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Abstract
In this paper, by using contraction mapping theorem, analysis approach and decomposition
of solution space, the multiperiodicity issue is discussed for Cohen-Grossberg-type (CG-type)
bidirectional associative memory networks (BAMNs) with discrete and distributed delays and a
general class of activation functions, where the general class of activation functions consist of
nondecreasing functions with saturations including piecewise linear functions with two corner points
and standard activation functions as their special cases. It is shown that for any saturation
region, if there is a periodic orbit located in it, it must be locally exponentially stable. Then,
based on this result, some conditions are derived for ascertaining the (n + m)-neuron CG-type
BAMNs can have 2 locally exponentially stable limit cycles located in two saturation regions
respectively which are symmetrical. Also, taking account of different saturation regions, results
about 2(p + q) (p ≤ m, q ≤ n − 1), 2min{n,m} locally exponentially stable limit cycles can be
obtained, where n is the number of the neurons in one layer, m is the number of the neurons in the
other layer. Meanwhile, for every locally exponentially stable limit cycle given, the corresponding
saturation region can be expressed concretely. Finally, three examples are given to illustrate the
effectiveness of the obtained results.
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1 Introduction

In the past decades, the considerable research interests are focused on bidirectional associative
memory (BAM) networks and Cohen-Grossberg neural networks (CGNNs) without or with time delays
because of their potential applications in practice such as classification, associative memory (Kosko,
1988; Maundy and El-Masry, 1990; Cohen and Grossberg, 1983; Liao et al., 2001; Cao and Li,
2005; Bao and Cao, 2011; Huang and Cao, 2011). BAM neural network is firstly proposed in
(Kosko, 1988), and this class of network generalized the single-layer autoassociative circuits to a
two-layer pattern-matched heteroassociative circuits. And for BAM networks, there is no connection
between any two neurons which are in the same layer. The circuit diagram and connection pattern
implemented for the delayed BAM networks can be found in (Cao and Wang, 2005). In (Bao and
Cao, 2011), the problem of robust state estimation for uncertain stochastic bidirectional associative
memory networks with time-varying delays is investig- ated. CGNN is proposed by Cohen and
Grossberg (Cohen and Grossberg, 1983) in 1983. And this class of networks includes a lot of
famous ecological systems and neural networks as special cases such as the Lotka-Volterra system,
the Gilpia-Analg competition system, the Eingen-Schuster system and the Hopfield neural networks
(Cohen and Grossberg, 1983; Liao et al., 2001). In (Cao and Song 2006), sufficient conditions
are obtained ensuring the existence, uniqueness and global exponential stability of the equilibrium
point for Cohen-Grossberg-type bidirectional associa- tive memory networks with time-varying delays,
which combines CGNNs with BAM networks.

The dynamics of neuron activation states at an equilibrium point or periodic orbit is prerequisite for
many applications. In previous works, most authors have studied mono-stability and mono-periodicity
of neural network models. However, in some neurodynamics systems, there exist multiple stable
equilibria or periodic orbits, which is usually referred to multistability or multiperiodicity, respectively.
And it is worth noting that coexistence of many equilibrium points or periodic orbits is necessary
in practical applications such as associative memory storage, pattern recognition, decision making,
digital selection and analogy amplification (Chua and Yang, 1988; Hahnloser, 1998). And an interesting
application of the multiperiodicity and multistability analysis is to design associative memories and
store a large number of patterns as stable equilibria or limit cycles such that stored patterns can be
retrieved when the initial probes contain sufficient information about the patterns.

To the best of our knowledge, the multiperiodicity is seldom considered for neural networks (Wang
and Zou, 2004; Cao et al., 2008). In (Cheng et al., 2006) and (Cheng et al., 2007), by geometrical
observation, the multistability is discussed for the Hopfield neural networks with smooth sigmoidal
activation functions. In (Zeng and Wang, 2006), the multiperiodicity evoked by external inputs is
considered for a class of delayed neural networks with standard activation functions, and in (Zeng
et al., 2005), the multistability issue is discussed for cellular neural networks with standard activation
functions. In (Zeng et al., 2008), the number of memory patterns which the n-neuron cellular neural
network can have are discussed.

In addition, time delay is unavoidable in a network because of the finite speeds of the switching
and transmission of signals. And time delay may lead to oscillation, instability, bifurcation or chaos
of networks. For delayed BAM networks and CGNNs, there exist lots of works on the mono-stability
or mono-periodicity, please refer to (Gopalsamy and He, 1994; Arik, 2005; Ye et al., 1995; Zhang, J.
et al., 2005) and the references cited therein. Meanwhile, although the models of delayed feedback
with discrete delays are good approximation in simple circuits consisting of a small number of cells,
neural networks usually have a spatial extent due to the presence of a multitude of parallel pathways
with a variety of axon sizes and lengths. Thus, there is a distribution of conduction velocities along
these pathways and a distribution of propagation delays. Therefore, the models with discrete and
continuously distributed delays are more appropriate. In this paper, we will mainly focus on the
studies of the multiperiodicity for CG-type BAMNs with discrete and distributed delays and a general
class of activation functions, where the general class of activation functions consist of nondecreasing
functions with the saturation, including piecewise linear functions with two corner points and standard
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activation functions as its special case. For the (n + m)-neuron CG-type BAMNs where n is the
number of the neurons in one layer, m is the number of the neurons in the other layer, we shall
show that if there is a periodic orbit located in a saturation region, it must be locally exponentially
stable. Based on this result, we shall give some conditions to guarantee that there have 2, 2(p +
q)(p ≤ m, q ≤ n− 1), 2min{n,m} locally exponentially stable limit cycles located in saturation regions,
respectively. Meanwhile, for every locally exponentially stable limit cycle given, the corresponding
saturation region, i.e., attractive region, can also be given.

The rest of the paper is organized as follows. In Section 2, model description and preliminaries
are presented. The main results are stated in Section 3. In Section 4, three examples are given to
show the validity of the obtained results. Finally, in Section 5, the conclusions are drawn.

