
 

 

British Journal of Mathematics & Computer Science  
2(2): 62-71, 2012 

 

SCIENCEDOMAIN international 
www.sciencedomain.org   

________________________________________________________________ 

_____________________________________ 

*Corresponding author: Email: omidiorasayo@yahoo.co.uk; 

  

 

 

An Exploratory Study of K-Means and Expectation 

Maximization Algorithms 

 
Adigun Abimbola Adebisi

1
, Omidiora Elijah Olusayo

1* 

and Olabiyisi Stephen Olatunde
1
 

 
1
Department of Computer Science and Engineering, Ladoke Akintola University of Technology, 

Ogbomoso, Oyo State, Nigeria. 

 

Research Article 

 

Received 20
th

 December 2011 

Accepted 26
th 

January 2012 

Online Ready 23
rd

 March 2012 

_______________________________________________________________________ 
 

Abstract 
 

In this paper, K-Means and Expectation-Maximization algorithms are part of the commonly 

employed methods in clustering of data in relational databases.  Experiments conducted with 

both clustering algorithms revealed that both algorithms have been found to be characterized 

with shortcomings. The parameters considered in evaluating the results of findings are the 

number of iterations (no distinct convergence, 1), the computation time (not defined, 3.2s) and 

the memory space (not defined, 1.1MB) consumed at the point of convergence of both K-means 

and Expectation-Maximization algorithms respectively. The results obtained revealed that 

Expectation-Maximization algorithm’s quick and premature convergence cannot be said to have 

guaranteed optimality of results while K-means was found not to guarantee convergence. Though 

reasonable conclusion could be drawn from results obtained with Expectation-Maximization 

algorithm, its premature convergence may raise some questions of doubt with regards to 

reliability of results obtained.   
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1 Introduction 
 

The K-Means algorithm is a very popular algorithm for data clustering because of its simplicity. 

Originally developed for and applied to the task of vector quantization, k-means has been used in 

a wide assortment of applications. It has been proven to be a good approach to classify data. K-

Means (KM) clustering is the classification of similar objects into different groups, or more 

precisely, the partitioning of a data set into subsets (clusters), so that the data in each subset share 

some common trait - often proximity according to some defined distance measure (MacQueen, 

1967). Intuitively, patterns within a valid cluster are more similar to each other than they are to a 
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pattern belonging to a different cluster. The K-Means algorithm can also be viewed as an 

unsupervised classification (Vojtˇech and Vaclav, 2004). 

 

Although K-means has the great advantage of being easy to implement, it has two big drawbacks. 

First, it can be really slow since in each step the distance between each point to each cluster has to 

be calculated, which can be really expensive in the presence of a large dataset. Second, this 

method is really sensitive to the provided initial clusters, however, in recent years, this problem 

has been addressed with some degree of success (Fayyad et al., 1998). 

 

Also, it has been shown that, with K-Means, there is no guarantee for optimal clustering, since the 

convergence depends on the initial number of clusters selected. In addition, K-means is not 

considered as the best choice for clustering due to its time performance and requirements. K-

means typically requires that clusters be spherical, that the data be free of noise and that its 

operation be properly initialized. This makes it inefficient for major industrial clustering problems 

(Tapas et al., 2002). 

 

Expectation Maximization (EM) is a model based approach to solving clustering problems. It is an 

iterative algorithm that is used in problems where data is incomplete or considered incomplete. 

Unlike distance based or hard membership algorithms (such as K-Means), EM is known to be an 

appropriate optimization algorithm for constructing proper statistical models of the data. EM is 

widely used in applications such as computer vision, speech processing and pattern recognition. 

EM aims at finding clusters such that maximum likelihood of each clusters parameters is obtained. 

 

In EM, each observation belongs to each cluster with a certain probability. EM clusters data, in a 

manner different than K-means.  EM starts with an initial estimate for the missing variables and 

iterates to find the maximum likelihood (ML) for these variables. Maximum likelihood methods 

estimate the parameters by values that maximize the sample’s probability for an event. 

 

EM is typically used with mixture models. Unlike in K-means, in clustering via EM, the number 

of clusters that are desired are predetermined. It is initialized with values for unknown (hidden) 

variables. Since EM uses maximum likelihood, it most likely converges to local maxima, around 

the initial values. Hence selection of initial values is critical for EM. However, the EM algorithm 

works well on clustering data when the number of clusters is known (Sara, et al., 2006). 

 

In this paper, an evaluation of k-means and Expectation Maximization algorithms would be 

carried out with the employment of the educational database of students admitted through Joint 

Admission and Matriculated Board (JAMB)- an accredited University admission body, and Pre-

degree (PDS)- a self conducted University administered entrance examination.  

