
Yoo 1
0 }%71

1259
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The Crout U L factorization of the coefficient matrix in (1.6) is given by:

where

Ua

Un—1

€2

T, = UsLo
v v1 T
en—1 en
“ and Lo =
n—2
€n—1 0
1 et
0 1]

0 0 7
1
Yoo 1
Ys 1 0
0 Y 1

e The values h;, i = 1,2,...,n — 1in (3.4) satisfy:

€n

an—1

€n—1

An—2 1

as €3 0

€1 0
e2hn_1 €2

eshn—2 b2

0
en—2h3
6n—1h2

enhl 0

V1
V2
U3

Un—2
Un—1

€3

D2
D3

Pn—2

q1
q2
q3

qn—2

b1

(3.10)

(3.11)

1260

€n




British Journal of Mathematics and Computer Science 4(9), 1246-1267, 2014

Armed with (3.8)-(3.11) we have the partitioned form:

[ di a1 Pn-2 ... P3 P2 p1 ]
b1 d2 a2 0 0
qn—2 bo ds as
0
q3 T bnes daez Gp-2 0
q2 bn—2 dn-1 Gn-1
L q1 O O bn—l dn m
i €1 Un—1 Un—2 Un—3 “ee V2 V1 T _ _
0 es as 0 0 1 o ... 0
hn—1 1 0 .. .. 0
0 €3 as
hn—2 Yo 1
0 b
€En—2 An—2 0 . .
ho . Yo 1 0
. . . €n—1 An—1 L hi 0 e 0 Y. 1 1 ]
L O 0 ... ... 0 en |
(3.12)
and
[ da a1 Pn—2 p3 P2 p1 ]
bl d2 a 0 e - 0
qn—2 ba ds as
0
q3 ' . bn73 dn72 An—2 0
q2 U bnea dpo1 aGnea
L 1 0 0 brn—1 dn _
ril YUn—1 VUn—2 VUn—3 v2 V1 A
e es €q en—1 €n _ -
0 1 :—i 0 0 e1 0o ... .. C.. 0
€2hn_1 €2 0 T N 0
o 1
eshn—2 by e3
a 0 ,
1 —e::f 0
i enfth . bn72 €n—1 0
: 1 a’;71 enh1 0 - 0 bn-1 €n ]
L O 0 0 1
(3.13)
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4 Computer Program