2 Model Description and Preliminaries
In this paper, we consider the following (n+m)-neuron CGNN-type BAMNs with discrete and distributed
delays:

dui(t)
dt = −ai(ui(t))[ui(t)−

n+m∑
j=n+1

hijfj(vj(t))−
n+m∑
j=n+1

wijfj(vj(t− τij(t)))

−
n+m∑
j=n+1

bij
∫ t
t−τ1 kij(t− s)fj(vj(s))ds− Ii(t)] i = 1, 2, . . . , n,

dvj(t)
dt = −cj(vj(t))[vj(t)−

n∑
i=1

h∗jifi(ui(t))−
n∑
i=1

w∗
jifi(ui(t− σji(t)))

−
n∑
i=1

b∗ji
∫ t
t−τ1 k

∗
ji(t− s)fi(ui(s))ds− Jj(t)] j = n+ 1, n+ 2, . . . , n+m,

(2.1)

where u(t) = (u1(t), u2(t), . . . , un(t))T ∈ Rn, v(t) = (vn+1(t), vn+2(t), . . . , vn+m(t))T ∈ Rm; ui(t)
and vj(t) are the state of the ith neuron from the neural field FU and the jth neuron from the neural
field FV at time t, respectively; ai(ui(t)) and cj(vj(t)) represent amplification functions; fj(vj), fi(ui)
denote the activation functions of the jth neuron from FV and the ith neuron from FU , respectively;
I(t) = (I1(t), I2(t), . . . , In(t))T ∈ Rn and J(t) = (Jn+1(t), Jn+2(t), . . . , Jn+m(t))T ∈ Rm are periodic
input vectors with period ω (i.e., there exists a constant ω > 0 such that Ii(t + ω) = Ii(t), Jj(t +
ω) = Jj(t), i = 1, 2, . . . , n, j = n + 1, n + 2, . . . , n + m); H = (hij)n×m,W = (wij)n×m, B =
(bij)n×m, H

∗ = (h∗ji)m×n,W
∗ = (w∗ji)m×n, B

∗ = (b∗ji)m×n are connection weight matrices; τij(t)
and σji(t) correspond to the transmission delays and satisfy 0 ≤ τij(t) ≤ τij , 0 ≤ σji(t) ≤ σji (τij and
σji are positive constants), τ1 is a positive constant, denote τ = max1≤i≤n,n+1≤j≤n+m{τij , σji, τ1}.
kij(·), k∗ji(·), i = 1, 2, · · · , n, j = n+ 1, n+ 2, · · · , n+m are delay kernels.

Let C([t0− τ, t0], D) be the space of continuous functions mapping [t0− τ, t0] into D ⊂ Rn with
the norm defined by ‖ ξ ‖t0= max1≤i≤n{sups∈[t0−τ, t0] | ξi(s) |},

where ξ(s) = (ξ1(s), ξ2(s), . . . , ξn(s))T . Denote ‖ x ‖= max1≤i≤n{| xi |} as the vector norm of
the vector x = (x1, x2, . . . , xn)T .

The initial condition of model (2.1) is

u(s) = φ(s) for s ∈ [t0 − τ, t0],

v(s) = ϕ(s) for s ∈ [t0 − τ, t0],

where φ(s) = (φ1(s), φ2(s), . . . , φn(s))T ∈ C([t0 − τ, t0], Rn), ϕ(s)
= (ϕn+1(s), ϕn+2(s), . . . , ϕn+m(s))T ∈ C([t0 − τ, t0], Rm).

We take account of a class of activation functions described as follows for (2.1):

fi ∈ C, fi(ξ) =


li if −∞ < ξ < pi,

f̃i(ξ) if pi ≤ ξ ≤ qi,
mi if qi < ξ <∞,

(2.2)
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where li,mi, pi, qi are constants with li < mi, pi < qi, and f̃i(·) ∈ C1 is increasing function. This
class of activation functions consists of nondecreasing functions with the saturation, including the
piecewise linear function with two corner points at pi, qi :

fi(ξ) =


li, if −∞ < ξ < pi,

li + mi−li
qi−pi

(ξ − pi), if pi ≤ ξ ≤ qi,
mi, if qi < ξ <∞,

(2.3)

and the standard activation function:

fi(ξ) =
| ξ + 1 | − | ξ − 1 |

2
. (2.4)

Throughout this paper, we make the following assumption:
(A1) Functions ai(r) and cj(r) are continuous, 0 < ǎi ≤ ai(r) ≤ âi and 0 < čj ≤ cj(r) ≤ ĉj for all
r ∈ R, i = 1, 2, . . . , n, j = n+ 1, n+ 2, . . . , n+m.

The delay kernels kij(·), k∗ji(·), i = 1, 2, · · · , n, j = n+1, n+2, · · · , n+m are assumed to satisfy
the following conditions simultaneously:
(A2) :(i) kij , k

∗
ji : [0,∞) −→ [0,∞);

(ii) kij , k
∗
ji is bounded and continuous on [0,∞);

(iii)
∫ τ1
0
kij(s)ds = 1,

∫ τ1
0
k∗ji(s)ds = 1.

Denote (−∞, pi] = (−∞, pi]1× (pi, qi)
0× [qi,+∞)0; (pi, qi) = (−∞, pi]0× (pi, qi)

1× [qi,+∞)0;
[qi,+∞) = (−∞, pi]0 × (pi, qi)

0 × [qi,+∞)1; R = (−∞, pi]
⋃

(pi, qi)
⋃

[qi,+∞). So Rn+m can be
divided into 3n+m subspaces:

Ω = {
n∏
i=1

(−∞, pi]δ
(i)
1 × (pi, qi)

δ
(i)
2 × [qi,+∞)δ

(i)
3

n+m∏
j=n+1

(−∞, pj ]δ
(j)
1 × (pj , qj)

δ
(j)
2 × [qj ,+∞)δ

(j)
3 ,

(δ
(i)
1 , δ

(i)
2 , δ

(i)
3 ) = (1, 0, 0) or (0, 1, 0) or (0, 0, 1), i = 1, 2, . . . , n,

(δ
(j)
1 , δ

(j)
2 , δ

(j)
3 ) = (1, 0, 0) or (0, 1, 0) or (0, 0, 1), j = n+ 1, n+ 2, . . . , n+m}. (2.5)

Denote saturation regions as

Ωs = {
n∏
i=1

(−∞, pi]δ
(i)

× [qi,+∞)1−δ
(i)

n+m∏
j=n+1

(−∞, pj ]δ
(j)

× [qj ,+∞)1−δ
(j)

,

δ(i), δ(j) = 1 or 0, i = 1, 2, . . . , n, j = n+ 1, n+ 2, . . . , n+m}.

