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Abstract

The Wahlquist-Estabrook approach which has been applied to investigate the prolongation
structure of many nonlinear systems is introduced. The theory which results is applied to the
Burgers-KdV equation which is shown to have a nontrivial prolongation algebra. It is shown that
the resulting equations can be solved to produce a very general solution. Based on the results
determined for the algebra, without picking a specific representation for the algebra, a Lax pair for
the equation is determined in terms of the basic generators of the algebra.
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1 Introduction

The method initiated by Wahlquist and Estabrook (Wahlquist and Estabrook, 1975; Wahlquist and
Estabrook, 1976; Estabrook, 1982; Estabrook and Wahlquist, 1978) has turned out to be very
effective as far as understanding and generating prolongation algebras for large classes of nonlinear
differential equations. These algebras can in turn be used to write down many other quantities which
are significant as far as the study of the integrability of these systems is concerned. For example, a
Lax pair for the equation can usually be generated as well as a Backlund transformation which allows
one to produce new solutions of the equation from known solutions. Many deep ideas from differential
geometry and group theory have found applications in this domain (Olver, 1993).

Here, the method which has evolved from the ideas of Wahlquist and Estabrook will be reviewed
and developed in a direction that has not been discussed as of yet. These results are then used
to obtain a prolongation algebra for the Burgers-KdV equation from a differential ideal of two-forms.
This nonlinear equation (Newell, 1985) has arisen in discussing the flow of liquids, in fluid dynamics
and merits a treatment by means of this procedure. Several other equations have been studied along
these lines recently (Bracken, 2007; Bracken, 2011; Bracken, 2010), and there seems to be a lot of
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interest in this way of looking at nonlinear equations (Bracken, 2010; Findley, 1996; Zhai et al., 2006,
Dodd and Fordy, 1983; Leo et al., 2001)

A differential ideal of two-forms is established first for the equation and it is shown to be closed. By
the Frobenius theorem, it is established that the given exterior differential ideal is integrable (Groesen
and Jager, 1994). This system of forms is chosen such that solutions of the evolution equation
correspond with two-dimensional transversal integral manifolds of the ideal, which can be expressed
as sections in the base manifold. To carry this out, a particular fibre bundle is introduced over the
base manifold and provided with a Cartan-Ehresmann connection, which is specified by an additional
differential system of one-forms. When the combined exterior differential system of these forms is
considered on the bundle, it is called a Cartan prolongation if it is closed. Whenever there is a
transversal solution of the differential system, there should exist a transversal solution of the combined
exterior differential system such that it projects down to the preceding integral manifolds. It will be
seen that this approach leads directly to a Lax pair in an efficient way once the prolongation algebra
is known.

2 Cartan Prolongations

Consider the space M = R™ with coordinates written generally in the form (vi, vz, - ,vn). Let there
be defined on M a closed exterior differential system

a1 =0,---,a; =0. (1)

Let I be the ideal generated by (1) given by I = {¢ = Zézl ogiNag oy € Ap(M),p=0,1,2---}
with A, (M) the set of p-forms on M. Since (1) is closed, dI C I, and according to the Frobenius
Theorem, then (1) is integrable.

In applications that would be considered to evolution equations u: = F(x,t, u, Us, Uzz, - ),
v1 = z, v2 = t and vs = u. The system (1) is chosen in such a way that solutions v = wu(x,t)
of an evolution equation correspond with two-dimensional transversal integral manifolds of (1). These
integral manifolds can be written as sections S in M such that S is specified by

(z,t) = (z,t,v3(x, 1), -+ ,um(z,t)),

and due to tansversality, dx A dt = 7*(dz A dt) # 0 where m: M — R? and 7% A(R?) — A(S).

Now, a fibre bundle B = (M, , M) with connection will be introduced over M such that M ¢ M
and 5 the projection of M onto M, 5(M) = M. A Cartan-Ehresmann connection in the fibre bundle B
is a system of one-forms @; wherei =1,---  nin T" (M) with the property that the mapping 5. from
the vector space H; = {X € Ty|@:(X) = 0,5 = 1,--- ,n} onto the tangent space T}, is a bijection
for all ¢ € M. Consider the exterior differential system in M given by

i =pa;=0, i=1,---,1, @0;j=0, j=1,---,n, )

such that {&} is a Cartan-Ehresmann connection in {M,, M}. The system (2) is called a Cartan
prolongation if (2) is closed and whenever S is a transversal solution of (1). Then, there should exist
a transversal solution S of (2) such that ﬁ(S‘) = S. From the fact that (2) is closed, it follows that this
prolongation condition may be written as

do; = Z Bl A@; modp*(I), 3)
=1

with I the ideal defined by (1)._
The bundle is given by M = M x R"™ where y = (y1,--- ,yn) € R™ are referred to as the
pseudo-potential coordinates. The connection used here is given by