In this section, we are going to introduce a MAPLE procedure for solving linear systems of doubly
bordered tridiagonal types (A) and (B) in (1.5) and (1.6), respectively. The procedure is based on the
algorithms DETDBTRI-A, TRANSDBTRI-All, DETDBTRI-B and TRANSDBTRI-BI.
i ka7 a  a a ( k a  ak  a
restart:
doublytritrans:= proc(d::vector, a::vector, b::vector,q::vector,p::vector,f::vector,
n::posint,indic::nonnegint)
local i,r:
global x,T,detA:
x:= vector(n):
i i a0 a1
#Apply TRANDBTRI-AIIl algorithm if indic =1#
if indic=1 then
if d[1] = 0 then d[1]:=t fi:
a[1]:=simplify(a[11/d[1]): f[1]:=simplify(f[1}/d[1]): p[1]:=p[1)/d[1]:
for i from 2 to n-2 do
d[i] := simplify(d[il]-a[i-1]*b[i-1]);if d[i] = 0 then d[i] := t; fi:
a[i] := simplify(a[il/d[i]);
pli] := simplify((p[i] - p[i-1]"b[i-1])/d[i]);
f[i] := simplify((f[i]-f[i-1]*b[i-1])/d[i]);
dq[i] := simplify(q[i] - qli-1]*a[i-1]);
od:
d[n-1] := simplify(d[n-1]-a[n-2]*b[n-2]);
if d[n-1] = 0 then d[n-1] := t; fi:
p[n-1] := simplify((a[n-1] - p[n-2]*b[n-2])/d[n-1]):
f[n-1] := simplify((f[n-1] - f[n-2]*b[n-2])/d[n-1]):
q[n-1] := simplify((b[n-1] - q[n-2]*a[n-2])):
d[n] := simplify(d[n]-sum(q[r]*p[r],r=1..n-1)):
f[n] := simplify((f[n]-sum(q[r]*f[r],r=1..n-1))/d[n]):
if d[n] = 0 then d[n] :=t; fi:
#To compute the determinant of the doubly bordered tridiagonal matrix#
T := simplify(subs(t =0,simplify(product(d[r],r= 1..n)))):
detA:= eval(T);
if T = 0 then error(”Singular Matrix”); fi;
# To compute the Solution of the system X. #
x[n]:=simplify(f[n]);
x[n-1]:=simplify((f[n-1]-p[n-1]*x[n]));
fori from n-2 by -1 to 1 do
x[i]:=simplify((f[i]-a[i]*x[i+1]-p[i]*x[n]));
od;
eval(x);
i i A 7 o i i i i
#Apply TRANDBTRI-BI algorithm if indic = 2#
elif indic=2 then
if d[n] = 0 then d[n]:=t fi;
g[n]:=simplify(g[n)/d[n]): q[1]:=simplify(q[1]/d[n]):
for i from n-1 by -1 to 2 do
bli] := simplify(b[il/d[i+1]);
d[i] := simplify(d[i]-b[i]*a[i]);if d[i] = 0 then d[i] := t; fi:
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dg[i] := simplity((g[il-g[i+1]*a[i])/d[i]);
od:
for i from 2 to n-2 do
qli] := simplify((q[i] - q[i-1]*a[n-i+1])/d[n-i+1]);
pli] := simplify(pl[i] - p[i-1]*b[n-i+1]);
od:
q[n-1] := simplify((b[1] - gq[n-2]*a[2])/d[2]):
p[n-1] := simplify(a[1] - p[n-2]*b[2]):
d[1] := simplify(d[1]-sum(q[r]*p[r],r=1..n-1)):
if d[1] = 0 then d[1] := t; fi:
g[1] := simplify((g[1]-sum(p[r]*f[n-r+1],r=1..n-1))/d[1]):
#To compute the determinant of the doubly bordered tridiagonal matrix#
T := simplify(subs(t =0,simplify(product(d[r],r= 1..n)))):
detA:= eval(T);
if T = 0 then error(”Singular Matrix”);fi;
# To compute the Solution of the system X. #
x[1]:=simplify(g[1]):
x[2]:=simplify((g[2]-q[n-1]"x[1])):
for i from 3 to n do
x[i]:=simplify((g[i]-b[i-1]*x[i-1]-q[n-i+1]1*x[1]));
od:
eval(x);
elif (indic<>1 and indic<>2) then
print("Error. The value of indic is out of range”):
fi:
end proc:

5 [lllustrative Examples

Example 5.1. [17]. Consider the singly bordered tridiagonal matrix

SO O R NHOOOO

OO R NRFEOOO OO

O~ NHFEOOOO OO

N O OO OoOOoOOoOOo
E

OO OO OO OO N
OO O OO OO N
SO O OO NRFEO
OO O OO NKFE OO
DO OO NHOOO

find det(A).

Solution: We have

n = 10, indic = 1,a = [1,1,1,1,1,1,1,1,1],d = [2,2,2,2,2,2,2,2,2,2], b = [1,1,1,1,1,1,1,1,1],
P = [p1,p2,p3, 04,5, D6, P7,08,0] and q = [0,0,0,0,0,0,0,0,0]. By applying the DETDBTRI-A
algorithm , we obtain

| 3 45 6 7 8 9 10 11 4 7 3 1 2 3 1 1
®C=[25.5 156 7 8 9010 T 5P~ 10PT T 5P — 35 + 5Pa — 1gPs + 5P2 — qop1l-

10 8 .
° detA:H ci = 11 4 8ps — Tp7r + 6ps — H5ps + 4ps — 3ps + 2p2 — p1 = 11 + Z(—l)lipi.
) i=1

1=
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This result is in complete agreement with the result in [17].

Example 5.2. Solve the doubly bordered tridiagonal linear system

5 2 0 0 0 0 00 0 4 a1 5
2 1 1 0 0 0 0 0 0 12 o -5
0 -2 5 2 0 0 00 0 7 3 8
00 1 2 7 0 00 0 2 4 12
0 0 0 3 10 2 00 0 5 s || 13
00 0 0 1 15 3 0 0 3 e | | 22
00 0 0 0 9 250 6 7 19
00 0 0 0 0 1 1 7 2 s 24
00 0 0 0 0 0 3 4 2 o 16
|3 2 -2 7 =6 1 4 5 1 1 |[a0]| | 34]

Solution: We have a doubly bordered tridiagonal linear systems of type (A) for which:

n =10, indic=1,a=[2,1,2,7,2,3,5,7,2],d = [5,1,5,2,10,15,2,1,4,1],b = [2,-2,1,3,1,9,1, 3, 1],
p=1[412,7,25,3,6,2,07,q=[3,2,-2,7,—-6,1,4,5,0] andf = [5,-5,8,12,13,22,19,24, 16, 34]".
By applying the TRANSDBTRI-AIl, we get

° c=[57é715 28 -5 83 31 —384 729 —161620]

>157 47 57837 31 71287 567

10
o detA=]] ¢; = —4363740.

