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Abstract

In this paper, we present a generalized exponential distribtitegncontains four paramete
This distribution further generalizes previously establisghenkralized exponential distributions
which now serves as special cases of the new four-parargetegralized exponential
distribution. The properties of the new distribution like tvenulative distribution function, the
survival function, the hazard function, the moment generatingtion, the median, the 100p-
percentile point and the mode of distribution are estaddisifhe moment function of the
distribution which cannot be obtained in close form is numkiyicdtained and tabulated for
some selected values of the parameters. A Theorem thetatérized the distribution is stated
and proved.

Keywords: Generalized exponential distribution; moment géingréunction; moments; median;
percentile; mode.

1 Introduction

Exponential distribution is one of the very well known contirsiptobability distributions which
have been used for modeling various life time data andngditme problems. Specifically, if X is
a random variable denoting the waiting time between ssoee occurrences of events which
follow a Poisson distribution with meai then X has an exponential distribution with probability
density function (pdf)

fx( L) =£Le ™™, x>0,£>0. (1.1)
The corresponding cumulative distribution function (cdf)haf €xponential distribution is

Fy(;)=1—-e,  x>0,>0. (1.2)
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Recently a new distribution, named as generalized exponétgl distribution was introduced
by Gupta and Kundu [1]. The GE distribution has the pdf

fx(a,K) = ak(l —e™™) e x> 0,a>0,£> 0. (1.3)
with cdf
Fe(oa,)=0—-e™%  x>0,a>0£>0. (1.4)
survival function
Sy(;a,)=1—-(1—e™%  x>0,a>0£>0. (1.5)

and a hazard function
61’1{(1 _ e—KX)a—le—Ax
1-—(1—e ) ~’

hy(x; a,K) = >0,a>0, (1.6)

In that papem is a shape parameter whieis a scale parameter. The GE distribution with the
shape parameter and the scale parametérwas denoted bwy,A. The GE(14) represents the
exponential distribution with the scale parametém equation (1.1). If the measure of location p
is introduced in equation (1.3), we have

f_X (H,0.8)=ak(1-e"(A(x-1) ) )*(@-1) eM(£(x-H) ).x>0,u>0x>0.£>0. (1.7)

It is made known in Gupta and Kundu [1] that the generaxg@adnential distribution can be used
quite effectively in analyzing many lifetime data, tmararly in place of two-parameter gamma
and two-parameter Weibull distributions.

The generalized exponential distribution can have increasimy decreasing failure rates
depending on the shape parameter. Gupta and Kundu [2] studied how ¢hentiéstimators of
the unknown parameter or parameters of the generaézpdnential distribution behave for
different sample sizes and for different parameter valtlesy compared the maximum likelihood
estimator with the other estimators like method of momestiimators, estimators based on
percentiles, least squares estimators, weighted legstesjestimators and the estimators based on
order statistics, mainly with respect to their bias@sl mean squared errors using extensive
simulation techniques.

The main aim of this paper is to extend the generalizatfotiheo exponential distribution by

introducing another generalized exponential distribution wisichtains four parameters as an
improvement on the above generalized exponential distribution ofaGuqat Kundu [1,2]. The

concept of extended generalized distribution was introduc®duinlong-Wuu, Hung Wen-Liang

and Lee Hsiu-Mei [3] for the generalized logistic disttibn of George and Ojo [4]. After that,

Olapade [5] obtained extended type | generalized logistidkiison for the type | generalized

logistic distribution of Balakrishnan and Leung [6] and he iooetd in Olapade [7,8] to obtain

extended type Il and extended type Ill generalized logissicibutions respectively for the type I

and type Il generalized logistic distributions of Balakrian and Leung [6] respectively.

2. Four-Parameter Generalized Exponential Distribution

Let X be a continuous random variable, we say that the randdableaX follows an extended
generalized exponential distribution if its pdf is

febrin @, B,0) = (B — e FOmy-tg=ftm),

ak
Br—(B -1

1281



British Journal of Mathematics & Computer Scien€®)41280-1289, 2014

x>0,u>0,a>1,8>1,4>0. 2.1)

By integrating equation (2.1) over the range of X, we coakil confirm the function to be a pdf
and as the function contains four parameters, it is calfedraparameter generalized exponential
distribution or extended generalized exponential (EGE) digiab where p is a location
parameterg is a shape parametgris an extension parameter akdis a scale parameter hence,
we denote the EGE with these parameters as EGELPK). Whenf =1, we obtain the
generalized exponential distribution of Gupta and Kundu [1] ahdnw = 1, we obtain the
exponential distribution with parametémwhen p=0 which is also called negative exponential
distribution in some literature. For the rest of thisgrapve assume that p =0 without loss of
generality.

