

SCIENCEDOMAIN international

Ground State Solutions for A Quasilinear Elliptic Problem with a Convection Term

Qin Li¹ and Zuodong Yang^{1, 2*}

¹ Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Jiangsu Nanjing 210046, China
² College of Zhongbei, Nanjing Normal University, Jiangsu Nanjing 210046, China.

Research Article

Received: 06 February, 2012 Accepted: 20 March, 2012 Online Ready: 09 May, 2012

Abstract

By a sub-supersolution argument and a perturbed argument, we improve the earlier results concerning the existence of ground state solutions to a quasilinear elliptic problem

 $-\operatorname{div}(|\nabla u|^{p-2}\nabla u) + p(x)|\nabla u|^q = f(x,u), u > l \ge 0, x \in \mathbb{R}^N, \lim_{|x| \to \infty} u(x) = l,$

where $p \ge 2, q > p-1, p(x) \in C^{\alpha}_{loc}(\mathbb{R}^N)$ for some $\alpha \in (0, 1)$ is non-negative and $f : \mathbb{R}^N \times (0, \infty) \rightarrow [0, \infty)$ is a locally Hölder continuous function which may be singular at zero.

Keywords: existenceground solution, quasilinear elliptic, convection term. 2010 Mathematics Subject Classification: 35J65; 35J50.

1 Introduction and The Main Results

In this paper, we are concerned with the existence of ground state solutions for the following problem

$$-\mathrm{div}(|\nabla u|^{p-2}\nabla u) + p(x)|\nabla u|^q = f(x,u), u > l \ge 0, x \in \mathbb{R}^N, \lim_{|x| \to \infty} u(x) = l,$$

We first consider l = 0, then the problem becomes as follows

$$\begin{cases} -\operatorname{div}(|\nabla u|^{p-2}\nabla u) + p(x)|\nabla u|^q = f(x,u), \\ u > 0, x \in \mathbb{R}^N, \\ \lim_{|x| \to \infty} u(x) = 0, \end{cases}$$
(1)

where $p \ge 2, q > p - 1, p(x) \in C^{\alpha}_{loc}(\mathbb{R}^N)$ for some $\alpha \in (0, 1)$ is non-negative and $f : \mathbb{R}^N \times (0, \infty) \to [0, \infty)$ is a locally Hölder continuous function which may be singular at zero.

In recent years, the study of ground state solutions, that is, positive solutions defined in the whole space \mathbb{R}^N and decaying to zero at infinity, has received a lot of interest and numerous existence

^{*}Corresponding author: E-mail: zdyang-jin@263.net;

results have been established. Concerning ground state solutions for elliptic problems with a convection term, we refer readers to (Xue and Shao, 2009; Xue, 2011; Dinu, 2003; Goncalves and Silva, 2010), and the reference therein. Meanwhile , we also see that most of these investigations focus on the following problem

$$\begin{cases} -\Delta u + p(x) |\nabla u|^q = b(x)g(u), \\ u > 0, x \in \mathbb{R}^N, \\ \lim_{|x| \to \infty} u(x) = 0, \end{cases}$$
(2)

Throughout the papers, authors assume that $g \in C^1((0,\infty),(0,\infty))$, additionally, with regard to g, consider the hypothesis

- (g1) g is increasing on $(0, \infty)$;
- (g2) $\lim_{s \to 0^+} g(s) = \infty;$
- (g3) q is bounded in a neighborhood of ∞ ;
- (g4) $\lim_{s \to 0^+} \frac{g(s)}{s^{p-1}} = \infty;$
- (g5) $\frac{g(s)}{(s+c_0)^{p-1}}$ is decreasing on $(0,\infty);$
- (g6) $\frac{g(s)}{s^{p-1}}$ is decreasing on $(0,\infty)$;

(g7)lim<sub>s
$$\rightarrow \infty$$</sub> $\frac{g(s)}{s^{p-1}} = 0;$

And b(x) satisfies

(b1) $b: \mathbb{R}^N \to (0, \infty)$ is a locally Hölder continuous function, (b2) the problem

$$\begin{cases}
-\operatorname{div}(|\nabla u|^{p-2}\nabla u) = b(x), \\
u > 0, x \in \mathbb{R}^{N}, \\
\lim_{|x| \to \infty} u(x) = 0,
\end{cases}$$
(3)

has a solution $w \in C^{1+\alpha}_{loc}(\mathbb{R}^N)$. (Dinu, 2003) showed that problem (2) has a unique solution in the case when $g(u) = u^{-\gamma}$ with $\gamma > 0$. Later the paper (Xue and Shao, 2009) has showed problem (2) has at least one solution if gsatisfies (g4) and (g7) and b satisfies (b1) and (b2).

