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Abstract
The Wahlquist-Estabrook approach which has been applied to investigate the prolongation
structure of many nonlinear systems is introduced. The theory which results is applied to the
Burgers-KdV equation which is shown to have a nontrivial prolongation algebra. It is shown that
the resulting equations can be solved to produce a very general solution. Based on the results
determined for the algebra, without picking a specific representation for the algebra, a Lax pair for
the equation is determined in terms of the basic generators of the algebra.
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1 Introduction
The method initiated by Wahlquist and Estabrook (Wahlquist and Estabrook, 1975; Wahlquist and
Estabrook, 1976; Estabrook, 1982; Estabrook and Wahlquist, 1978) has turned out to be very
effective as far as understanding and generating prolongation algebras for large classes of nonlinear
differential equations. These algebras can in turn be used to write down many other quantities which
are significant as far as the study of the integrability of these systems is concerned. For example, a
Lax pair for the equation can usually be generated as well as a Bäcklund transformation which allows
one to produce new solutions of the equation from known solutions. Many deep ideas from differential
geometry and group theory have found applications in this domain (Olver, 1993).

Here, the method which has evolved from the ideas of Wahlquist and Estabrook will be reviewed
and developed in a direction that has not been discussed as of yet. These results are then used
to obtain a prolongation algebra for the Burgers-KdV equation from a differential ideal of two-forms.
This nonlinear equation (Newell, 1985) has arisen in discussing the flow of liquids, in fluid dynamics
and merits a treatment by means of this procedure. Several other equations have been studied along
these lines recently (Bracken, 2007; Bracken, 2011; Bracken, 2010), and there seems to be a lot of
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interest in this way of looking at nonlinear equations (Bracken, 2010; Findley, 1996; Zhai et al., 2006,
Dodd and Fordy, 1983; Leo et al., 2001)

A differential ideal of two-forms is established first for the equation and it is shown to be closed. By
the Frobenius theorem, it is established that the given exterior differential ideal is integrable (Groesen
and Jager, 1994). This system of forms is chosen such that solutions of the evolution equation
correspond with two-dimensional transversal integral manifolds of the ideal, which can be expressed
as sections in the base manifold. To carry this out, a particular fibre bundle is introduced over the
base manifold and provided with a Cartan-Ehresmann connection, which is specified by an additional
differential system of one-forms. When the combined exterior differential system of these forms is
considered on the bundle, it is called a Cartan prolongation if it is closed. Whenever there is a
transversal solution of the differential system, there should exist a transversal solution of the combined
exterior differential system such that it projects down to the preceding integral manifolds. It will be
seen that this approach leads directly to a Lax pair in an efficient way once the prolongation algebra
is known.

2 Cartan Prolongations
Consider the space M = Rm with coordinates written generally in the form (v1, v2, · · · , vm). Let there
be defined on M a closed exterior differential system

α1 = 0, · · · , αl = 0. (1)

Let I be the ideal generated by (1) given by I = {ξ =
∑l
i=1 σi ∧ αi : σi ∈ Λp(M), p = 0, 1, 2 · · · }

with Λp(M) the set of p-forms on M . Since (1) is closed, dI ⊂ I, and according to the Frobenius
Theorem, then (1) is integrable.

In applications that would be considered to evolution equations ut = F (x, t, u, ux, uxx, · · · ),
v1 = x, v2 = t and v3 = u. The system (1) is chosen in such a way that solutions u = u(x, t)
of an evolution equation correspond with two-dimensional transversal integral manifolds of (1). These
integral manifolds can be written as sections S in M such that S is specified by

