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Abstract 
 
In this paper, we present a generalized exponential distribution that contains four parameters. 
This distribution further generalizes previously established generalized exponential distributions 
which now serves as special cases of the new four-parameter generalized exponential 
distribution. The properties of the new distribution like the cumulative distribution function, the 
survival function, the hazard function, the moment generating function, the median, the 100p-
percentile point and the mode of distribution are established. The moment function of the 
distribution which cannot be obtained in close form is numerically obtained and tabulated for 
some selected values of the parameters. A Theorem that characterized the distribution is stated 
and proved. 

Keywords: Generalized exponential distribution; moment generating function; moments; median;    
percentile; mode. 

 
1 Introduction 
 
Exponential distribution is one of the very well known continuous probability distributions which 
have been used for modeling various life time data and waiting time problems. Specifically, if X is 
a random variable denoting the waiting time between successive occurrences of events which 
follow a Poisson distribution with mean ʎ, then X has an exponential distribution with probability 
density function (pdf) ����; ʎ� = ʎ�	ʎ
, x > 0, ʎ > 0.                                                        �1.1� 
 
The corresponding cumulative distribution function (cdf) of the exponential distribution is  
 ����; ʎ� = 1 − �	ʎ
, x > 0, ʎ > 0.                                                  �1.2� 
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Recently a new distribution, named as generalized exponential (GE) distribution was introduced 
by  Gupta and Kundu [1]. The GE distribution has the pdf 
 ����; �, ʎ� = �ʎ�1 − �	ʎ
�α	��	ʎ
, x > 0, � > 0, ʎ > 0.                �1.3� 
with cdf ����; �, ʎ� = �1 − �	ʎ
�α, x > 0, � > 0, ʎ > 0.                                �1.4� 
survival function ����; �, ʎ� = 1 − �1 − �	ʎ
�α, x > 0, � > 0, ʎ > 0.                     �1.5� 
and a hazard function 

ℎ���; �, ʎ� = �ʎ�1 − �	ʎ
�α	��	ʎ
1 − �1 − �	ʎ
�α , > 0, � > 0,                           �1.6� 

 
In that paper α  is a shape parameter while ʎ is a scale parameter. The GE distribution with the 
shape parameter α and the scale parameter ʎ was denoted by α,ʎ. The GE(1,ʎ) represents the 
exponential distribution with the scale parameter ʎ in equation (1.1). If the measure of location µ 
is introduced in equation (1.3), we have 
 

f_X (x;µ,α,ʎ)=αʎ(1-e^(-ʎ(x-µ) ) )^(α-1) e^(-ʎ(x-µ) ),x>0,µ>0,α>0,ʎ>0.               (1.7) 
 
It is made known in Gupta and Kundu [1] that the generalized exponential distribution can be used 
quite effectively in analyzing many lifetime data, particularly in place of two-parameter gamma 
and two-parameter Weibull distributions.  
 
The generalized exponential distribution can have increasing and decreasing failure rates 
depending on the shape parameter. Gupta and Kundu [2] studied how the different estimators of 
the unknown parameter or parameters of the generalized exponential distribution behave for 
different sample sizes and for different parameter values. They compared the maximum likelihood 
estimator with the other estimators like method of moment estimators, estimators based on 
percentiles, least squares estimators, weighted least squares estimators and the estimators based on 
order statistics, mainly with respect to their biases and mean squared errors using extensive 
simulation techniques. 
 
The main aim of this paper is to extend the generalization of the exponential distribution by 
introducing another generalized exponential distribution which contains four parameters as an 
improvement on the above generalized exponential distribution of Gupta and Kundu [1,2]. The 
concept of extended generalized distribution was introduced in Wu Jong-Wuu, Hung Wen-Liang 
and Lee Hsiu-Mei [3] for the generalized logistic distribution of George and Ojo [4]. After that, 
Olapade [5] obtained extended type I generalized logistic distribution for the type I generalized 
logistic distribution of Balakrishnan and Leung [6] and he continued in Olapade [7,8] to obtain 
extended type II and extended type III generalized logistic distributions respectively for the type II 
and type III generalized logistic distributions of Balakrishnan and Leung [6] respectively. 
 