For corresponding quasilinear elliptic equations, more specifically, when p(x) = 0, in (Yang and Yu, 2010) studied the following model

$$\begin{pmatrix}
-\operatorname{div}(|\nabla u|^{p-2}\nabla u) = \rho(x)f(u), \\
u > l, x \in \mathbb{R}^{N}, \\
\lim_{|x| \to \infty} u(x) = l,
\end{cases}$$
(4)

where N> 3 and l>0 is a real number. (Yuan and Yang, 2010) has showed the existence and asymptotic behavior of radially symmetric ground states of (4). (Liu and Yang, 2010) studied

$$\begin{cases} -\operatorname{div}(|\nabla u|^{m-2}\nabla u) - |\nabla u|^{q(m-1)} = b(x)g(u), \\ u > 0, x \in \Omega, \\ u|_{\partial\Omega} = +\infty, \end{cases}$$
(5)

where Ω is a C^2 bounded domain with smooth boundary, $m > 1, q \in (1, \frac{m}{m-1}]$. (Liu and Yang, 2010) has showed the existence of large solutions of (5).

But the results about the existence of ground state solutions for a quasilinear elliptic problem with a convection term are few. For the following problem

$$\begin{cases} -\operatorname{div}(|\nabla u|^{p-2}\nabla u) + h(x)|\nabla u|^q = b(x)g(u), \\ u > 0, x \in \mathbb{R}^N, \\ \lim_{|x| \to \infty} u(x) = 0, \end{cases}$$
(6)

(Shen and Zhang, 2011) has showed that (6) has at least one solution if g satisfies (g4) and (g7), and b satisfies (b1) and (b2).

The purpose of this paper is to investigate the existence of ground state solutions for problem (1), which includes problem (6) as a particular case. And we modify the method developed in (Xue, 2011) and extends the results obtained in (Xue, 2011; Shen and Zhang, 2011).

In this paper, we suppose that

(f1) f(x,s) is locally Hölder continuous on $\mathbb{R}^N \times (0,\infty)$ and continuously differentiable in the variable s;

(f2) $f(x,s) \le b(x)g(s)$ for all $(x,s) \in \mathbb{R}^N \times (0,\infty)$, where b satisfies (b1), (b2), g satisfies

 $(g8) \lim_{s \to \infty} \sup \frac{g(s)}{s^{p-1}} < ||w||_{\infty}^{1-p}$, where w is the solution of problem (1.3) and $||w||_{\infty} := \max_{x \in \mathbb{R}^N w(x)}$; (f3) There exists $s_0 > 0$ such that $f(x, s) \ge a(x)n(s)$ for all $(x, s) \in \mathbb{R}^N \times (0, s_0)$, where $a : \mathbb{R}^N \to (0, \infty)$ is locally Hölder continuous and n satisfies

 $(n1)n: (0, s_0) \rightarrow (0, \infty)$ is continuous.

Our main result is summarized in the following theorem.

Theorem 1. Let q > p - 1, $p(x) \in C_{loc}^{\alpha}(\mathbb{R}^N)$ be non-negative. If f satisfies (f1) - (f3), g satisfies (g8), n satisfies (n1) and $(n2) \lim_{s \to 0^+} \frac{n(s)}{s^{p-1}} = \infty$, then problem (1.1) has at least one solution $u \in C^{1+\alpha}(\mathbb{R}^N)$.

The paper is organized as follows. In Section 2, we provide a suitable supersolution for problem (1) and show the existence of positive solutions in bounded domain. In Section 3, we prove Theorem 1, moreover, we will study the case l > 0.

2 Preliminary

The result below will provide a suitable supersolution for problem (1).

Lemma 2.1. If *b* satisfy (*b*1) and (*b*2), and *g* satisfies (*g*8), then there exists a function $v := \Psi(\gamma w(x)) \in C^1_{loc}(\mathbb{R}^N)$ such that

$$-\operatorname{div}(|\nabla v|^{p-2}\nabla v) \ge b(x)g(v(x)), \quad v(x) > 0, x \in \mathbb{R}^N, \lim_{|x| \to \infty} v(x) = 0,$$
(7)

for large $\gamma \geq 1$, where w is the solution of problem (3).