(Dk:dykiFk(vly”'7’U’m7y)dt7Gk(U17”'7’Um7y)dx7 k:17”'7n' (4)
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In (4), F* and G* can be represented as column vectors which depend on the manifold coordinates
as well as the y. The procedure is to regard the y* as coordinates in an extended (m+n) dimensional
space of variables, and to include the &* with the original set of forms.

The integrability condition requires the prolonged ideal {c,&"} be closed. This means that di*
takes the form

l n
d&)k = Z fkjaj =+ Z 77]“ /\(:.)z',
j=1 i=1
ki

where f*7 stand for dependent functions of the bundle coordinates and n* represent a matrix of

one-forms.
For a connection of the form (4), namely &* = dy* — n*, the prolongation condition reduces to

the form
8177;

—dni = 5= A(dy; —n;), modp”(I). 5)
Yj
This result can be compressed by writing the identity
67}1‘
dn; =d P — A dy;.
ni = du (8yj) i

Here da; means differentiation with respect to just the variables of the base manifold {v;}. The
prolongation condition then becomes

8m
Oy;

Finally, introduce the vertical valued one-form

duni — () An; =0, modp™(I).

__ 0
W—Wzayia

along with the definitions

] = (1 A 22 4y 0 21y O
Byj ayj Oyi

0
dn = (dmm:) oy

The prolongation condition then takes the elegant form

dn + %[n,n] =0, mod p* (I). (7)

A particular example of the connection form (4) will be defined. This one is useful with respect to
generation of Lax pairs. It is defined by

n n

OF =dy* —n* = dy* — Z F*(v)y, dt — Z GM (v)yi da. (8)

=1 i=1

To work out (7), the commutator (6) is required, and after some simplification there results,

[,0] = (G FYy; dzx Adt + F7'G"y; dt A da 4+ FP'G"y; dt A da + G FY yida A dt) 9

Oyy
= 2(FYG7 — GV F7yy, O 4o ndt
oy

vi 8
= 2[F, G]""y; dx A dt. 9)

oYy

With summation implied over repeated indices, the prolongation condition is
OF"? aG”* 0 i 0

—_— i i i s ve = = U, D I). 10
( o0, dv; N\ dt+ a0, dv; A\ dz)y o +[F,G]""y 9, dz Ndt =0, modp”(I) (10)
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If the ideal I is given in terms of two-forms {«; }, closed over I, then (10) takes the equivalent form

aFui aGm
( 8vj dvj Adt + a’Uj

It is the result in (11) that will be used to calculate the required prolongation algebra next.

dvj Adz) + [F,G)" dz Adt = \'o . (11)

3 Differential System and Associated Differential Equation

To begin the investigation, an exterior differential system which is relevant to the partial differential
equation must be introduced. An exterior differential system is given which is defined over the base
manifold M = R®, which supports the differential forms. Consequently, the remaining variables in F
and G are v; = {u,p, ¢}. The system of two-forms are defined to be

a1 =duANdt —pdx Adt,
az =dp Adt — gdx A dt, (12)
as = —du ANdr +updx ANdt — aqgdz A\ dt + Bdq A dt.
The exterior derivatives of the a; are calculated to be,

day = —dp ANdx Adt = dx N az,

dazzdw/\dq/\dt:%df/\ag, (13)
das =pdu Ndx ANdt +udp ANdx ANdt — adg A\ dx A dt

@
= —du a1 —udr Ao+ —=dr A as.