2. Four-Parameter Generalized Exponential Distribution 
 
Let X be a continuous random variable, we say that the random variable X follows an extended 
generalized exponential distribution if its pdf is ����; µ, �, �, ʎ� = �ʎ�� − �� − 1�� �� − �	ʎ�
	µ��α	��	ʎ�
	µ�,                             
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x > 0, µ > 0, � > 1, � > 1 , ʎ > 0.                               �2.1� 
 
By integrating equation (2.1) over the range of X, we could easily confirm the function to be a pdf 
and as the function contains four parameters, it is called a four-parameter generalized exponential 
distribution or extended generalized exponential (EGE) distribution where µ  is a location 
parameter, � is a shape parameter, � is an extension parameter and, ʎ is a scale parameter hence, 
we denote the EGE with these parameters as EGE( µ, �, �, ʎ ). When �  =1, we obtain the 
generalized exponential distribution of Gupta and Kundu [1] and when � = 1, we obtain the 
exponential distribution with parameter ʎ when µ=0 which is also called negative exponential 
distribution in some literature.  For the rest of this paper, we assume that µ =0 without loss of 
generality. 
If X has the probability distribution function in equation (2.1), then the corresponding cdf is 
obtained as ����; �, �, ʎ� = 1�� − �� − 1�� [�� − �	ʎ
�α − �� − 1��],                             

x > 0, � > 1, � > 1 , ʎ > 0.                                                    �2.2� 
 
As the values of ���; �, �, ʎ� depends on the values of �, �, ʎ and x, the probability that an EGE 
random variable X lies in an interval  (�! , �")  is obtained as 
  Pr ��! < & < �")= ��'�"; �, �, ʎ( - ����!; �, �, ʎ�   =    

�)	*+ʎ,-�α	�)	*+ʎ,.�α)/	�)	��/                              (2.3) 

 
for any real values of �, �, ʎ and any given interval  (�! , �") 
 
If X is the lifetime of an object, then the survival function of the random variable X with 
EGE( �, �, ʎ) distribution is 
  ����; �, �, ʎ� = 1 − 1�� − �� − 1�� [�� − �	ʎ
�α − �� − 1��] 
                                                       

                       =     )/	�)	*+ʎ0�α)/	�)	��/ ,                x > 0, � > 1, � > 1 , ʎ > 0.                                    �2.4� 

 
The hazard function of the random variable X with EGE( �, �, ʎ) distribution is also obtained as  
 

ℎ���; �, �, ʎ� =  ����; �, �, ʎ�1 − ����; �, �, ʎ� 

=  
�ʎ�)	*+ʎ0�α+1*+ʎ0

)/	�)	*+ʎ0�α ,    

 x > 0, � > 1, � > 1 , ʎ > 0.                                                                    �2.5� 
 

If  �=1, the hazard function becomes ʎ independent of x. 
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3. The Moment of Extended Generalized Exponential Distribution 
 
The moment generating function of a random variable X that follows an EGE distribution is 
obtained as 2��3� = 4 �56 ����; �, �, ʎ�7� 

 

= �ʎ�� − �� − 1�� 4 �56∞

8 �� − �	ʎ
�α	��	ʎ
dx                         �3.1� 

 

= �ʎ��	��� − �� − 1�� 4 �∞8 1 − �	ʎ
� �α	��	
�ʎ	:�dx                          �3.2� 

 
Let �	ʎ
 � = ;,⁄  then � = −ʎ	�ln ��;� and 7� = −�ʎk�	�7;. So 

                                     2��3� = �)/+@/ʎ
)/	�)	��/ B �)	�8 1 − k�α	�;	5/ʎdk.                              �3.3� 

 
By using the binomial series expansion of the argument in the integral of equation (3.3), we have 
 

2��3� = ���	@
ʎ�� − �� − 1�� 4 C�∞

"D8
)	�

8 − 1�E Fα− 1j H ;"	@
ʎdk.               �3.4� 

 
We interchange the summation and the integration to obtain 

  2��3�  = ���	@
ʎ�� − �� − 1�� C�∞

"D8 − 1�E Fα− 1j H 4 ;"	5/ʎ)	�
8 dk.               �3.5� 

 