Hence, Ωs has 2n+m elements.
In the following, let

(−∞, pi]δ(ik) =

{
[qi,+∞), i = k,
(−∞, pi], i 6= k,

[qi,+∞)δ(ik) =

{
[qi,+∞), i 6= k,
(−∞, pi], i = k,

Denote Bn+m = {s ∈ Rn+m, s = (s1, . . . , sn+m)T , sk = 1, or − 1, k = 1, 2, . . . , n+m}. For any
(s1, . . . , sn+m)T ∈ Bn+m, let

L(sk) =

{
[qk,+∞), sk = 1,
(−∞, pk], sk = −1;

g(sk) =

{
lk, sk = −1,
mk, sk = 1;
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p(sk) =

{
pk, sk = −1,
qk, sk = 1.

So, (s1, . . . , sn+m)T and
∏n+m
k=1 L(sk), (g(s1), . . . , g(sn+m))T , (p(s1), . . . , p(sn+m))T represent one-

to-one correspondences, respectively.
Definition 2.1: A periodic orbit (u∗(t)T , v∗(t)T )T is said to be a limit cycle of Cohen-Grossberg-
type BAM networks if (u∗(t)T , v∗(t)T )T is an isolated periodic orbit; that is, there exists ω > 0
such that ∀t ≥ t0, (u

∗(t + ω)T , v∗(t + ω)T )T = (u∗(t)T , v∗(t)T )T , and there exists δ > 0 such
that ∀(ũ(t)T , ṽ(t)T )T ∈ {(u(t)T , v(t)T )T | 0 <‖ (u(t)T , v(t)T )T − (u∗(t)T , v∗(t)T )T ‖< δ, t ≥ t0},
(ũ(t)T , ṽ(t)T )T is not a point on any periodic orbit of the Cohen-Grossberg-type BAM networks.
Definition 2.2: A periodic orbit (u∗(t)T , v∗(t)T )T of Cohen-Grossberg-type BAM networks is said to
be locally exponentially stable in region Ξ if there exist constants α > 0, β > 0 such that ∀t ≥ t0

‖ (u(t; t0, φ)T , v(t; t0, ϕ)T )T − (u∗(t)T , v∗(t)T )T ‖
≤ βmax{‖ φ− φ∗ ‖t0 , ‖ ϕ− ϕ

∗ ‖t0} exp{−α(t− t0)},

where (u(t; t0, φ)T , v(t; t0, ϕ)T )T is the state of the Cohen-Grossberg-type BAM networks with any
initial condition (φT , ϕT )T ∈ C([t0 − τ, t0], Ξ). When Ξ = Rn+m, (u∗(t)T , v∗(t)T )T is said to be
globally exponentially stable.
Lemma 2.1: (Guo et al., 2003) Let L be a mapping on complete metric space (C([t0 − τ, t0], D), ‖
· ‖t0). If L(C([t0 − τ, t0], D)) ⊂ C([t0 − τ, t0], D), and there exists a constant γ < 1 such that
∀φ, ϕ ∈ C([t0 − τ, t0], D), ‖ L(φ) − L(ϕ) ‖t0≤ γ ‖ φ − ϕ ‖t0 , then there exists one unique
φ∗ ∈ C([t0 − τ, t0], D) such that L(φ∗) = φ∗.

3 Main Results
In this section, we discuss the multiperiodicity for model (2.1) and give some results.
Theorem 3.1. For ∀(s1, . . . , sn+m)T ∈ Bn+m, denote Ω̃ =

∏n+m
k=1 L(sk). Under the assumptions (A1)

and (A2), if (u∗(t)T , v∗(t)T )T ∈ Ω̃ is a limit cycle of model (2.1), then it is locally exponentially stable,
and Ω̃ is locally exponentially attractive region.
Proof: If for ∀s ∈ [t0 − τ, t], (u(t)T , v(t)T )T , (u(s)T , v(s)T )T ∈ Ω̃, we have

dui(t)
dt

= −ai(ui(t))[ui(t)− (
n+m∑
j=n+1

hij +
n+m∑
j=n+1

wij +
n+m∑
j=n+1

bij)g(sj)− Ii(t)],

i = 1, 2, . . . , n,
dvj(t)

dt
= −cj(vj(t))[vj(t)− (

n∑
i=1

h∗ji +
n∑
i=1

w∗ji +
n∑
i=1

b∗ji)g(si)− Jj(t)],

j = n+ 1, n+ 2, . . . , n+m,

(3.1)

Let (u(t; t0, φ)T , v(t; t0, ϕ)T )T be the state of model (3.1) with initial condition (φT , ϕT )T . Obviously,
there exists a constant ε > 0, such that

1− ε

ǎi
> 0, (3.2)

and

1− ε

čj
> 0. (3.3)

Define zi(t) as follows:

zi(t) = eεt |
∫ ui(t;t0,φi)

u∗i (t,t0,φ
∗
i )

1

ai(s)
ds | . (3.4)
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Computing the time derivative of zi, we get

dzi(t)

dt
≤ eεt[ ε

ǎi
| ui(t; t0, φi)− u∗i (t, t0, φ∗i ) | − | ui(t; t0, φi)− u∗i (t, t0, φ∗i ) | ].

From (3.2), we have

dzi(t)

dt
< 0.