Proof. Since g satisfies (g8), we define

$$\widehat{g}(t) := \sup\{\frac{g(s)}{s^{p-1}} : s > t\}, \qquad t > 0.$$
(8)

we denote that \widehat{g} is non-increasing, positive and $\widehat{g}(t) \geq \frac{g(t)}{t^{p-1}}$. Furthermore, by (g8) we have $\widehat{g}(t) < |w|_{\infty}^{1-p}$ for sufficiently large t. Let

$$h(t) := \frac{2}{t} \int_{\frac{t}{2}}^{t} \widehat{g}(s) ds, \qquad t > 0,$$
(9)

It is shown in (Ladyzenskaja and Ural'tseva, 1968) that h is C^1 , non-increasing and $\widehat{g}(t) \le h(t) \le \widehat{g}(\frac{t}{2})$ for all $t \in (0, \infty)$.

Since h is non-increasing, we note that $h(t) \to \alpha < |w|_{\infty}^{1-p}$ at $t \to \infty$ for some $\alpha \in [0, \infty)$. Now let us set

$$\eta(t) := \int_0^t \frac{1}{h^{\frac{1}{p-1}}(s)} ds, \qquad t > 0,$$
(10)

On using $\widehat{g}(t) < |w|_{\infty}^{1-p}$ in (9) for sufficiently large t > 0, we see from (10) that

$$\eta(\gamma) > \gamma |w|_{\infty}.\tag{11}$$

for a sufficiently large $\gamma \geq 1$.

Let $\Psi=\eta^{-1}$ be the inverse function of η , i.e, Ψ satisfies

$$\int_{0}^{\Psi(t)} \frac{1}{h^{\frac{1}{p-1}}(s)} ds = t, \qquad t \in [0,\infty),$$
(12)

By direct calculation ,we see that

1

$$\Psi^{'}(t) = h^{\frac{1}{p-1}}(\Psi(t)) > 0, \Psi(t) > 0, \text{ for } t > 0 \text{ and } \Psi(0) = 0.$$

By condition (b2), we take a solution w of (3) with $\Omega = \mathbb{R}^N$. Let us set $v(x) := \Psi(\gamma w(x))$ for all $x \in \Omega$, we note from (11) that

$$v(x) = \Psi(\gamma w(x)) \le \Psi(\gamma |w|_{\infty}) < \gamma, \tag{13}$$

A simple computation shows that v has the desired properties. Indeed , on recalling $-{\rm div}(|\nabla w|^{p-2}\nabla w)=b(x),$ we see that

$$\begin{aligned} -\mathsf{div}(|\nabla v|^{p-2}\nabla v) &= -\mathsf{div}(|h^{\frac{1}{p-1}}(v)\gamma\nabla w|^{p-2} \cdot h^{\frac{1}{p-1}}(v)\gamma\nabla w) \\ &= -\mathsf{div}(h(v) \cdot \gamma^{p-1} \cdot |\nabla w|^{p-2}\nabla w) \\ &= -\gamma^{p-1} \cdot h(v)\mathsf{div}(|\nabla w|^{p-2}\nabla w) - |\nabla w|^{p-2}\nabla w \cdot \gamma^{p-1}h^{'}(v)\Psi^{'}(\gamma w(x)) \cdot \gamma\nabla w \\ &= -\gamma^{p-1} \cdot h(v)\mathsf{div}(|\nabla w|^{p-2}\nabla w) - \gamma^{p}|\nabla w|^{p}h^{'}(v)h^{\frac{1}{p-1}}(\Psi(\gamma w(x))) \\ &\geq -\gamma^{p-1} \cdot h(v)\mathsf{div}(|\nabla w|^{p-2}\nabla w) \\ &= b(x)\gamma^{p-1}h(v) \\ &\geq v^{p-1}b(x)\frac{g(v)}{v^{p-1}} \\ &= b(x)g(v) \quad x \in \mathbb{R}^{N}, \end{aligned}$$

We have used (13) in the last inequality. Since $\Psi(0) = 0$, it is clear that $v(x) \longrightarrow 0$, as $|x| \longrightarrow \infty$.