B
From (13), the ideal I = {w|w = 3°_, 0i Aa; : 0y € A(M)} is closed dI C I, and the system
{a;} given by (12) is integrable (Bracken, 2010). On the transversal integral manifold, it follows that
differential system (12) can be sectioned to give the system of equations,

ails = (uz —p)dx Adt =0,

azls = (pe — ¢)dz N dt =0, (14)
aszls = —ur dt Adz + updx A dt — agdx A dt + Bgy dx A dt = 0.
Therefore, the transversal integral manifolds correspond to the set of coupled equations

pP=1Us,  ¢=DPs=Usz, U+ up—aq+Pg.=0. (15)
Upon replacing p and q in the last equation of (15), the following partial differential equation results,
Ut + UUy — QUzy + /Buxac'c =0. (16)

This is the Burgers-KdV equation. When the constant « is set to zero, the KdV equation results, and
when S is set to zero, Burgers equation results.

4 Determining Prolongation Algebra

To generate a prolongation algebra, system (12) is substituted into the prolongation condition (10).
Suppressing indices on F and G, (11) is found to take the form

FydtNde + Fydu ANdx + Fpdp Ndx + Fydg A dx
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+Grdx Adt+ GuduANdt+ Gpdp ANdt + Ggdg A dt + [F,G]dz A dt
= A (duANdt —pdz Adt) + X2(dp Adt — gdx A dt) (17)
+As(—du Adz +updx ANdt — agdz Adt + Bdg A dt).

Equating the coefficients of the two-forms on both sides of (17), the following system of equations
result,

F,=-X3, F,=0, F,=0,

Gu=MX, Gp=DX, Gq=p)s,

F, — Gy — [F,G] = Mip + A2q — Asup + a)sq. (18)

By Galilean invariance of (16) in the independent variables = and ¢, it suffices to suppose that ' and
G are independent of x and ¢. This introduces a considerable simplification into (18) reducing it to,

F=Fu), G=G(upq), Gq=-PBF.,, pGu+qGp+upF,— aqF,=—[F,G]. (19)

It is required to find a solution to (19). In fact, it will be shown that a very general solution can be
obtained. First, since F' depends only on u, the third equation in (19) can be integrated to give G

G(u,p,q) = —BaFu(u) + G'(u,p). (20)

In (20), G'(u, p) represents an integration constant which is independent of ¢q. Substituting (20) into
the fourth equation of (19), it is found that

—[F,—BqF,+G'] = —BpqFuu + Gy + qGy +upFy — aqFy = q(—BpFuu + G — aFy) +pGiy +upF,.
Equating coefficients of ¢ on both sides of (21) yields two equations @
BIF, F,] = —BpFuu + G, — aFy, —[F, Q'] = pG', + upF.,. (22)
Solving the first equation in (22), for G},, we obtain
Gy = BIF, Fu] + BpFuu + oF..

Since F' depends only on w, this equation can be integrated with respect to p to obtain G”,
1
G'(u,p) = Bp[F, Fu] + 580" Fuu + apFy + G (u), (23)

and G” (u) is a final constant of integration independent of p.
Substituting G’ (u, p) into the second equation in (22), there results

1 1
BPIE. [, Fullt 5 9" [F, Fuul+aplF, Ful+[F, G| +p(BplF, Fuul+5 Ap* FuuutopFuutGl)+upFu = 0.
Again, since I’ and G”’ both just depend on w, this is a cubic polynomial in p, which we write

285" Fus 417 (5 BIF, Fu] 4 BIF, Fuul +0Fuu) + p(SIF, [F, Full +alF, Fu] + G +-uFu) + [F,G"] = 0.

(24)
Now, it is required to equate the coefficient of each power of p to zero in (24).
The coefficient of p® must vanish, which implies that F,.... = 0, hence
F(u) = X1 + uXo 4+ u>Xs. (25)

The X; denote elements of a noncommutiitive algebra, such as matrices, and need not depend on
any of the bundle coordinates.

The coefficient of p* must vanish. This yields the following equation after substituting F from
(25),
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The coefficients of the  variable in this must vanish, and requiring this results in two bracket relations

2
—22Xy = X5, [X2,Xs] =0. (26)

(X1, X3] = 38

The constant v = 2a/30.
The coefficient of p must vanish which implies the equation
BIF, [F, Fu]] + ofF, Fu] + Gy + uF, = 0. (27)

This will yield G, once the brackets in (27) have been specified. The bracket [F, F.,] can be expressed
by using (26) and defining X7 = [X1, X,] as follows

[F,F,] = [ X1 +uXo 4+ u” X3, Xo + 2uX3] = X7 — 2yuXs. (28)

Moreover,
[F,[F, F.)] = 2v°uX3 + [X1 + uXs 4+ u° X3, X7].