And this means

zi(t) ≤ zi(t0).

On the other hand,

zi(t) ≥
1

âi
exp{εt} | ui(t; t0, φi)− u∗i (t, t0, φ∗i ) |,

zi(t0) ≤ 1

ǎi
exp{εt0} | φi − φ∗i | .

So the following inequality holds:

| ui(t; t0, φi)− u∗i (t, t0, φ∗i ) |≤
âi
ǎi
| φi − φ∗i | exp{−ε(t− t0)}

≤ â

ǎ
| φi − φ∗i | exp{−ε(t− t0)}, (3.5)

where â = max{â1, â2, . . . , ân}, ǎ = min{ǎ1, ǎ2, . . . , ǎn}.
Similarly, we have

| vj(t; t0, ϕj)− v∗j (t; t0, ϕ
∗
j ) |≤

ĉ

č
| ϕj − ϕ∗j | exp{−ε(t− t0)}, (3.6)

where ĉ = max{ĉn+1, ĉn+2, . . . , ĉn+m}, č = min{čn+1, čn+2, . . . , čn+m}.
From (3.5) and (3.6), the limit cycle of (3.1) (if any) is globally exponentially stable.
Hence, (u∗(t)T , v∗(t)T )T is locally exponentially stable, and Ω̃ is locally exponentially attractive region.
Remark 1. From the proof of Theorem 3.1, the exponential convergence rate can be estimated via
the maximal allowable value by virtue of inequality ε < min{ǎi, čj}, i = 1, 2, . . . , n; j = n + 1, n +
2, . . . , n+m. From this, one can see that amplification functions have key effect on the convergence
rate of the multiperiodicity for the considered model.
Theorem 3.2. Under the assumptions (A1) and (A2), if there exists (s1, . . . , sn+m)T ∈ Bn+m, such
that ∀i ∈ {1, 2, . . . , n} and ∀j ∈ {n+ 1, n+ 2, . . . , n+m}, ∀t ≥ t0,

( n+m∑
j=n+1

(hij + wij + bij)g(sj) + Ii(t)
)
si > sip(si), (3.7)

( n∑
i=1

(h∗ji + w∗ji + b∗ji)g(si) + Jj(t)
)
sj > sjp(sj), (3.8)

( n+m∑
j=n+1

(hij + wij + bij)g(−sj) + Ii(t)
)
(−si) > −sip(−si), (3.9)

99



British Journal of Mathematics & Computer Science 2(2), 94–113, 2012

( n∑
i=1

(h∗ji + w∗ji + b∗ji)g(−si) + Jj(t)
)
(−sj) > −sjp(−sj), (3.10)

then model (2.1) has only 2 locally exponentially stable limit cycles located in Ω+ =
∏n+m
k=1 L(sk) and

Ω− =
∏n+m
k=1 (L(−sk)), respectively.

Proof: If ∀s ∈ [t0 − τ, t0], (u(s)T , v(s)T )T ∈ Ω+, one can obtain

dui(s)
ds

= −ai(ui(s))[ui(s)− (
n+m∑
j=n+1

hij +
n+m∑
j=n+1

wij +
n+m∑
j=n+1

bij)g(sj)− Ii(s)], i = 1, 2, . . . , n,

dvj(s)

ds

= −cj(vj(s))[vj(s)− (
n∑
i=1

h∗ji +
n∑
i=1

w∗ji +
n∑
i=1

b∗ji)g(si)− Jj(s)], j = n+ 1, n+ 2, . . . , n+m,

(3.11)

From (3.7) and (3.8), (u(t)T , v(t)T )T ∈ Ω+ for t ≥ t0, that is, Ω+ is an invariant set of the considered
model. Hence, the model (2.1) can be rewritten as the equation (3.11).

Let (u(t; t0, φ)T , v(t; t0, ϕ)T )T be the state of model (2.1) with initial condition (φT , ϕT )T . Define
((u

(t)
φ (θ))T ,

(v
(t)
ϕ (θ))T )T = (u(t + θ; t0, φ)T , v(t + θ; t0, ϕ)T )T , θ ∈ [t0 − τ, t0]. Since Ω+ is an invariant set

of the model (2.1), ∀(φT , ϕT )T ∈ C([t0 − τ, t0], Ω+), we have ((u
(t)
φ )T , (v

(t)
ϕ )T )T ∈ C([t0 −

τ, t0], Ω+). Define a mapping L : C([t0 − τ, t0], Ω+) −→ C([t0 − τ, t0], Ω+) by H((φT , ϕT )T ) =

((u
(ω)
φ )T , (v

(ω)
ϕ )T )T . Then L(C([t0 − τ, t0], Ω+)) ⊂ C([t0 − τ, t0], Ω+), and Lk((φT , ϕT )T ) =

((u
(kω)
φ )T , (v

(kω)
ϕ )T )T . We can choose a positive integer k such that

max{ â
ǎ
,
ĉ

č
} exp{−ε(kω − τ)} ≤ γ < 1.

And, from (3.5) and (3.6), we have

‖ Lk((φT , ϕT )T )− Lk((φ̃T , ϕ̃T )T ) ‖t0

≤ max{ â
ǎ
,
ĉ

č
} ‖ (φT , ϕT )T − (φ̃T , ϕ̃T )T ‖t0 exp{−ε(kω + t0 − τ − t0)}

≤ γ ‖ (φT , ϕT )T − (φ̃T , ϕ̃T )T ‖t0
From Lemma 2.1, there exists a unique fixed point (φ∗T , ψ∗T )T ∈ C([t0 − τ, t0], Ω+) such that
Lk((φ∗T , ψ∗T )T ) = (φ∗T , ψ∗T )T .
In addition, Lk(L((φ∗T , ψ∗T )T )) = L(Lk((φ∗T , ψ∗T )T )) = L((φ∗T , ψ∗T )T ), i.e., L((φ∗T , ψ∗T )T ) is
also a fixed point of Lk. By the uniqueness of the fixed point of the mapping Lk, L((φ∗T , ψ∗T )T ) =