                                = ���	5/ʎ�� − �� − 1�� C�∞

"D8 − 1�E Fα− 1j H �	"I + 1 − 3/ʎ .                          �3.6� 

 
Since the infinite series is sum able, differentiable and it has only a finite number of terms when α 
is an integer, we have after differentiating k times and evaluating at t=0, we obtain the ;5K 
moment of the EGE distribution as 
 

                                LM = ���	�;!�� − �� − 1�� C�∞

"D8 − 1�E Fα− 1j H �	"�I + 1�MO� .                    �3.7� 

 
Since the moment generating function 2��3� is an infinite series which may be difficult to make 
use of, we obtained the Q5K moment of the EGE distribution as 
 

R[&S] = �ʎ�� − �� − 1�� 4 �S∞

8 �� − �	ʎ
�α	��	ʎ
7�.                 �3.8� 
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The tables (3-1) till (3-6) which are presented in the Appendix should be considered. 
 
These tabulated values can be used to compute the mean, variance, skewness and kurtosis for the 
EGE distribution using the following relations: L�=U1 

 LV = U 2 -  U�V 
 LW =UW -3UV   U� +2U�W 
     LX = U 4 - 4 U 3 U 1+6 U 2 U�V-3U�X,                                     (3.9) 

 
where Ui is the Y5K moment R[&!] and L�=the mean, LV = the variance, 
skewness �� = LWV/LVW    and the measure of kurtosis  �V = LX /LVV .  
 

4 Median of the Extended Generalized Exponential Distribution 
 
The median of a probability density function f(x) is a point xm on the real line which satisfies the 
equation 

4 ����7� = 1/2 
Z
	∞  

 
this implies that F(xm)=1/2. For the extended generalized exponential distribution with probability 

distribution function in equation (2.2), ����; �, �, ʎ�=1/2 implies 
[�)	*+ʎ0�α	�)	��/])/	�)	��/ = 1/2, which 

implies that 

�[*\!]S = −ʎ	� ln ^� − _�� −  �� − 1��    2/ `.                      �4.1� 

 
The survival function of the EGE distribution at the median is �[*\!]S��; �, �, ʎ�=1/2. 
 

5 The 100p-Percentage Point of the Extended Generalized 
Exponential Distribution 

 
Consider the extended  generalized exponential distribution, the 100p-percentage point is obtained 
by equating the cumulative probability distribution function to p, where 0 ≤ b ≤ 1. That is 

�'��c�( = b →  [�� − �	ʎ
�α − �� − 1��]�� − �� − 1�� = b. 
 

Solving for ��c� gives   
 ��c� =  −ʎ	� lne� − fb�� −  �b + 1��� − 1��/ g .                            �5.1� 
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This gives the value of the point ��c  � on the real line that produce a percentage p of the 
distribution. We can easily test this by checking the value of  ��c� when p=0.5 which corresponds 
to the median.  
 

6 The Mode of the Extended Generalized Exponential Distribution 
 
The mode of a probability density function is obtained by equating the derivative of the density 
function to zero and solve for the variable. Therefore, for the extended generalized exponential 
distribution ����; �, �, ʎ� = �ʎ�� − �� − 1�� �� − �	ʎ
�α	��	ʎ
,             
 x > 0, � > 1, � > 1 , ʎ > 0.                 

�′���; �, �, ʎ� = �ʎV
�� − �� − 1�� �	ʎ
�� − �	ʎ
�α	V�α�	ʎ
 − β�.             �6.1� 

 
By equating the derivative to zero, we have �	ʎ
�� − �	ʎ
�α	V�α�	ʎ
 − β�.                                                   �6.2� 
 
This implies  
 �	ʎ
 = 0  or  �� − �	ʎ
� = 0 or   �α�	ʎ
 − β� = 0.                     �6.3� 
 
This implies that 
 

   ��[i\* � =  ∞  jk −ʎ	�lQ�  jk  −ʎ	� ln m)�n                            �6.4� 

 
To determine the mode out of these three options, we differentiate the pdf the second time to 
obtain 
 