If X has the probability distribution function in equation (2.)en the corresponding cdf is
obtained as

1 —Ax\0 _ _ 1\«
Fx(x;a,B,K) = m[(ﬂ —e ™) = (B -1,
x>0,a>1,8>1,4>0. 2.2)

As the values of (x; a, B, £) depends on the values@ff, £ and x, the probability that an EGE
random variable X lies in an intervak;(, x;) is obtained as

KX jNa_p_—KXiNa
Pr (x; < X < x))=Fy(xj;2,8,K) - Fx(xisa,B,8) = (B-e ;;tzjz(;;(—i); B (2.3)

for any real values at, 8, £ and any given intervalx( , x;)

If X is the lifetime of an object, then the survival fuoat of the random variable X with
EGE(«, B, A) distribution is

1
Sx(x;a,B,K) =1 —m[(ﬁ —e ™) — (B -1
=L x>0,a>1,5>1,4>0. 2.4)

The hazard function of the random variable X with EGHH, £) distribution is also obtained as

. s a K
hy s a, B, £) = 1-Fy(x;a,4,4)

_ aA(B_e—&X)u—le—/(x

T B (e
x>0,a>1,>1,£>0. (2.5)

If =1, the hazard function becomégdependent of x.
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3. The Moment of Extended Generalized Exponential Distribution

The moment generating function of a random variable X fiblaws an EGE distribution is
obtained as

My (t) = fe”‘fx(x; a, B, K)dx

1{ 0

- ﬁa—?WJO et (B — e~ )1 le ™y G-
£ a—-1

L Sees oo

Lete~%/B = k, thenx = —& 'In (8k) anddx = —(£k)~dk. So
a—t/k -1 ae _
My () = ﬁjjf(w FFH 1 = 10v ke Adk. (3.3)

By using the binomial series expansion of the argument in tbgraitof equation (3.3), we have

My (£) = j & 12( - 1)1 )k’_de (3.4)

We interchange the summation and the |ntegrat|on torobta

My (@) =%Z(— ("7 j Terae @5

3 0:,8“_”‘ * ra—1 ,B_j
eV e 69

Since the infinite series is sum able, differentiable ahadstonly a finite number of terms when
is an integer, we have after differentiating k times awdluating at t=0, we obtain tie"
moment of the EGE distribution as

e = ﬂa 1k'1)a2(—1)1( j 1)0f—5k+1 (3.7)

Since the moment generating functidp(t) is an infinite series which may be difficult to make
use of, we obtained thé" moment of the EGE distribution as

BT = g (aﬁA ey fowx" (B — e te™ . (38)
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The tables (3-1) till (3-6) which are presented inAlppendix should be considered.

These tabulated values can be used to compute the meiancgaskewness and kurtosis for the
EGE distribution using the following relations:

M=V,
Hp=Vo- Vi
Hs =v3-3v, vi+2v7
Us =V 4- 4V 3V 1+6V , vE-3vE, (3.9)

wherev; is theit® momentE[X¢] andu,=the meany, = the variance,
skewnes®g, = u2/u3 and the measure of kurtosds = p,/uz .

4 Median of the Extended Generalized Exponential Distribution

The median of a probability density function f(x) is aroi, on the real line which satisfies the
equation

fxmf(x)dx =1/2

this implies that F(x)=1/2. For the extended generalized exponential distribution witrapidly
_p—KXNO_p_1\@
distribution function in equation (2.2 (x; a, B, )=1/2 implies% = 1/2, which

implies that

Xmedian = —('In B - %1

The survival function of the EGE distribution at the media$,is;iq.. (x; a, B, £)=1/2.