(x, t)→ (x, t, v3(x, t), · · · , vm(x, t)),

and due to tansversality, dx ∧ dt = π∗(dx ∧ dt) 6= 0 where π : M → R2 and π∗Λ(R2)→ Λ(S).
Now, a fibre bundle B = (M̃, p̃,M) with connection will be introduced over M such that M ⊂ M̃

and p̃ the projection of M̃ onto M , p̃(M̃) = M . A Cartan-Ehresmann connection in the fibre bundle B
is a system of one-forms ω̃i where i = 1, · · · , n in T ∗(M) with the property that the mapping p̃∗ from
the vector space Hm̃ = {X̃ ∈ Tq̃| ω̃i(X̃) = 0, i = 1, · · · , n} onto the tangent space Tq is a bijection
for all q̃ ∈ M̃ . Consider the exterior differential system in M̃ given by

α̃i = p̃∗αi = 0, i = 1, · · · , l, ω̃j = 0, j = 1, · · · , n, (2)

such that {ω̃} is a Cartan-Ehresmann connection in {M̃, p̃,M}. The system (2) is called a Cartan
prolongation if (2) is closed and whenever S is a transversal solution of (1). Then, there should exist
a transversal solution S̃ of (2) such that p̃(S̃) = S. From the fact that (2) is closed, it follows that this
prolongation condition may be written as

dω̃i =

n∑
j=1

β̃ji ∧ ω̃j mod p̃∗(I), (3)

with I the ideal defined by (1).
The bundle is given by M̃ = M × Rn where y = (y1, · · · , yn) ∈ Rn are referred to as the

pseudo-potential coordinates. The connection used here is given by

ω̃k = dyk − F k(v1, · · · , vm,y) dt−Gk(v1, · · · , vm,y) dx, k = 1, · · · , n. (4)
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In (4), F k and Gk can be represented as column vectors which depend on the manifold coordinates
as well as the y. The procedure is to regard the yk as coordinates in an extended (m+n) dimensional
space of variables, and to include the ω̃k with the original set of forms.

The integrability condition requires the prolonged ideal {αi, ω̃k} be closed. This means that dω̃k

takes the form

dω̃k =

l∑
j=1

fkjαj +

n∑
i=1

ηki ∧ ω̃i,

where fkj stand for dependent functions of the bundle coordinates and ηki represent a matrix of
one-forms.

For a connection of the form (4), namely ω̃k = dyk − ηk, the prolongation condition reduces to
the form

− dηi =
∂ηi
∂yj
∧ (dyj − ηj), mod p̃∗(I). (5)

This result can be compressed by writing the identity

dηi = dMηi − (
∂ηi
∂yj

) ∧ dyj .

Here dM means differentiation with respect to just the variables of the base manifold {vj}. The
prolongation condition then becomes

dMηi − (
∂ηi
∂yj

) ∧ ηj = 0, mod p̃∗(I).

Finally, introduce the vertical valued one-form

η = ηi
∂

∂yi
,

along with the definitions

dη = (dMηi)
∂

∂yi
, [η, ω] = (ηj ∧

∂ωi
∂yj

+ ωj ∧
∂ηi
∂yj

)
∂

∂yi
. (6)

The prolongation condition then takes the elegant form

dη +
1

2
[η, η] = 0, mod p̃∗(I). (7)

A particular example of the connection form (4) will be defined. This one is useful with respect to
generation of Lax pairs. It is defined by

Ω̃k = dyk − ηk = dyk −
n∑
i=1

F ki(v)yi dt−
n∑
i=1

Gki(v)yi dx. (8)

To work out (7), the commutator (6) is required, and after some simplification there results,

[η, η] = (GjiF νjyi dx ∧ dt+ F jiGνjyi dt ∧ dx+ F jiGνjyi dt ∧ dx+GjiF νj yidx ∧ dt)
∂

∂yν

= 2(F νjGji −GνjF ji)yi
∂

∂yν
dx ∧ dt

= 2[F,G]νiyi
∂

∂yν
dx ∧ dt. (9)

With summation implied over repeated indices, the prolongation condition is

(
∂F νi

∂vj
dvj ∧ dt+

∂Gνi

∂vj
dvj ∧ dx)yi

∂

∂yν
+ [F,G]νi yi

∂

∂yν
dx ∧ dt ≡ 0, mod p̃∗(I). (10)
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If the ideal I is given in terms of two-forms {αj}, closed over I, then (10) takes the equivalent form

(
∂F νi

∂vj
dvj ∧ dt+

∂Gνi

∂vj
dvj ∧ dx) + [F,G]νi dx ∧ dt ≡ λνij αj . (11)

It is the result in (11) that will be used to calculate the required prolongation algebra next.