Remark 2.2. Since $\gamma \ge 1$, by Lemma 2.1, we have $-\operatorname{div}(|\nabla v|^{p-2}\nabla v) \ge b(x)\widehat{g}(v)$,

Consider the following problem

$$\begin{cases} -\mathsf{div}(|\nabla u|^{p-2}\nabla u) + p(x)|\nabla u|^q = f(x,u), \\ u > 0, x \in \Omega, \\ u|_{\partial\Omega} = 0, \end{cases}$$
(14)

where Ω is a smooth bounded domain. Next, we show the existence of problem (14) by a sub-supersolution method. ____

For the convenience, we denote $|u|_{\infty} = \max_{x \in \Omega} |u(x)|$ whenever $u \in C(\overline{\Omega})$

Lemma 2.3. Let $p > 2, q > p-1, p(x) \in C^{\alpha}(\overline{\Omega}), p(x) \ge 0$, If f satisfies (f1) - (f3), g satisfies (g8), n satisfies (n1) and (n2), then problem (14) has at least one solution $u \in C(\overline{\Omega}) \cap C^{1+\alpha}(\Omega)$.

Proof. Let $\phi_1 \in C(\overline{\Omega}) \cap C^{1+\alpha}(\Omega)$ be the first eigenfunction corresponding to the first eigenvalue λ_1 of

$$-\mathsf{div}(|\nabla u|^{p-2}\nabla u) = \lambda |u|^{p-2}u, \ u > 0, \ x \in \Omega; \ u = 0, \ x \in \partial\Omega,$$
(15)

Let $\beta = \frac{q}{q-p+1}$, It follows by (n2) that there exists a positive constant $\delta_1 \in (0, \min\{1, s_0\})$ such that

$$\frac{n(s)}{s^{p-1}} \ge \frac{\lambda_1 \beta^{p-1} + |p(x)|_{\infty} \beta^q |\nabla \phi_1|_{\infty}^q}{\min_{x \in \overline{\Omega}} a(x)}, \quad \forall s \in (0, \delta_1),$$

Here a(x) is the function in the condition (f3). Let $\underline{u} = m\phi_1^\beta$ with $m \in (0, \min\{1, \frac{\delta_1}{|\phi_1|_{\infty}^\beta}\})$. Since $m^{q-(p-1)} < 1$, we see that

$$\begin{aligned} -\mathsf{div}(|\nabla \underline{u}|^{p-2}\nabla \underline{u}) + p(x)|\nabla \underline{u}|^{q} &= -\mathsf{div}(\beta^{p-1}m^{p-1}|\phi_{1}^{\beta-1}\nabla\phi_{1}|^{p-2}\phi_{1}^{\beta-1}\nabla\phi_{1}) \\ &+ p(x)\beta^{q}m^{q}\phi_{1}^{(\beta-1)q}|\nabla\phi_{1}|^{q} \\ &= -\beta^{p-1}m^{p-1}\phi_{1}^{(\beta-1)(p-1)}\mathsf{div}(|\nabla\phi_{1}|^{p-2}\nabla\phi_{1}) \\ &- \beta^{p-1}m^{p-1}(\beta-1)(p-1)|\nabla\phi_{1}|^{p}\phi_{1}^{(\beta-1)(p-1)-1} \\ &+ p(x)\beta^{q}m^{q}\phi_{1}^{(\beta-1)q}|\nabla\phi_{1}|^{q} \\ &\leq \lambda_{1}\beta^{p-1}m^{p-1}\phi_{1}^{(p-1)\beta} + p(x)\beta^{q}m^{q}\phi_{1}^{(\beta-1)q}|\nabla\phi_{1}|^{q} \\ &\leq \min_{x\in\overline{\Omega}}a(x)n(m\phi_{1}^{\beta}) \\ &= a(x)n(\underline{u}) \\ &\leq f(x,\underline{u}), \quad x\in\Omega \end{aligned}$$

i.e., $\underline{u} = m\phi_1^{\beta}$ is a subsolution to problem (14). Since $(m\phi_1^{\beta})^{p-1} \leq 1$ and $\forall t > 0, \hat{g}(t) \geq \frac{g(t)}{t^{p-1}}$, combining with (f2), we get

$$-\operatorname{div}(|\nabla \underline{u}|^{p-2}\nabla \underline{u}) \le b(x)g(\underline{u}) \le b(x)\underline{u}^{p-1}\widehat{g}(\underline{u}) \le b(x)\widehat{g}(\underline{u}),\tag{16}$$