 

2 K-Means Algorithm 
 
Initialize k prototypes (w1,…, wk) such that wj = il, j ∈ {1,...,k}, l ∈ {1,…,n} 

Each cluster Cj is associated with prototype wj  

 

Repeat 

 For each input vector il , where l ∈ {1,…,n}, 

 Do 

  Assign il to the cluster CJ* with nearest prototype wj* 
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  (i.e., | il - wj* | ≤  | il - wj |,  j ∈ {1,…,k} ) 

  

For each cluster Cj, where j ∈ {1,…,k}, do 

  Update the prototype wj to be the centroid of all samples currently in Cj,  

  so that wj =  ∑ ��/ �	∈ 
	
|Cj| 

 Compute the error function: 

  E = ∑ ∑ | �� − ��|�
�� ∈�	

�
���  

 

Until E does not change significantly or cluster membership no longer changes. 

 

In the k-means algorithm described above, (Mehrotra, Mohan and Ranka,1996; Kaufman and 

Rousseeuw, 1990; Dubes and Jain, 1988), the number of clusters is an input parameter into the 

algorithm. 

 

Let the k prototypes (w1,…, wk) be initialized to one of the n input patterns (i1,…,in).  Therefore,  

wj = il, j ∈ {1,…,k}, l ∈ {1,…,n} 

 

Cj is the jth cluster whose value is a disjoint subset of input patterns.  

 

The quality of the clustering is determined by the performance function of the algorithm which is 

given as; 

 

PerfKM  =  ∑ ∑ | �� − ��|�
�� ∈�	

�
���  

 

3 Expectation Maximization (EM) Clustering Algorithm 
 
The inputs to this algorithm are the data set (x), the total number of clusters (M), the accepted 

error to converge (e) and the maximum number of iterations.  

 

The algorithm can be subdivided into two stages, namely the initialization stage and the iterative 

stage which consists of two steps, expectation step (E-step) and maximization step (M-step) 

executed iteratively until some form of convergence is reached. The E-Step estimates the 

probability of each point belonging to each cluster, followed by the M-step which re-estimates the 

parameter vector of the probability distribution of each class. The algorithm finishes when the 

distribution parameters converge or reach the maximum number of iterations. 

 

Initialization 

 
Each class j, of M classes (or clusters), is constituted by a parameter vector (θ), composed by the 

mean (µj) and by the covariance matrix (Pj), which represents the features of the Gaussian 

probability distribution (Normal) used to characterize the observed and unobserved entities of the 

data set x. 
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On the initial instance (t = 0), the implementation can generate randomly the initial values of mean 

(µj) and of the covariance matrix (Pj).  

 

The EM algorithm aims to approximate the parameter vector (θ) of the real distribution. Another 

alternative offered by MCLUST (Model-based Clustering) is to initialize EM with the clusters 

obtained by a hierarchical clustering technique. 

 

E-Step 

 

This step is responsible for estimating the probability of each element belonging to each cluster 

(P(Cj | xk) ). Each element is composed of an attribute vector (xk). The relevance degree of the 

points of each cluster is given by the likelihood of each element attribute in comparison with the 

attributes of the other elements of cluster Cj (Sara et al., 2006). 

                                        
 

M-Step 
 

This step is responsible for the estimation of the parameters of the probability distribution of each 

class for the next step. First, compute the mean (µj) of classes j obtained through the mean of all 

points in function of the relevance degree of each point. 

 

                                                         
 

To compute the covariance matrix for the next iteration, the Bayes Theorem is applied, which 

implies that P(A | B) = P(B | A) * P(A)P(B), based on the conditional probabilities of the class 

occurrence (Sara et al., 2006). 

 

                             
 

The probability of occurrence of each class is computed through the mean of probabilities (Cj) in 

function of the relevance degree of each point from the class. 

 

��  �� ! 1� =  �

"
 ∑ � #$�%&�'"

���                                                                                 

 

The attributes represent the parameter vector, θ, that characterize the probability distribution of 

each class that will be used in the next algorithm iteration. 

 

Convergence Test 
 

After each iteration is performed a convergence test which verifies if the difference of the 

attributes vector of an iteration to the previous iteration is smaller than an acceptable error 

tolerance, given by parameter. Some implementations use the difference between the averages of 

class distribution as the convergence criterion (Sara et al., 2006). 
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If (|| θ (t + 1) − θ (t) || < ǫ) 
   stop 

else 

   call E-Step 

end; 

 

The algorithm has the property of, at each step, estimating a new attribute vector that has the 

maximum local likelihood, not necessarily the global, which reduces its complexity. However, 

depending on the dispersion of the data and on its volume, the algorithm can stop due the 

maximum number of iterations defined. 

 

4 Performance Function of Expectation Maximization 
 
Unlike K-Means in which only the centers are to be estimated, the EM algorithm estimates the 

centers, the co-variance matrices, ∑�  and the mixing probabilities, p(mk).  

 

The performance function of the EM algorithm is (Zhang, et al., 1999). 