By applying the Jacobi identity [A, [B, C]]+[B, [C, A]] +[C, [4, B]] = 0, this can be simplified by using
(X3, X7] = [X3, [ X1, Xo]] = —[X, [X2, X5]] — [Xo, [X5, Xu]] = —7[X2, X5] = 0. (29)
Introducing X5 = [X1, X7] and X = [X2, X7], it follows that
[F, [F, F]] = 2y*uX3 + X5 + uXs. (30)
Substituting these results into (27), we can solve for G,
G = —287*uXs — BXs — BuXe — aX7 + 20yuXs — uXs — 2u*Xs.

The right-hand side just depends on  and constants, so this can be integrated to give G”

1! 2
G" = -y’ u’ X3 — BuXs — %BU2X6 —auX7 + ayu’ X3 — %u2X2 — §u3X3 + Xy, (31)
where X4 is a final integration constant.
There remains a term in (24) that does not depend on p, namely [F, G”] = 0. Since both F and
G" are known from (25) and (31), a polynomial in the variable u results. The following brackets are
required to study this term and can be worked out using the Jacobi identity

[X27 [X17X7” = [XlaXGL [X3v [X17X7” = 7[X7v X3] =0.
Two more brackets can be produced from these, namely,
[X2, X5] = [X1, X6], [X3, X5] = 0. (32)

Substituting F and G” into [F, G”] = 0, a large polynomial in u results,
1 1 2
[X1+UX2+U2X37 —ﬁ’yquXg—ﬁuX5—EﬁuQXg—auX7+a'yu2X3—§u2X2—§u3X3+X4] =0. (33)

Now the coefficient of each power of « in (33) is equated to zero, and each such equation provides
a bracket relation for the algebra. This is a long process, and we will just summarize the results after
simplifying using the results above.

The coefficient of u° results in the bracket [X3, X3] = 0. The coefficient of u* gives the bracket
[X3, Xs] = 0. The equation which results from > after some simplification is 33[ X2, Xs] — 4yX3 =0
and the coefficient of u? simplifies to X7 = —2aXs — 202 X3 + 28v* X3 — 38[X1, Xs] + 2[X3, X4].
The coefficient of u produces the equation 3[X1, X5] + a[X1, X7] — [X2, X4] = 0 and finally, the term
independent of u supplies one last bracket [ X1, X4] = 0.
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At this point, the complete algebra which has been produced by this procedure can be summarized
all at once,
[X15X3} = 77X37 [X27X3} = 07 [X35X7] = 03

)(5:[)(1,)(7]7 X6=[X2,X7], X7:[X17X2]7

[X2, X5] = [X1, Xe], (X3, X5] = [X3, X6] =0,
36[ X2, Xe] — 4vX3 =0, (34)
X7 = —2aXs — 207° X3 4 287° X3 — 38[X1, Xo| + 2[X3, X4,
BIX1, X5] + aXs — [Xa, X4] =0, [X1, X4] = 0.

Collecting terms and substituting p = u, and ¢ = wu., from (15) into G, the following results are
obtained for F and G,
F =X, +uXs +u’Xs, (35)

G = (—Buzs + aquy — %uz)Xz + (—2Butze — 2vBuus + /J’ui + 20uu, — /872u2 + a'yu2 - %uS)X3

1
+ X4 — BuXs — §ﬂu2X6 + (Buz — au)X7. (36)

It will now be proved that F' and G can be used to build a Lax pair.

5 A Lax Pair for the Burgers-KdV Equationl

On a two-dimensional solution submanifold of the differential ideal, the forms «; are annihilated and
a Lax pair for the system can be given in terms of F' and G.
Theorem 5.1. A Lax pair for equation (16) exists and is given explicitly as

Yz = —Fy, yi = -Gy, (37)

where F and G are given in (35) and (36) and y represents the set of prolongation coordinates. It is
required that the X; satisfy algebra (34) thus (37) holds irrespective of the particular representation
used for the X;.
Proof: It will be shown that the pair (37) satisfies the required zero curvature condition for n
arbitrary, which is given as
G — Ft+ [F,G] =0. (38)

To compress the presentation, let us abbreviate G as
G =g2X2+ 93 X3 + X4 + g5 X5 + g6 X6 + g7 X7,
where the g, are defined by comparing this to (36). By straightforward calculation using (34),
FG — GF = g2 X7 — v93X3 + g5[ X1, Xs5] + g6[ X1, Xo] + 97 X5 + u[X2, X4]
+gsu[X1, Xe] — §7U3X3 + gruXe + u’[X3, X4.