5 The 100p-Percentage Point of the Extended Generalized
Exponential Distribution

Consider the extended generalized exponential distributiod 0 percentage point is obtained
by equating the cumulative probability distribution function tavpere0 < p < 1. That is

[B—e™™"-B-D" _
B — (B -1

F(xg) =p ~

Solving forx,) gives

X = —4 'In[g —/pp*— (p+ 1)(B — 1)4]. (5.1)
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This gives the value of the point, ) on the real line that produce a percentage p of the
distribution. We can easily test this by checking the evalfix,) when p=0.5 which corresponds
to the median.

6 The M ode of the Extended Generalized Exponential Distribution

The mode of a probability density function is obtained gyaging the derivative of the density
function to zero and solve for the variable. Thereféoe the extended generalized exponential
distribution

Fui 0,8, 8) = e (F — e
B — (B -1
x>0,a>1,8>1,A>0.
fr (x a ﬁ 1{) — Le—m(ﬁ _ e—AX)a—Z(ae—Ax _ B) (6 1)
R pe— (- 1) | '
By equating the derivative to zero, we have
e (B — e™™)"2 (ae ™ — ). (6.2)
This implies
e ™ =0or (B—e*™)=0o0r (ae ™™ —p) =0. (6.3)
This implies that
X(mode) = ®© OT —£MnB or = tIn (g) (6.4)

To determine the mode out of these three options, weeliffiete the pdf the second time to
obtain

&
B — (B -1
+Be (B — )" 2 — B(a — 2)e (B — e7)*3]. (6:5)

[0.(0. _ Z)e—SAX(ﬂ _ e—KX)a—S _ Zae—ZKX(ﬂ _ e—AX)a—Z

fxOa,B,K) =

When X(moaey = © or =& ' Inf, fy(x;a,B,K) = 0, but whenx(pmogey = —£ ' In (g)

BA* (B — B/o)**(B — 20)

(x;a,B,K) = , 0>1,8>0, £>0. (66
& Fr--1y ©©
The only determining factor for the mode of EGE distributmexist is thap — 2a <0, hence the
EGE distribution will have a finite real mode whenewer /2 andxnoge) = —£'In (5)

The survival function at the mode is
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“(1— (1 -1/a)"
Smode(x) =ﬁ (ﬁa —((ﬁ—l/)i) ),

a>1,8>0. 6.7)

7 A Theorem that Characterize the Extended Generalized
Exponential Distribution

Here we state and prove a Theorem that charactergdigtiibution.

Theorem: The random variable X follows a extended generalizgabmential distribution with
parameters, 8, £ if and only if the density function f satisfies the homuggus differential
equation

B-e™f + LB —ae™Ff=0 (7.1)
(prime denotes differentiation).

Proof: Suppose X is a extended generalized exponential distributiodom variable, then
fx(x; a, B, Handfy (x; a, B, £) are as shown in equations (2.1) and (6.1) respectively.

By substituting f(x) and f'(x) in the differential equati@hl), the equation is satisfied.

Conversely, we assume that f satisfies equation (7eparate the variables and then integrate, we

have
ff dx = —Aﬁf +Aaf dx. (7.2)
B - B-
Inf= —4Ax +In (8 — e~ ) * 1 + InC. (7.3)
Therefore,
f=Ce (B -1,  x>0a>1,8>1,4>0. (7.4)

Where C is a constant. The value of C that makes f a prapata@hsity function is

C=ak[p* - (B -1~

Possible application of the Theorem: From the homogerdifiasential equation (7.1),

_ 1 B(f +4f)
x= =[S 75)
or equivalently,
_ 1 ﬁ(F + AF) 7.6)
F'+ akF’ | '

Where F is the corresponding cdf of the EGE distributidiusTthe importance of this Theorem
lies in the linearizing transformation (7.5) or (7.6) whichldopbe regarded as an EGE model
alternative to the Berkson's logit transform in Berksorf¢®the ordinary logistic model and Ojo
[10] logit transform for generalized logistic model. Heneguation (7.5) or (7.6) could be
referred to as extended generalized exponential logitftnans
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8 Conclusion

We have presented a four-parameter generalized exponentiddutisn and proved that it is
really a probability density function. The cumulative digition function, the survival, the hazard
and the moment generating function of the distributionehlagen obtained and the moments
function have been tabulated. The median, the 100p-perceptige and the mode of the
distribution are obtained. We conclude the paper by statim @oving a Theorem that
characterized the distribution.
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Appendix