=1
o The solution vector is x=[1,2,3,2,1,1,3,2,3, —1]7.

By using TRANSDBTRI-AI, we obtained the same results.

Example 5.3. Solve the doubly bordered tridiagonal linear system

110 00 0 000 5 T 6
1112 0 0 0 00 0 3 2 16
09 2 5 0 0 000 2 3 14
00 3 151 0 00 0 1 4 35
00 0 2 3 10 000 5 zs || 2
00 0 0 7 1 200 2 e || 8
00 0 0 0 -5 2 20 7 7 12
00 0 0 0 0 2 1 1 12 s 15
00 0 0 0 0 05 2 4 o 10
132 1 7 5 242 1 5 || a0 |[33]

Solution: We have a doubly bordered tridiagonal linear systems of type (A) for which:
n =10, indic=1,a = [1,12,5,1,10,2,2,1,4],d = [1,1,2,15,3,1,2,1,2,5],b = [1,9,3,2,7, —5,2,5,1],
p=1053,21,5271207,q=[3,2,1,7,5 —2,4,2,0] andf = [6,16, 14, 35,2,8,12,15, 10, 33]7.
By applying the TRANSDBTRI-AIl, we have
o C=[l,s,2284, 5 SR, g HESTH, — MR 24 o0 T 1owTRe) 6 Corarian

403 s—43227 _ 1 80797 378813606}
607 s—659887 8 403 s —43227

10
o detA=(]] ci)s—o = (—323188 % s + 35254424),_0 = 35254424.

i=1

e The solution vector is
x=1[1,0,1,2,1,-1,0,0,3,1]7.
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Example 5.4. Solve the doubly bordered tridiagonal linear system

5 2 2 6 3 5 2 7 12 4 1 34
2 1 1.0 0 0 00 0 0 2 5
5 -2 52 0 0 00 0 0 3 4
4 0 12 7 0 00 0 0 T4 3
1 0 03 10 2 00 0 0 zs | | 0
-6 0 0 0 1 15 3 0 0 0 ze | | 18
7 0 00 0 9 25 0 0 7 32
2 0 00 0 0 1 1 7 0 s 3
2 0 00 0 0 03 1 1 o 9

| 3 0 00 0 0 00 1 1| |[z0o] | 4]

Solution: We have a doubly bordered tridiagonal linear systems of type (B) for which:

n =10, indic=2,a=1[2,1,2,7,2,3,5,7,1],d = [5,1,5,2,10,15,2,1,1,1],b = [2,-2,1,3,1,9,1, 3, 1],
p = [4,12,7,2,5,3,6,2,007, q = [3,2,-2,7,—6,1,4,5,0] and g = [34,5,4,3,0,18,32,3,9,4]7. By
applying the TRANSDBTRI-BI, we have

711 ., (104xs—1637) (32x5+43)  (88xs+107) —1 . (dxs+11) 14 . (17xs+13) (8xs+7)
o e=[ x (32rstd3) 290 * (880511077 (rst1D) * 2 * (17est13) 3 * (swst?) 29 ¥ (sgid) ) — S *

(s+14) (s—21) 1}

G—21) s S

10
o detT=(]] ei)emo = (24024 5 — 378147),—o = —378147.

=1
e The solution vector is
x=[1,2,1,-1,0,1,3,2,0,1)7.

6 Conclusions

The current article focuses on solving doubly bordered tridiagonal linear systems of equations via
transformation. It investigates numeric and symbolic algorithms for solving such systems. MAPLE
was used to simulate the problem considered. If n is large (n>500), it may be preferable to use
iterative methods for solving such systems. Consequently, the efficiency of the new methods in this

paper should be compared with existing methods such as static and dynamic tuning method or the
GPU accelerated tridiagonal solver. This will be the subject of the next paper.
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