Since gs + ugs = —3 Bu®, then using (34) once again, it follows that the unknown brackets [X2, X4]
and [ X3, X4] cancel out, and [F, G] simplifies to the form

1
[F, G] = ng7 - ’ygng =+ u(an, - [XQ, X4]) - 5u2(7X7 —2aXg — 20(’72X3 + 2[‘3’}/3X3 —+ 2[X3, X4D

2
+97 X5 + u[X2, X4] — g’YUBXa + gruXe + u’ [X3, X4]

1 2
= (g2 + 5u2)X7 + (—vg3 + a’yzuz — ﬂw2u2 - g’yuS)XS + (ou + g7) X5 + (au2 + ug7)Xs. (39)
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Now replacing the g, in (39), the bracket [F, G] simplifies to
[F, G] = (2Byuttas + 27 Butty — Byus — 20yutiy ) X3 + B X5 + Butte X6 4 (—Btize + aug) X7, (40)

This is to be substituted into the zero curvature condition (38) along with G, and F;, which are given
by
Fi = ut X2 + 2uus X3,

Gz = (_ﬂuzzz + QUzy — uuz)XQ
+(—25uumz—2ﬂuzum—276u2—2'yﬁuum+25uzuzz+2aui+2auum—2672uuz+2a'yuuz—2u2uz)X3
—BuzXs — Puuz X6 + (Buze — atz) X7.

Substituting the results above along with (40) into (38), before simplifying the zero curvature
condition is written
Ga: - Ft + [F, G] = (_ut - Bumzz + QUgy — qu)X2

+(—2uut—26uuzm—26uzum—27ﬂu§—2’yﬂuum+26uzum+2au§+2auum—2ﬂv2uuz+2a’yuuz—2u2uz)X3

—Bug X5 — Buuy Xe + (Buws — aug) X7

+(2Byutizs + 287 Uty — Byug — 207uus) Xs

+Bue X5 + Puug Xe — (Bugs — aug) Xr.
Clearly, unknown brackets and terms in X5, X¢ and X, completely cancel out. It is necessary to
collect and simplify the coefficient of the X3 term in order to formulate a conclusion. To do this,
everything becomes transparent if we substitute the fact that 38y = 2«a. The coefficient of X3 then
simplifies to,

2

4 4
—2uus — 2BUpUgy — 2BUUzge — gauz — gauum + 2BUzpUzs + 2au§ + 20Ul g

4 2
—25'y2uuGE + 2ayuug — 2u2uz + §auuzz + 25’\/2qu — gauz — 20YUUy

= —2uu; — 2BUlges + 200Uy — 2u Uy = —2u(ur + Bugzs — OQUzg + Uly).

Therefore, zero curvature condition (38) reduces to the following two terms after cancellations,
G. — Fi + [F,G]

= _(ut + Buxxac — QUgzy + uux)X2 - 2U(Ut + Bu:cxac — QUgz + qu)X:’,. (41)

Provided X2 and X3 are not set to zero, the result in (41) will clearly vanish if and only if v satisfies
Burgers-KdV equation (16). In this case, the zero curvature condition is satisfied identically, and this
completes the proof.

6 Conclusions

A closed ideal of differential forms has been found for the Burgers-KdV equation. A procedure for
generating prolongations has been established and applied to this equation to obtain a prolongation
algebra. The cancelation of unknown brackets in the verification of the Lax is a very interesting
observation. The ideal can also be used to study the limiting case o = 0. The algebra can in this
instance be simplified to a finite form by taking X3 = X4 = 0 and X5 = —kXi, X¢ = kX2 so
that [X2, X5] = [X1, X6] holds.There are two brackets left which involve X7, and these two will be
consistent provided that k = —1/33. If we set E, = X1, X = e_ and X7 = h, algebra (34) reduces
to a finite deformed si(2) algebra which can be written as

1
[@j:,h] = iﬁ

e+, [e4,e—] = h.
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It has also been shown that (34) serves to define an algebraic Lax pair for the system, and following
the strategy of Dodd and Fordy (Dodd and Fordy, 1983), it should be possible to embed it in a simple
Lie algebra, but will not be done here.
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