(φ∗T , ψ∗T )T , i.e., ((u
(ω)
φ∗ )T , (v

(ω)
ϕ∗ )T )T = (φ∗T , ψ∗T )T . Let (u∗(t)T , v∗(t)T )T be a state of model (2.1)

with initial condition (φ∗T , ψ∗T )T , we obtain ∀i ∈ {1, 2, . . . , n}, ∀j ∈ {n+ 1, n+ 2, . . . , n+m}, t ≥ t0,
du∗i (t)
dt

= −ai(u∗i (t))[u∗i (t)− (
n+m∑
j=n+1

hij +
n+m∑
j=n+1

wij +
n+m∑
j=n+1

bij)g(sj)− Ii(t)],

dv∗j (t)

dt
= −cj(v∗j (t))[vj(t)− (

n∑
i=1

h∗ji +
n∑
i=1

w∗ji +
n∑
i=1

b∗ji)g(si)− Jj(t)].

Then, ∀i ∈ {1, 2, . . . , n},∀j ∈ {n+ 1, n+ 2, . . . , n+m}, t+ ω ≥ t0,

du∗i (t+ω)
dt

= −ai(u∗i (t+ ω))[u∗i (t+ ω)− (
n+m∑
j=n+1

hij +
n+m∑
j=n+1

wij +
n+m∑
j=n+1

bij)g(sj)− Ii(t+ ω)]

= −ai(u∗i (t+ ω))[u∗i (t+ ω)− (
n+m∑
j=n+1

hij +
n+m∑
j=n+1

wij +
n+m∑
j=n+1

bij)g(sj)− Ii(t)],

dv∗j (t+ω)

dt
= −cj(v∗j (t+ ω))[vj(t+ ω)− (

n∑
i=1

h∗ji +
n∑
i=1

w∗ji +
n∑
i=1

b∗ji)g(si)− Jj(t+ ω)]

= −cj(v∗j (t+ ω))[vj(t+ ω)− (
n∑
i=1

h∗ji +
n∑
i=1

w∗ji +
n∑
i=1

b∗ji)g(si)− Jj(t)].
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That is, (u∗(t+ω)T , v∗(t+ω)T )T is also a state of the model (2.1) with initial condition (φ∗T , ψ∗T )T ,

here, ((u
(ω)
φ∗ )T , (v

(ω)
ϕ∗ )T )T = (φ∗T , ψ∗T )T . Hence, for ∀t ≥ t0,

(u∗(t+ ω)T , v∗(t+ ω)T )T = ((u∗(t)T , v∗(t)T )T ; t0, ((u
(ω)
φ∗ )T , (v

(ω)
ϕ∗ )T )T )

= (u∗(t)T , v∗(t)T )T . (3.12)

Hence, (u∗T , v∗T )T is an isolated periodic orbit of model (2.1) with period ω located in Ω+. Similarly,
there exists another isolated periodic orbit of model (2.1) with period ω located in Ω−. From Theorem
1, we can obtain that they are locally exponentially stable. The proof of Theorem 3.2 is completed.
Theorem 3.3. Under the assumptions (A1) and (A2), the model (2.1) has neither more nor less than
2 locally exponentially stable limit cycles located in

∏n
i=1[qi,+∞)

∏n+m
j=n+1[qj ,+∞) and

∏n
i=1(−∞, pi]∏n+m

j=n+1(−∞, pj ], respectively, if ∀i ∈ {1, 2, . . . , n}, ∀j ∈ {n+ 1, n+ 2, . . . , n+m}, ∀t ≥ t0,

n+m∑
j=n+1

(hij + wij + bij)mj + Ii(t) > qi, (3.13)

n∑
i=1

(h∗ji + w∗ji + b∗ji)mi + Jj(t) > qj , (3.14)

n+m∑
j=n+1

(hij + wij + bij)lj + Ii(t) < pi, (3.15)

n∑
i=1

(h∗ji + w∗ji + b∗ji)li + Jj(t) < pj , (3.16)

∀k ∈ {n+ 1, n+ 2, . . . , n+m},

[s1

n+m∑
j=n+1,j 6=k

(| h1j | + | w1j | + | b1j |) max{| lj | | mj |}+ (h1k + w1k + b1k)g(sk) + I1(t)]s1

< s1p(s1), (3.17)

where s1, sk = 1, or −1, and s1sk = −1;
∀k ∈ {2, . . . , n},

[s1

n∑
i=1,i 6=k

(| h∗ji | + | w∗ji | + | b∗ji |) max{| li | | mi |}

+(h∗jk + w∗jk + b∗jk)g(sk) + Jj(t)]s1 < s1p(sj), j = n+ 1, . . . , n+m, (3.18)

where s1, sk, sj = 1, or −1, and s1sk = −1, s1sj = 1.
Proof: Similar to the proof of Theorem 3.2, from (3.13)-(3.16), the model (2.1) has 2 locally exponentially
stable limit cycles which locate in

∏n
i=1[qi,+∞)

∏n+m
j=n+1[qj ,+∞) and

∏n
i=1(−∞, pi]

∏n+m
j=n+1(−∞, pj ],

respectively.
Assume (ū∗(t)T , v̄∗(t)T )T is another limit cycle of model (2.1) located in Ωs, without loss of

generality, assume (1, s2, . . . , sn, sn+1, . . . , sn+m)T ∈ Bn+m, (ū∗T , v̄∗T )T ∈ Ω̄ = L(1)×L(s2)× · · ·×
L(sn+m). From Theorem 3.1, Ω̄ is an invariant set. Then, there at least exists k ∈ {2, . . . , n + m},
such that sk = −1. If there exists k ∈ {n + 1, . . . , n + m}, such that sk = −1, then for ū∗1(t) = q1,
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from (3.17), one can have

dū∗1(t)

dt
= −a1(q1)[q1 − (

n+m∑
j=n+1,j 6=k

(h1j + w1j + b1j)g(sj)− (h1k + w1k + b1k)pk − I1(t)]