On the other hand, we construct a super-solution denoted by $\overline{u} := \Psi(\gamma w_{\Omega})$, where γ and Ψ are defined as in Lemma 2.1, and w_{Ω} is the solution of the following problem

$$-\mathsf{div}(|\nabla u|^{p-2}\nabla u) = b(x), \quad u > 0, x \in \Omega, u|_{\partial\Omega} = 0,$$

Therefore, proceed as in the proof of Lemma 2.1, we have

By (f2),

$$-\mathsf{div}(|\nabla \overline{u}|^{p-2}\nabla \overline{u}) \ge b(x)g(\overline{u}), \ x \in \Omega,$$

$$-{\rm div}(|\nabla\overline{u}|^{p-2}\nabla\overline{u})\geq f(x,\overline{u}), \ x\in\Omega,$$

i.e, $\overline{u} = \Psi(\gamma w_{\Omega})$ is a super-solution to problem (14). By Remark 2.2, we obtain that

$$-\mathsf{div}(|\nabla \overline{u}|^{p-2}\nabla \overline{u}) \ge b(x)\widehat{g}(\overline{u}), \quad x \in \Omega,$$
(17)

Since \widehat{g} is non-increasing by the comparison principle argument, we can obtain (16) and (17) that $\underline{u}(\underline{x}) \leq \overline{u}(\underline{x}), \ x \in \Omega$. It follows by (Yang, 2006) that problem (14) has at least one solution $u \in C(\overline{\Omega}) \cap C^{1+\alpha}(\Omega)$ in the ordered interval $[\underline{u}, \overline{u}]$.

The proof of Lemma 2.3 is finished.

Remark 2.4. By a simple comparison argument, we have that $w_{\Omega} \leq w$. Here, the function w is defined in condition (b2), and w_{Ω} is in Lemma 2.3. Therefore, $v_{\Omega} \leq v$, where v is as Lemma 2.1.

3 Proof of Theorem 1.

Consider the perturbed problem

$$-\mathsf{div}(|\nabla u_k|^{p-2}\nabla u_k) + p(x)|\nabla u_k|^q = f(x, u_k), u_k > 0, x \in B(0, k), u_k = 0, x \in \partial B(0, k),$$
(18)

where $B(0,k) = \{x \in \mathbb{R}^N : |x| < k\}, k = 1, 2, 3, \cdots$. It follows by Lemma 2.3 that problem (18) has one solution $u_k \in C^{1+\alpha}(B(0,k)) \cap C(\overline{B}(0,k))$. Put

$$u_k(x) = 0, \quad \forall |x| > k.$$

Let v be as in Lemma 2.1, we assert that

$$u_k(x) \le v(x), \quad x \in \mathbb{R}^N, k = 1, 2, 3 \cdots.$$
(19)

Now, we need to estimate $\{u_k\}$. For any bonded $C^{2+\alpha}$ -smooth domain $\Omega' \subset \mathbb{R}^N$, take Ω_1 and Ω_2 with $C^{2+\alpha}$ -smooth boundaries, and K_1 large enough, such that

$$\Omega' \subset \subset \Omega_1 \subset \subset \Omega_2 \subset \subset B_k, \quad k \ge K_1.$$

Note that

$$v(x) \ge u_k(x) \ge \underline{u}(x) > 0, \quad \forall \ x \in B(0, K_1),$$

$$(20)$$

when $B(0, K_1)$ is the substitution for Ω in the proof of Lemma 2.3. Let

$$\rho_k(x) = f(x, u_k(x)) - p(x) |\nabla u_k(x)|^q, x \in B(0, K_1),$$

For $k \in N$ We consider the problem

$$-\mathsf{div}(|\nabla u_k|^{p-2}\nabla u_k) = \rho_k(x), \quad x \in \Omega', \quad u_k = \underline{u}, \quad x \in \partial \Omega', \tag{21}$$

Since \underline{u} is a sub-solution and v is a super-solution, the above problem has at least a solution $\underline{u}(x) \leq u_k(x) \leq v(x)$. This in particular gives local bounds for the sequence $\{u_k\}$ which in turn leads to local bounds in $C^{1+\alpha}$. Thus for every $m \in N$, we can select a sequence $\{u_k^m\}$ which converges in $C^{1+\alpha}(\overline{\Omega'})$. A diagonal procedure gives a subsequence (denoted again by u_k) which converges to a function u in $C^1(\overline{\Omega'})$, and u satisfies

$$-\mathsf{div}(|\nabla u|^{p-2}\nabla u) + p(x)|\nabla u|^q = f(x,u), \ x \in \overline{\Omega'},$$

By (20), we obtain that

$$u > 0, x \in \overline{\Omega'}$$

and we can obtain that $u \in C^{1+\alpha}(\overline{\Omega'})$. Since Ω' is arbitrary, we also see that $u \in C^{1+\alpha}_{loc}(\mathbb{R}^N)$. It follows by (19) that

$$\lim_{|x| \to \infty} u(x) = 0$$

The proof is finished.