3 Differential System and Associated Differential Equation
To begin the investigation, an exterior differential system which is relevant to the partial differential
equation must be introduced. An exterior differential system is given which is defined over the base
manifold M = R5, which supports the differential forms. Consequently, the remaining variables in F
and G are vj = {u, p, q}. The system of two-forms are defined to be

α1 = du ∧ dt− p dx ∧ dt,

α2 = dp ∧ dt− q dx ∧ dt, (12)

α3 = −du ∧ dx+ up dx ∧ dt− αq dx ∧ dt+ β dq ∧ dt.
The exterior derivatives of the αj are calculated to be,

dα1 = −dp ∧ dx ∧ dt = dx ∧ α2,

dα2 = dx ∧ dq ∧ dt =
1

β
dx ∧ α3, (13)

dα3 = p du ∧ dx ∧ dt+ u dp ∧ dx ∧ dt− αdq ∧ dx ∧ dt

= −du ∧ α1 − u dx ∧ α2 +
α

β
dx ∧ α3.

From (13), the ideal I = {ω|ω =
∑3
i=1 σi ∧ αi : σi ∈ Λ(M)} is closed dI ⊂ I, and the system

{αi} given by (12) is integrable (Bracken, 2010). On the transversal integral manifold, it follows that
differential system (12) can be sectioned to give the system of equations,

α1|S = (ux − p) dx ∧ dt = 0,

α2|S = (px − q) dx ∧ dt = 0, (14)

α3|S = −ut dt ∧ dx+ up dx ∧ dt− αq dx ∧ dt+ βqx dx ∧ dt = 0.

Therefore, the transversal integral manifolds correspond to the set of coupled equations

p = ux, q = px = uxx, ut + up− αq + βqx = 0. (15)

Upon replacing p and q in the last equation of (15), the following partial differential equation results,

ut + uux − αuxx + βuxxx = 0. (16)

This is the Burgers-KdV equation. When the constant α is set to zero, the KdV equation results, and
when β is set to zero, Burgers equation results.

4 Determining Prolongation Algebra
To generate a prolongation algebra, system (12) is substituted into the prolongation condition (10).
Suppressing indices on F and G, (11) is found to take the form

Ft dt ∧ dx+ Fu du ∧ dx+ Fp dp ∧ dx+ Fq dq ∧ dx
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+Gx dx ∧ dt+Gu du ∧ dt+Gp dp ∧ dt+Gq dq ∧ dt+ [F,G] dx ∧ dt
= λ1(du ∧ dt− p dx ∧ dt) + λ2(dp ∧ dt− q dx ∧ dt) (17)

+λ3(−du ∧ dx+ up dx ∧ dt− αq dx ∧ dt+ β dq ∧ dt).
Equating the coefficients of the two-forms on both sides of (17), the following system of equations
result,

Fu = −λ3, Fp = 0, Fq = 0,
Gu = λ1, Gp = λ2, Gq = βλ3,

Ft −Gx − [F,G] = λ1p+ λ2q − λ3up+ αλ3q. (18)

By Galilean invariance of (16) in the independent variables x and t, it suffices to suppose that F and
G are independent of x and t. This introduces a considerable simplification into (18) reducing it to,

F = F (u), G = G(u, p, q), Gq = −βFu, pGu + qGp + upFu − αqFu = −[F,G]. (19)

It is required to find a solution to (19). In fact, it will be shown that a very general solution can be
obtained. First, since F depends only on u, the third equation in (19) can be integrated to give G