≤ a1(q1)[−q1 +

n+m∑
j=n+1,j 6=k

(| h1j | + | w1j | + | b1j |) max{| lj | | mj |}

+(h1k + w1k + b1k)pk + I1(t)]

< 0. (3.19)

If else, there must exist k ∈ {2, . . . , n}, such that sk = −1, and sj = 1, j = n + 1, . . . , n + m. For
v̄∗j (t) = qj , From (3.18), one can have

dv̄∗j (t)

dt
= −cj(qj)[qj −

n∑
i=1,i 6=k

(h∗ji + w∗ji + b∗ji)g(si) + (h∗jk + w∗jk + b∗jk)pk − Jj(t)]

≤ cj(q1j)[−qj +

n∑
i=1,i 6=k

(| h∗ji | + | w∗ji | + | b∗ji |) max{| li | | mi |}

+(h∗jk + w∗jk + b∗jk)pk + Jj(t)]

< 0. (3.20)

(3.19) and (3.20) contradict that Ω̄ = L(1)× L(s2)× · · · × L(sn+m) is an invariant set.
For (−1, s2, . . . , sn, sn+1, . . . , sn+m)T ∈ Bn+m, (ū∗(t)T , v̄∗(t)T )T ∈ Ω̄ = L(−1) × L(s2) × · · · ×

L(sn+m), similar contradiction is obtained. This completes the proof of Theorem 3.3.
In the following theorem, the conditions are give to ensure that the number of limit cycles is

determined by the minimum of n and m. Without loss of generality, let n ≤ m.
Theorem 3.4. Under the assumptions (A1) and (A2), the model (2.1) has 2n locally exponentially
stable limit cycles located in Ωs, if ∀i ∈ {1, 2, . . . , n}, ∀j ∈ {n + 1, n + 2, . . . , n + m}, ∀t ≥ t0, the
following inequalities hold:

(hin+i + win+i + bin+i)mn+i

−
n+m∑

j=n+1,j 6=n+i

(| hij | + | wij | + | bij |) max{| lj |, | mj |}+ Ii(t) > qi, (3.21)

(hin+i + win+i + bin+i)ln+i

+

n+m∑
j=n+1,j 6=n+i

(| hij | + | wij | + | bij |) max{| lj |, | mj |}+ Ii(t) < pi, (3.22)

(h∗jj−n + w∗jj−n + b∗jj−n)mj−n −
n∑

i=1,i 6=j−n

(| h∗ji | + | w∗ji | + | b∗ji |) max{| li |, | mi |}

+Jj(t) > qj , j = n+ 1, n+ 2, . . . , 2n, (3.23)

(h∗jn + w∗jn + b∗jn)mn −
n−1∑
i=1

(| h∗ji | + | w∗ji | + | b∗ji |) max{| li |, | mi |}+ Jj(t) > qj ,

j = 2n+ 1, 2n+ 2, . . . , n+m, (3.24)
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(h∗jj−n + w∗jj−n + b∗jj−n)lj−n +

n∑
i=1,i 6=j−n

(| h∗ji | + | w∗ji | + | b∗ji |) max{| li |, | mi |}+ Jj(t)

< pj , j = n+ 1, n+ 2, . . . , 2n, (3.25)

(h∗jn + w∗jn + b∗jn)ln +

n−1∑
i=1

(| h∗ji | + | w∗ji | + | b∗ji |) max{| li |, | mi |}+ Jj(t) < pj ,

j = 2n+ 1, 2n+ 2, . . . , n+m. (3.26)

Proof: Let Ωn = L(s1) × L(s2) × · · · × L(sn+m), where sn+i = si, i = 1, 2, . . . , n; s2n+1 = s2n+2 =
· · · = sn+m = sn. From (3.21)-(3.26) and the proof of Theorem 3.2, one can easily obtain that
there exists a locally exponentially stable limit cycle located in Ωn. Meanwhile, in Ωs, there have 2n

elements viewed as Ωn, hence, the model (2.1) has 2n locally exponentially stable limit cycles located
in Ωs.
Remark 2. From Theorem 3.4, one can see that the number of locally exponentially stable equilibrium
points located in Ωs depends on the minimum of n and m.
Remark 3. The conditions given in Theorem 3.3 and Theorem 3.4 can guarantee that there exist
locally exponentially stable limit cycles located in

∏n
i=1[qi,+∞)

∏n+m
j=n+1[qj ,+∞) and

∏n
i=1(−∞, pi]∏n+m

j=n+1(−∞, pj ], respectively.
Theorem 3.5. Under the assumptions (A1) and (A2), the model (2.1) has neither more nor less than
2× (p+ q) locally exponentially stable limit cycles located in Ωs, if ∀i ∈ {1, 2, . . . , n}, ∀j ∈ {n+ 1, n+
2, . . . , n+m}, k ∈ N1 = {k1, . . . , kp} ⊂ {n+ 1, . . . , n+m}, λ ∈ M1 = {λ1, . . . , λq} ⊂ {1, 2, . . . , n},
where p ≤ m, q ≤ n− 1, ∀t ≥ t0, the following inequalities hold:

n+m∑
j=n+1,j 6=k

(hij + wij + bij)mj + (hik + wik + bik)lk + Ii(t) > qi, (3.27)

n∑
i=1

(h∗ki + w∗ki + b∗ki)mi + Jk(t) < pk, (3.28)

n∑
i=1

(h∗ji + w∗ji + b∗ji)mi + Jj(t) > qj , j 6= k, (3.29)

n+m∑
j=n+1,j 6=k

(hij + wij + bij)lj + (hik + wik + bik)mk + Ii(t) < pi, (3.30)

n∑
i=1

(h∗ki + w∗ki + b∗ki)li + Jk(t) > qk, (3.31)

n∑
i=1

(h∗ji + w∗ji + b∗ji)li + Jj(t) < pj , j 6= k, (3.32)

n∑
i=1,i 6=λ

(h∗ji + w∗ji + b∗ji)mi + (h∗jλ + w∗jλ + b∗jλ)lλ + Jj(t) > qj , (3.33)
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n+m∑
j=n+1