��′′��; �, �, ʎ� = �ʎW
�� − �� − 1�� [α�α− 2��	Wʎ
�� − �	ʎ
�α	W − 2α�	Vʎ
�� − �	ʎ
�α	V 

 
                 +β�	ʎ
�� − �	ʎ
�α	V − β�α − 2��	Vʎ
�� − �	ʎ
�α	W].                            �6.5�  

 

When  ��[i\* � =  ∞  jk −ʎ	�lQ�, ��′′��; �, �, ʎ� = 0,  but when ��[i\* � =   −ʎ	� ln m)�n, 
 

��′′��; �, �, ʎ� = βʎW�β− β/α�α	V�β− 2α��� − �� − 1�� ,     α > 1, � > 0,   ʎ > 0.       �6.6� 

 
The only  determining factor for the mode of EGE distribution to exist is that β− 2α <0, hence the 

EGE distribution will have a finite real mode whenever α > �/2  and ��[i\* � =   −ʎ	� ln m)�n. 

The survival function at the mode is  
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�[i\* ��� = ���1 − �1 − 1/�� α��� − �� − 1�� ,     α > 1, � > 0.                           �6.7�  
 

7 A Theorem that Characterize the Extended Generalized 
Exponential Distribution 

 
 Here we state and prove a Theorem that characterize this distribution. 
 
Theorem:  The random variable X follows a extended generalized exponential distribution with 
parameters �, �, ʎ  if and only if the density function f satisfies the homogeneous differential 
equation 
 �� − �	ʎ
�f ′ +  ʎ�� − ��	ʎ
�f = 0                                                     �7.1�  
 
 (prime denotes differentiation).   
 
Proof: Suppose X is a extended generalized exponential distribution random variable, then �� ��; �, �, ʎ�and ��′ ��; �, �, ʎ� are as shown in equations (2.1) and (6.1) respectively.  
By substituting f(x) and f'(x) in the differential equation (7.1), the equation is satisfied. 
Conversely, we assume that f satisfies equation (7.1),  separate the variables and then integrate, we 
have 

4 �′� 7� = −ʎ� 4 7�� − �	ʎ
 + ʎ� 4 �	ʎ
� − �	ʎ
 7�.                            �7.2� 

 lnf = −ʎx + ln �� − �	ʎ
� α	� + lnC.                                              �7.3� 
Therefore,   f = C�	ʎ
 �� − �	ʎ
� α	�, x > 0, � > 1, � > 1 , ʎ > 0.                           �7.4� 
 
Where C is a constant. The value of C that makes f a probability density function is 
 q = �ʎ[�� − �� − 1��] 	�. 

 
Possible application of the Theorem:  From the homogeneous differential equation (7.1),  
 

                                             � = − �
ʎ

ln r )'s′Oʎt(s′O�ʎt u,                                                            �7.5�  

 
 or equivalently, 
 

� = − 1
ʎ

ln v ���′′ + ʎF��′′ + �ʎF′ x.                                                    �7.6� 

 
Where F is the corresponding cdf of the EGE distribution. Thus the importance of this Theorem 
lies in the linearizing transformation (7.5) or (7.6) which could be regarded as an EGE model 
alternative to the Berkson's logit transform in Berkson [9] for the ordinary logistic model and Ojo 
[10] logit transform for generalized logistic model. Hence, equation (7.5) or (7.6) could be 
referred to as extended generalized exponential logit transform. 
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8 Conclusion 
 
We have presented a four-parameter generalized exponential distribution and proved that it is 
really a probability density function. The cumulative distribution function, the survival, the hazard 
and the moment generating function of the distribution have been obtained and the moments 
function have been tabulated. The median, the 100p-percentage point and the mode of the 
distribution are obtained. We conclude the paper by stating and proving a Theorem that 
characterized the distribution. 
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Appendix 
 

Tables of moments of the extended generalized exponential distribution. 
Table  3.1. ʎ = 2.0, α = 2.0 