Tables of moments of the extended gener alized exponential distribution.
Table 3.1. £=20,0=20

B E[X] E[X?] E[X°] E[X*]
1.0000 0.7500 0.8750 1.4062 2.9062
1.500( 0.625( 0.687¢ 1.078: 2.203:
2.0000 0.5833 0.6250 0.9687 1.9687
2.500( 0.562¢ 0.5931 0.914: 1.851¢
3.0000 0.5500 0.5750 0.8812 1.7812
3.5000 0.5417 0.5625 0.8594 1.7344
4.0000 0.5357 0.5536 0.8437 1.7344
4.5000 0.5312 0.5469 0.8320 1.6758
5.000( 0.527¢ 0.541: 0.822¢ 1.656:

Table 3.2. £=2.0, 0.=2.5

B E[X] E[X?] E[X?] E[X*]
1.0000 0.8402 1.0345 1.7084 3.5802
1.5000 0.6856 0.7849 1.2551 2.5898
2.0000 0.6252 0.6908 1.0868 2.2251
2.5000 0.5942 0.6429 1.0018 2.0415
3.0000 0.5754 0.6141 0.9508 1.9318
3.5000 0.5628 0.5950 0.9170 1.8587
4.0000 0.5538 0.5813 0.8928 1.8067
4.5000 0.5471 0.5711 0.8748 1.7679
5.0000 0.5418 0.5631 0.8608 1.7378

Table 3.3. £=2.0, ¢ =3.0

B E[X] E[X?] E[X°] E[X*]
1.0000 0.9167 1.1805 1.9965 4.2372
1.500( 0.743¢ 0.882¢ 1.436¢ 2.991:
2.0000 0.6667 0.7579 1.2093 2.4937
2.500( 0.625¢ 0.693: 1.092¢ 2.240(
3.0000 0.6009 0.6542 1.0228 2.0881
3.5000 0.5841 0.6282 0.9764 1.9875
4.000( 0.572: 0.609¢ 0.943: 1.916(
4.5000 0.5630 0.5957 0.9186 1.8627
5.000( 0.556( 0.584¢ 0.899¢ 1.821¢
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Table 3.4. £=3.0, ¢ =2.0

B E[X] E[X?] E[X] E[X"]
1.000( 0.500( 0.388¢ 0.4167 0.574:
1.5000 0.4167 0.3056 0.3194 0.4352
2.0000 0.3889 0.2778 0.2870 0.3889
2.500( 0.375( 0.263¢ 0.270¢ 0.3657
3.0000 0.3667 0.2556 0.2611 0.3518
3.500( 0.361: 0.250( 0.254¢ 0.342¢
4.0000 0.3571 0.2460 0.2500 0.3360
4.5000 0.3542 0.2431 0.2465 0.3310
5.0000 0.3518 0.2407 0.2438 0.3272

Table 3.5. £=3.0, a =2.5

B E[X] E[X?] E[X] E[X"]
1.0000 0.5601 0.4598 0.5062 0.7072
1.500( 0.457: 0.348¢ 0.371¢ 0.511¢
2.0000 0.4106 0.3070 0.3220 0.4395
2.500( 0.396: 0.2857 0.296¢ 0.403:
3.0000 0.3836 0.2730 0.2817 0.3816
3.5000 0.3752 0.2644 0.2717 0.3671
4.000( 0.369: 0.258: 0.264¢ 0.356¢
4.5000 0.3647 0.2538 0.2591 0.3492
5.000( 0.361: 0.250: 0.255( 0.343:

Table 3.6. £=3.0, a =3.0

B E[X] E[X?] E[X] E[X"]
1.0000 0.6111 0.5247 0.5916 0.8370
1.500( 0.4957 0.392: 0.425¢ 0.590¢
2.0000 0.4444 0.3369 0.3583 0.4920
2.5000 0.4172 0.3081 0.3238 0.4425
3.000( 0.400¢ 0.290¢ 0.303: 0.412¢
3.5000 0.3894 0.2792 0.2893 0.3926
4.000( 0.381¢ 0.270¢ 0.279¢ 0.378¢
4.5000 0.3754 0.2648 0.2722 0.3680
5.0000 0.3707 0.2600 0.2665 0.3598
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