(hλj + wλj + bλj)mj + Iλ(t) < pλ, (3.34)

n+m∑
j=n+1

(hij + wij + bij)mj + Ii(t) > qi, i 6= λ, (3.35)

n∑
i=1,i 6=λ

(h∗ji + w∗ji + b∗ji)li + (h∗jλ + w∗jλ + b∗jλ)mλ + Jj(t) < pj , (3.36)

n+m∑
j=n+1

(hλj + wλj + bλj)lj + Iλ(t) > qλ, (3.37)

n+m∑
j=n+1

(hij + wij + bij)lj + Ii(t) < pi, i 6= λ, (3.38)

∀γ ∈ {n+ 1, n+ 2, . . . , n+m}\N1,

[s1

n+m∑
j=n+1,j 6=γ

(| h1j | + | w1j | + | b1j |) max{| lj | | mj |}+ (h1γ + w1γ

+b1γ)g(sγ) + I1(t)]s1 < s1p(s1), (3.39)

where s1, sγ = 1, or −1, and s1sγ = −1;
∀ν ∈ {2, . . . , n}\M1,

[s1

n∑
i=1,i 6=ν

(| h∗ji | + | w∗ji | + | b∗ji |) max{| li | | mi |}+ (h∗jν + w∗jν + b∗jν)g(sν) + Jj(t)]s1

< s1p(sj), j = n+ 1, . . . , n+m, (3.40)

where s1, sν , sj = 1, or −1, and s1sν = −1, s1sj = 1;

and ∀γ
′
, γ
′′
∈ N1,

[s1

n+m∑
j=n+1,j 6=γ′ ,j 6=γ′′

(| h1j | + | w1j | + | b1j |) max{| lj | | mj |}+ (h1γ
′ + w

′
1γ + b

′
1γ)g(s

′
γ)

+(h1γ
′′ + w

′′
1γ + b

′′
1γ)g(s

′′
γ ) + I1(t)]s1 < s1p(s1), (3.41)

where s1, sγ′ , sγ′′ = 1, or −1, and s1sγ′ = −1, s1sγ′′ = −1;

∀ν
′
, ν
′′
∈M1,

[s1

n∑
i=1,i 6=ν′ ,i 6=ν′

(| h∗ji | + | w∗ji | + | b∗ji |) max{| li | | mi |}+ (h∗
jν
′ + w∗

jν
′ + b∗

jν
′ )g(sν′ ) + (h∗

jν
′′

+w∗
jν
′′ + b∗

jν
′′ )g(sν′′ ) + Jj(t)]s1 < s1p(sj), j = n+ 1, . . . , n+m, (3.42)

where s1, sν′ , sν′′ , sj = 1, or −1, and s1sν′ = −1, s1sν′′ = −1, s1sj = 1.

Proof: For
∏n
i=1(−∞, pi]

∏n+m
j=n+1(−∞, pj ]δ(jk),

∏n
i=1[qi,+∞)

∏n+m
j=n+1[qj ,+∞)δ(jk),

∏n
i=1(−∞, pi]δ(iλ)∏n+m

j=n+1(−∞, pj ],
∏n
i=1[qi,+∞)δ(iλ)

∏n+m
j=n+1[qj ,+∞), where k ∈ N1, λ ∈ M1, similar to the proof of
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Theorem 3.3, the model (2.1) has 2× (1 + 1) locally exponentially stable limit cycles located in them
respectively. Since N1 has p elements and M1 has q elements, hence, the model (2.1) has neither
more nor less than 2× (p+q) locally exponentially stable limit cycles located in

⋃
k∈N1

(
∏n
i=1(−∞, pi]∏n+m

j=n+1(−∞, pj ]δ(jk)
⋃∏n

i=1[qi,+∞)
∏n+m
j=n+1[qj ,+∞)δ(jk))

⋃
λ∈M1

(
∏n
i=1(−∞, pi]δ(iλ)∏n+m

j=n+1(−∞, pj ]
⋃∏n

i=1[qi,+∞)δ(iλ)
∏n+m
j=n+1[qj ,+∞)).

Remark 4. It is worth noting that Theorem 3.5 is not true for n = 1,m = 1. Because for n = 1,m = 1,
one can see

n∏
i=1

[qi,+∞)

n+m∏
j=n+1

[qj ,+∞)δ(jk) =

n∏
i=1

(−∞, pi]δ(iλ)
n+m∏
j=n+1

(−∞, pj ];

n∏
i=1

(−∞, pi]
n+m∏
j=n+1

(−∞, pj ]δ(jk) =

n∏
i=1

[qi,+∞)δ(iλ)
n+m∏
j=n+1

[qj ,+∞).

Hence, for n = m = 1, the model (2.1) has neither more nor less than 2 locally exponentially stable
equilibrium points located in (−∞, p1]× [q2,+∞) and [q1,+∞)× (−∞, p2], respectively.
Remark 5. Comparing with Theorem 3.3 and Theorem 3.4, the conditions given in Theorem 3.5
guarantee there does not exists a limit cycle located in

∏n
i=1[qi,+∞)

∏n+m
j=n+1[qj ,+∞) and

∏n
i=1(−∞, pi]∏n+m

j=n+1(−∞, pj ].
Remark 6. The multiperiodicity analysis of neural networks is more general than multistability analysis
since an equilibrium point can be viewed as a special case of oscillation with any arbitrary period. For
model (2.1) with constant external inputs, we can easily derive some multistability results similar to
Theorem 3.1, Theorem 3.2, Theorem 3.3, Theorem 3.4 and Theorem 3.5, but are omitted here.
Remark 7. Let ai(ui(t)) = cj(vj(t)) = 1, i = 1, 2, . . . , n, j = n + 1, n + 2, . . . , n + m, model (2.1)
becomes BAMNs. Hence, the results in this paper can be applied to BAMNs. In addition, similar
results also can be obtained for Cohen-Grossberg networks which satisfy the assumption (A1).