G(u, p, q) = −βqFu(u) +G′(u, p). (20)

In (20), G′(u, p) represents an integration constant which is independent of q. Substituting (20) into
the fourth equation of (19), it is found that

− [F,−βqFu+G′] = −βpqFuu+pG′u+qG′p+upFu−αqFu = q(−βpFuu+G′p−αFu)+pG′u+upFu.
(21)

Equating coefficients of q on both sides of (21) yields two equations

β[F, Fu] = −βpFuu +G′p − αFu, −[F,G′] = pG′u + upFu. (22)

Solving the first equation in (22), for G′p, we obtain

G′p = β[F, Fu] + βpFuu + αFu.

Since F depends only on u, this equation can be integrated with respect to p to obtain G′,

G′(u, p) = βp[F, Fu] +
1

2
βp2Fuu + αpFu +G′′(u), (23)

and G′′(u) is a final constant of integration independent of p.
Substituting G′(u, p) into the second equation in (22), there results

βp[F, [F, Fu]]+
1

2
βp2[F, Fuu]+αp[F, Fu]+[F,G′′]+p(βp[F, Fuu]+

1

2
βp2Fuuu+αpFuu+G′′u)+upFu = 0.

Again, since F and G′′ both just depend on u, this is a cubic polynomial in p, which we write

1

2
βp3Fuuu+p2(

1

2
β[F, Fuu]+β[F, Fuu]+αFuu)+p(β[F, [F, Fu]]+α[F, Fu]+G′′u+uFu)+[F,G′′] = 0.

(24)
Now, it is required to equate the coefficient of each power of p to zero in (24).

The coefficient of p3 must vanish, which implies that Fuuu = 0, hence

F (u) = X1 + uX2 + u2X3. (25)

The Xj denote elements of a noncommutiitive algebra, such as matrices, and need not depend on
any of the bundle coordinates.

The coefficient of p2 must vanish. This yields the following equation after substituting F from
(25),

3β[X1, X3] + 2αX3 + 3β[X2, X3]u = 0.
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The coefficients of the u variable in this must vanish, and requiring this results in two bracket relations

[X1, X3] = −2α

3β
X3 = −γX3, [X2, X3] = 0. (26)

The constant γ = 2α/3β.
The coefficient of p must vanish which implies the equation

β[F, [F, Fu]] + α[F, Fu] +G′′u + uFu = 0. (27)

This will yieldG′u once the brackets in (27) have been specified. The bracket [F, Fu] can be expressed
by using (26) and defining X7 = [X1, X2] as follows

[F, Fu] = [X1 + uX2 + u2X3, X2 + 2uX3] = X7 − 2γuX3. (28)

Moreover,
[F, [F, Fu]] = 2γ2uX3 + [X1 + uX2 + u2X3, X7].

By applying the Jacobi identity [A, [B,C]]+[B, [C,A]]+[C, [A,B]] = 0, this can be simplified by using

[X3, X7] = [X3, [X1, X2]] = −[X1, [X2, X3]]− [X2, [X3, X1]] = −γ[X2, X3] = 0. (29)

Introducing X5 = [X1, X7] and X6 = [X2, X7], it follows that

[F, [F, Fu]] = 2γ2uX3 +X5 + uX6. (30)

Substituting these results into (27), we can solve for G′′u

G′′u = −2βγ2uX3 − βX5 − βuX6 − αX7 + 2αγuX3 − uX2 − 2u2X3.

The right-hand side just depends on u and constants, so this can be integrated to give G′′

G′′ = −βγ2u2X3 − βuX5 −
1

2
βu2X6 − αuX7 + αγu2X3 −

1

2
u2X2 −

2

3
u3X3 +X4, (31)

where X4 is a final integration constant.
There remains a term in (24) that does not depend on p, namely [F,G′′] = 0. Since both F and

G′′ are known from (25) and (31), a polynomial in the variable u results. The following brackets are
required to study this term and can be worked out using the Jacobi identity

[X2, [X1, X7]] = [X1, X6], [X3, [X1, X7]] = γ[X7, X3] = 0.