 
    β y[z] y[z{] y[z|] y[z}] 
1.0000 0.7500 0.8750 1.4062 2.9062 
1.5000 0.6250 0.6875 1.0781 2.2031 
2.0000 0.5833 0.6250 0.9687 1.9687 
2.5000 0.5625 0.5937 0.9141 1.8515 
3.0000 0.5500 0.5750 0.8812 1.7812 
3.5000 0.5417 0.5625 0.8594 1.7344 
4.0000 0.5357 0.5536 0.8437 1.7344 
4.5000 0.5312 0.5469 0.8320 1.6758 
5.0000 0.5278 0.5417 0.8229 1.6562 

 
Table  3.2.  ʎ=2.0,  α =2.5 

 
   β y[z] y[z{] y[z|] y[z}] 
1.0000 0.8402 1.0345 1.7084 3.5802 
1.5000 0.6856 0.7849 1.2551 2.5898 
2.0000 0.6252 0.6908 1.0868 2.2251 
2.5000 0.5942 0.6429 1.0018 2.0415 
3.0000 0.5754 0.6141 0.9508 1.9318 
3.5000 0.5628 0.5950 0.9170 1.8587 
4.0000 0.5538 0.5813 0.8928 1.8067 
4.5000 0.5471 0.5711 0.8748 1.7679 
5.0000 0.5418 0.5631 0.8608 1.7378 

 
Table  3.3.  ʎ=2.0,  α =3.0 

 
    β y[z] y[z{] y[z|] y[z}] 
1.0000 0.9167 1.1805 1.9965 4.2372 
1.5000 0.7436 0.8825 1.4364 2.9913 
2.0000 0.6667 0.7579 1.2093 2.4937 
2.5000 0.6258 0.6933 1.0928 2.2400 
3.0000 0.6009 0.6542 1.0228 2.0881 
3.5000 0.5841 0.6282 0.9764 1.9875 
4.0000 0.5721 0.6096 0.9433 1.9160 
4.5000 0.5630 0.5957 0.9186 1.8627 
5.0000 0.5560 0.5849 0.8995 1.8215 
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Table  3.4.  ʎ=3.0,  α =2.0 
 

    β y[z] y[z{] y[z|] y[z}] 
1.0000 0.5000 0.3889 0.4167 0.5741 
1.5000 0.4167 0.3056 0.3194 0.4352 
2.0000 0.3889 0.2778 0.2870 0.3889 
2.5000 0.3750 0.2639 0.2708 0.3657 
3.0000 0.3667 0.2556 0.2611 0.3518 
3.5000 0.3611 0.2500 0.2546 0.3426 
4.0000 0.3571 0.2460 0.2500 0.3360 
4.5000 0.3542 0.2431 0.2465 0.3310 
5.0000 0.3518 0.2407 0.2438 0.3272 

 
Table  3.5.  ʎ=3.0,  α =2.5 

 
    β y[z] y[z{] y[z|] y[z}] 
1.0000 0.5601 0.4598 0.5062 0.7072 
1.5000 0.4571 0.3489 0.3719 0.5116 
2.0000 0.4106 0.3070 0.3220 0.4395 
2.5000 0.3961 0.2857 0.2968 0.4033 
3.0000 0.3836 0.2730 0.2817 0.3816 
3.5000 0.3752 0.2644 0.2717 0.3671 
4.0000 0.3692 0.2583 0.2645 0.3569 
4.5000 0.3647 0.2538 0.2591 0.3492 
5.0000 0.3612 0.2503 0.2550 0.3433 

 
Table  3.6.  ʎ=3.0,  α =3.0 

 
    β y[z] y[z{] y[z|] y[z}] 
1.0000 0.6111 0.5247 0.5916 0.8370 
1.5000 0.4957 0.3922 0.4256 0.5909 
2.0000 0.4444 0.3369 0.3583 0.4920 
2.5000 0.4172 0.3081 0.3238 0.4425 
3.0000 0.4006 0.2908 0.3031 0.4125 
3.5000 0.3894 0.2792 0.2893 0.3926 
4.0000 0.3814 0.2709 0.2795 0.3785 
4.5000 0.3754 0.2648 0.2722 0.3680 
5.0000 0.3707 0.2600 0.2665 0.3598 
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