4 Illustrative Examples
In this section, three examples will be given to illustrate the effectiveness of our results.
Example 1: Consider the following model:

dui(t)
dt

= −ai(ui(t))[ui(t)− hi3
∫ t
t−π/2 ki3(t− s)f3(v3(s))ds− Ii(t)], i = 1, 2,

dv3(t)
dt

= −c3(v3(t))[v3(t)−
2∑
i=1

h∗3i
∫ t
t−π/2 k

∗
3i(t− s)fi(ui(s))ds− J3(t)],

(4.1)

where ki3(t) = k∗3i(t) = cos t,

fj(ξ) =


− 1

2
if ξ < − 1

2
,

3
2
ξ + 1

4
if − 1

2
≤ ξ ≤ 1

2
,

1 if ξ > 1
2
,

j = 1, 2, 3,

H =

(
h13

h23

)
=

(
1.6
1.6

)
,

H∗ =
(
h∗31 h∗32

)
=
(

1.4 1.6
)
,

I =

(
0.02 sin t
0.02 cos t

)
, J3 = 0.02 cos t,
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a(u(t)) =

(
2 + 0.4 cos(u1(t)) 0

0 2 + 0.4 cos(u2(t))

)
,

c3(v3(t)) = 2 + 0.4 cos(v3(t)).

Here, pi = pj = − 1
2
, qi = qj = 1

2
, li = lj = − 1

2
,mi = mj = 1.

It is easy to see that the conditions in Theorem 3.3 hold. And so, model (4.1) has neither more nor
less than 2 locally exponentially stable limit cycles, which locate in (−∞,−1/2) × (−∞,−1/2) ×
(−∞,−1/2) and (1/2,+∞) × (1/2,+∞) × (1/2,+∞) respectively. Simulation results with random
initial states are depicted in Figures 1 and 2.

Example 2: Consider the following model:


dui(t)
dt

= −ai(ui(t))[ui(t)−
4∑
j=3

hijf(vj(t))− Ii(t)], i = 1, 2,

dvj(t)

dt
= −cj(vj(t))[vj(t)−

2∑
i=1

h∗3i(ui(t))− Jj(t)], j = 3, 4,

(4.2)

Fig. 1. Transient behavior of u1, u2, v3 in Example 1.
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Fig. 2. Phase plots of state variable (u1, u2, v3) in Example 1.

where

f(r) =
| r + 1 | − | r − 1 |

2
,

H =

(
h13 h14

h23 h24

)
=

(
2 −0.4

0.8 −2

)
,

H∗ =

(
h∗31 h∗32
h∗41 h∗42

)
=

(
2 −0.4

0.8 −2

)
,

I =

(
0.1 sin t
0.1 sin t

)
, J =

(
0.1 sin t
0.1 sin t

)
,

a(u(t)) =

(
2 + 0.4 cos(u1(t)) 0

0 2 + 0.4 cos(u2(t))

)
,

c(v(t)) =

(
2 + 0.4 cos(v3(t)) 0

0 2 + 0.4 cos(v4(t))

)
.

one can check that the conditions in Theorem 3.5 hold. According to Theorem 3.5, the model (4.2)

107



British Journal of Mathematics & Computer Science 2(2), 94–113, 2012

has neither more nor less than 4 locally exponentially stable limit cycles, which locate in (−∞,−1)×
(−∞,−1)× (−∞,−1)× (1,+∞), (1,+∞)× (1,+∞)× (1,+∞)× (−∞,−1), (1,+∞)× (−∞,−1)×
(1,+∞)×(1,+∞) and (−∞,−1)×(1,+∞)×(−∞,−1)×(−∞,−1), respectively. Simulation results
with random initial states are depicted in Figures 3 and 4.

Example 3: Consider the following model:


dui(t)
dt

= −ai(ui(t))[ui(t)−
6∑
j=4

hijfj(vj(t))− Ii(t)], i = 1, 2, 3,

dvj(t)

dt
= −cj(vj(t))[vj(t)−

3∑
i=1

h∗jifi(ui(t))− Jj(t)], j = 4, 5, 6,

(4.3)

Fig. 3. Transient behavior of u1, u2, v3, v4.
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Fig. 4. Phase plots of state variable (u1, u2, v3, v4).

where

f(r) =
| r + 1 | − | r − 1 |

2
,

H = H∗ =

 5 0.4 0.2
0.4 5 0.2
0.2 0.4 5

 ,

I =

 cos t
cos t
cos t

 , J =

 cos t
cos t
cos t

 ,

a(u(t)) =

 2 + 0.4 cos(u1(t)) 0 0
0 2 + 0.4 cos(u2(t)) 0
0 0 2 + 0.4 cos(u3(t))



c(v(t)) =

 2 + 0.4 cos(v4(t)) 0 0
0 2 + 0.4 cos(v5(t)) 0
0 0 2 + 0.4 cos(v6(t))


By simple computation, the conditions in Theorem 3.4 hold. Hence, model (4.3) has 23 locally
exponentially stable equilibrium points located in Ωs. Simulation results with random initial states
are depicted in Figures 5 and 6.
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Fig. 5. Transient behavior of u1, u2, u3, v4, v5, v6.

Fig. 6. Phase plots of state variable (u1, u2, u3, v4, v5, v6).

5 Conclusions
In this paper, the multiperiodicity has been considered for Cohen-Grossberg-type bidirectional associative
memory networks with discrete and distributed delays. For the (n+m)-neuron CG-type BAMNs where
n is the number of the neurons in one layer, m is the number of the neurons in the other layer, it is
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shown that if there is a periodic orbit located in a saturation region, it must be locally exponentially
stable. Based on this result, four results about the number of locally exponentially stable limit cycles
located in saturation regions are derived. These results provide some conditions ensuring that there
have 2, 2(p + q)(p ≤ m, q ≤ n − 1), 2min{n,m} locally exponentially stable limit cycles located in
saturation regions, respectively. Also, the conditions which we obtain are easy to be verified and
checked in practice.
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