Two more brackets can be produced from these, namely,

[X2, X5] = [X1, X6], [X3, X5] = 0. (32)

Substituting F and G′′ into [F,G′′] = 0, a large polynomial in u results,

[X1+uX2+u2X3,−βγ2u2X3−βuX5−
1

2
βu2X6−αuX7+αγu2X3−

1

2
u2X2−

2

3
u3X3+X4] = 0. (33)

Now the coefficient of each power of u in (33) is equated to zero, and each such equation provides
a bracket relation for the algebra. This is a long process, and we will just summarize the results after
simplifying using the results above.

The coefficient of u5 results in the bracket [X3, X3] = 0. The coefficient of u4 gives the bracket
[X3, X6] = 0. The equation which results from u3 after some simplification is 3β[X2, X6]− 4γX3 = 0
and the coefficient of u2 simplifies to X7 = −2αX6 − 2αγ2X3 + 2βγ3X3 − 3β[X1, X6] + 2[X3, X4].
The coefficient of u produces the equation β[X1, X5] +α[X1, X7]− [X2, X4] = 0 and finally, the term
independent of u supplies one last bracket [X1, X4] = 0.
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At this point, the complete algebra which has been produced by this procedure can be summarized
all at once,

[X1, X3] = −γX3, [X2, X3] = 0, [X3, X7] = 0,

X5 = [X1, X7], X6 = [X2, X7], X7 = [X1, X2],

[X2, X5] = [X1, X6], [X3, X5] = [X3, X6] = 0,

3β[X2, X6]− 4γX3 = 0, (34)

X7 = −2αX6 − 2αγ2X3 + 2βγ3X3 − 3β[X1, X6] + 2[X3, X4],

β[X1, X5] + αX5 − [X2, X4] = 0, [X1, X4] = 0.

Collecting terms and substituting p = ux and q = uxx from (15) into G, the following results are
obtained for F and G,

F = X1 + uX2 + u2X3, (35)

G = (−βuxx + αux −
1

2
u2)X2 + (−2βuuxx − 2γβuux + βu2

x + 2αuux − βγ2u2 + αγu2 − 2

3
u3)X3

+X4 − βuX5 −
1

2
βu2X6 + (βux − αu)X7. (36)

It will now be proved that F and G can be used to build a Lax pair.

5 A Lax Pair for the Burgers-KdV Equationl
On a two-dimensional solution submanifold of the differential ideal, the forms αi are annihilated and
a Lax pair for the system can be given in terms of F and G.

Theorem 5.1. A Lax pair for equation (16) exists and is given explicitly as

yx = −Fy, yt = −Gy, (37)

where F and G are given in (35) and (36) and y represents the set of prolongation coordinates. It is
required that the Xj satisfy algebra (34) thus (37) holds irrespective of the particular representation
used for the Xj .

Proof: It will be shown that the pair (37) satisfies the required zero curvature condition for n
arbitrary, which is given as

Gx − Ft + [F,G] = 0. (38)

To compress the presentation, let us abbreviate G as

G = g2X2 + g3X3 +X4 + g5X5 + g6X6 + g7X7,

where the gj are defined by comparing this to (36). By straightforward calculation using (34),

FG−GF = g2X7 − γg3X3 + g5[X1, X5] + g6[X1, X6] + g7X5 + u[X2, X4]

+g5u[X1, X6]− 2

3
γu3X3 + g7uX6 + u2[X3, X4].