 

       
 

where the vector p = (p1, p2,……, pK) is the mixing probability. EM algorithm is a recursive 

algorithm with the following two steps: 

 

E-Step 

 

Estimating “the percentage of x belonging to the kth cluster” (Zhang et al.,1999) 

 

                                                 
 

where p(x|m) is the prior probability with Gaussian distribution, and p(mk) is the mixing 

probability,  

 

                     
 

M-Step 

 
With the fuzzy membership function from the E-Step, find the new center locations, new co-

variance matrices and new mixing probabilities that maximize the performance function (Zhang et 

at., 1999). 
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5 Materials and Methods 
 
The datasets used for the implementation of the two algorithms were obtained from the database 

of the Faculty of Engineering and Technology, Ladoke Akintola University of Technology, 

Ogbomoso, Nigeria in West Africa. The Student’s mode of admission and final CGPA fields were 

then isolated for the mining. This was done to find the relationships between their mode of 

admission and the final CGPA. The admission modes considered here were the Pre-Degree and 

JAMB admission modes. However, for prepossessing of the data, the PDS mode of admission was 

represented by integer 1 while that of the JAMB admission mode was represented by the integer 2. 

The two algorithms were implemented using MATLAB tool. 

  

Note that the EM algorithm automatically produced three clusters and on any number of re-runs, it 

produced exactly the same clusters which make it a very rigid algorithm.  

 

6 Results and Discussion 
 

6.1 Results Obtained 
 
The performance metrics considered include the number of iterations, computation time and 

system memory usage at convergence. 

 

The summary of the results obtained are as shown in Tables 1, 2 and 3 using the three 

performance metrics. 

 

  Table 1. Table showing number of iterations at convergence for the algorithms 

  

Algorithm Number of Iterations 

K-Means No distinct convergence (∞) 

Expectation-maximization 1 

 

Table 2. Table showing computation time at convergence for the algorithms 

 

Algorithm Computation time 

K-Means Undefined (∞) 

Expectation-maximization 3.2s 

 

Table 3. Table showing space requirements at convergence for the algorithms 
 

Algorithm System memory usage 

K-Means ∞ 

Expectation-maximization 1.1MB 
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6.2 Discussion 
 

6.2.1 Expectation Maximization 
 

The expectation-maximization algorithm converged in a single run giving three clusters. Figure 1 

shows the clusters with their three centroids. Two of the clusters were for students admitted 

through PDS with the eclipse demarcating the clusters and the third cluster for students admitted 

through JAMB. 

  
Fig. 1. Graph of Mode of Admission against CGPA 

 

From virtual observation of the clusters, the cluster for students admitted through JAMB has its 

centroid on approximately 3.25 (CGPA). However, the clusters for students admitted through PDS 

have their centroids placed on 3.1 (CGPA) and approximately 4.1 (CGPA). Taking a linear 

average of the CGPA on PDS mode of admission revealed a CGPA of 3.6, it can be concluded 

that students that were admitted through PDS on the average performed better than those admitted 

through JAMB. A possible explanation being that the PDS students would have undergone a 

thorough pre-university academic training for a year immediately before admission and on the 

other hand, it is not so for their JAMB counterparts, some of which would have stayed at home for 

sometime expecting a better JAMB result for their admission into the University. 

 

However, another probable explanation is that the PDS programme affords the students the 

opportunity of being taught some of the 100 Level courses curriculum so that most of what they 

are taught in 100 Level becomes more of revision, which gives them a better edge over their 

JAMB counterparts. The results of the experiments carried out revealed that PDS mode of 

admission should rather be encouraged by the management than JAMB mode. 
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 6.2.2 K-Means 
 
The K-Means algorithm was supplied with five (5) as input for the number of desired clusters to 

be produced. The number being supplied depicts the number of the classes of degree in the 

University: first class, second class (upper division), second class (lower division), third class and 

pass degree. The K-Means algorithm produced five (5) clusters for each re-run of the algorithm. 

 

The K-Means algorithm was run a hundred and two times. It was observed that the algorithm did 

not show a distinct convergence even though similar pattern clusters were repeating themselves at 

irregular intervals. Interestingly, some particular patterns of clusters were persistent and the first 

cluster could be observed in Figure 2 with thirty-six (36) occurrences in one hundred and two 

(102) runs of the algorithm (35.3%). 

 
   Fig. 2. Graph of mode of admission against CGPA 

 

Another pattern of clusters with a closer persistence to the one observed above was twenty-two 

(22) occurrences in one hundred and two runs (102) runs of the algorithm (21.6%). This cluster 

pattern is shown in Figure 3. 

 

Picking the cluster pattern with the highest number of occurrence (Figure 2), it could be assumed 

to be the optimum set of clusters even though there is no distinct convergence of the cluster 

patterns. As a result, it would be very difficult to draw any conclusion from K-Means clusters 

(Figures 2 and 3). 
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Fig. 3. Graph of mode of admission against CGPA 

 

7 Conclusion 
 
The two clustering algorithms considered in this study are K-means and Expectation-

Maximization algorithms. After the evaluation of the two algorithms, K-means was found not to 

guarantee convergence while Expectation-Maximization’s quick convergence doesn’t guarantee 

optimality of results because of its single run characteristics. In view of this, it could be inferred 

that both algorithms are not efficient enough for the clustering problem considered in this study, 

hence there arises a need for an algorithm that could both guarantee convergence and optimality of 

results.  
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