Since g6 + ug5 = − 3
2
βu2, then using (34) once again, it follows that the unknown brackets [X2, X4]

and [X3, X4] cancel out, and [F,G] simplifies to the form

[F,G] = g2X7 − γg3X3 + u(αX5 − [X2, X4])− 1

2
u2(−X7 − 2αX6 − 2αγ2X3 + 2βγ3X3 + 2[X3, X4])

+g7X5 + u[X2, X4]− 2

3
γu3X3 + g7uX6 + u2[X3, X4]

= (g2 +
1

2
u2)X7 + (−γg3 + αγ2u2 − βγ2u2 − 2

3
γu3)X3 + (αu+ g7)X5 + (αu2 + ug7)X6. (39)
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Now replacing the gj in (39), the bracket [F,G] simplifies to

[F,G] = (2βγuuxx + 2γ2βuux−βγu2
x− 2αγuux)X3 +βuxX5 +βuuxX6 + (−βuxx +αux)X7. (40)

This is to be substituted into the zero curvature condition (38) along with Gx and Ft, which are given
by

Ft = utX2 + 2uutX3,

Gx = (−βuxxx + αuxx − uux)X2

+(−2βuuxxx−2βuxuxx−2γβu2
x−2γβuuxx+2βuxuxx+2αu2

x+2αuuxx−2βγ2uux+2αγuux−2u2ux)X3

−βuxX5 − βuuxX6 + (βuxx − αux)X7.

Substituting the results above along with (40) into (38), before simplifying the zero curvature
condition is written

Gx − Ft + [F,G] = (−ut − βuxxx + αuxx − uux)X2

+(−2uut−2βuuxxx−2βuxuxx−2γβu2
x−2γβuuxx+2βuxuxx+2αu2

x+2αuuxx−2βγ2uux+2αγuux−2u2ux)X3

−βuxX5 − βuuxX6 + (βuxx − αux)X7

+(2βγuuxx + 2βγ2uux − βγu2
x − 2αγuux)X3

+βuxX5 + βuuxX6 − (βuxx − αux)X7.

Clearly, unknown brackets and terms in X5, X6 and X7 completely cancel out. It is necessary to
collect and simplify the coefficient of the X3 term in order to formulate a conclusion. To do this,
everything becomes transparent if we substitute the fact that 3βγ = 2α. The coefficient of X3 then
simplifies to,

−2uut − 2βuxuxx − 2βuuxxx −
4

3
αu2

x −
4

3
αuuxx + 2βuxuxx + 2αu2

x + 2αuuxx

−2βγ2uux + 2αγuux − 2u2ux +
4

3
αuuxx + 2βγ2uux −

2

3
αu2

x − 2αγuux

= −2uut − 2βuuxxx + 2αuuxx − 2u2ux = −2u(ut + βuxxx − αuxx + uux).

Therefore, zero curvature condition (38) reduces to the following two terms after cancellations,

Gx − Ft + [F,G]

= −(ut + βuxxx − αuxx + uux)X2 − 2u(ut + βuxxx − αuxx + uux)X3. (41)

Provided X2 and X3 are not set to zero, the result in (41) will clearly vanish if and only if u satisfies
Burgers-KdV equation (16). In this case, the zero curvature condition is satisfied identically, and this
completes the proof.

6 Conclusions
A closed ideal of differential forms has been found for the Burgers-KdV equation. A procedure for
generating prolongations has been established and applied to this equation to obtain a prolongation
algebra. The cancelation of unknown brackets in the verification of the Lax is a very interesting
observation. The ideal can also be used to study the limiting case α = 0. The algebra can in this
instance be simplified to a finite form by taking X3 = X4 = 0 and X5 = −kX1, X6 = kX2 so
that [X2, X5] = [X1, X6] holds.There are two brackets left which involve X7, and these two will be
consistent provided that k = −1/3β. If we set E+ = X1, X2 = e− and X7 = h, algebra (34) reduces
to a finite deformed sl(2) algebra which can be written as

[e±, h] = ± 1

3β
e±, [e+, e−] = h.
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It has also been shown that (34) serves to define an algebraic Lax pair for the system, and following
the strategy of Dodd and Fordy (Dodd and Fordy, 1983), it should be possible to embed it in a simple
Lie algebra, but will not be done here.
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