4 The case l > 0

Next, we will consider the following problem

$$\begin{cases} -\mathsf{div}(|\nabla u|^{p-2}\nabla u) + p(x)|\nabla u|^q = f(x,u), \\ u > l > 0, x \in \mathbb{R}^N, \\ \lim_{|x| \to \infty} u(x) = l, \end{cases}$$
(22)

Theorem 2. Let q > p-1, $p(x) \in C^{\alpha}_{loc}(\mathbb{R}^N)$ be non-negative . If f satisfies (f1) - (f3), g satisfies (g8), n satisfies (n1), $(n2) \lim_{s \longrightarrow 0^+} \frac{n(s)}{s^{p-1}} = \infty$, and (n3) n(x) is increasing on $(0,\infty)$, then problem (22) has at least one solution $u \in C^{1+\alpha}(\mathbb{R}^N)$.

Lemma 2.5. If *b* satisfy (*b*1) and (*b*2), and *g* satisfies (*g*8), then there exists a function $v := \Phi(\beta w(x)) + l \in C^1_{loc}(\mathbb{R}^N)$ such that

$$-\operatorname{div}(|\nabla v|^{p-2}\nabla v) \ge b(x)g(v(x)), \quad v(x) > l, x \in \mathbb{R}^N, \lim_{|x| \to \infty} v(x) = l,$$
(23)

for large $\beta \ge 1$, where w is the solution of problem (3).

Proof. Since g satisfies (g8), we define

$$\widehat{g}(t) := \sup\{\frac{g(s)}{s^{p-1}} : s > t\}, \qquad t > 0.$$

we denote that \widehat{g} is non-increasing, positive and $\widehat{g}(t) \geq \frac{g(t)}{t^{p-1}}$. Furthermore, by (g8) we have $\widehat{g}(t) < |w|_{\infty}^{1-p}$ for sufficiently large t.

Let

$$h(t) := \frac{2}{t} \int_{\frac{t}{2}}^{t} \widehat{g}(s) ds, \qquad t > 0.$$
(24)

It is shown in (Ladyzenskaja and Ural'tseva, 1968) that h is C^1 , non-increasing and $\hat{g}(t) \le h(t) \le \hat{g}(\frac{t}{2})$ for all $t \in (0, \infty)$.

Since h is non-increasing, we note that $h(t) \to \alpha < |w|_{\infty}^{1-p}$ at $t \to \infty$ for some $\alpha \in [0, \infty)$. Now, let we set $\Phi(t)$ satisfies

$$\int_{0}^{\Phi(t)} \frac{s}{h^{\frac{1}{p-1}}(s+l)(s+l)} ds = t.$$

By direct calculation, we see that

$$\Phi'(t) = \frac{h^{\frac{1}{p-1}}(\Phi(t)+l)(\Phi(t)+l)}{\Phi(t)},$$

and $\Phi(t) > 0$, for t > 0, $\Phi(0) = 0$. Let we set $v(x) := \Phi(\beta w(x)) + l$, where β large enough and satisfies $\beta \ge v(x) - l$. A simple computation shows that v has the desired properties.

Indeed, on recalling $-\operatorname{div}(|\nabla w|^{p-2}\nabla w) = b(x)$, we see that

$$\begin{aligned} -\operatorname{div}(|\nabla v|^{p-2}\nabla v) &= -\operatorname{div}(|\frac{v}{v-l}h^{\frac{1}{p-1}}(v)\beta\nabla w|^{p-2}\frac{v}{v-l}h^{\frac{1}{p-1}}(v)\beta\nabla w) \\ &= -\operatorname{div}((\frac{v}{v-l})^{p-1}h(v)\beta^{p-1}|\nabla w|^{p-2}\nabla w) \\ &= -\beta^{p-1}(\frac{v}{v-l})^{p-1}h(v)\operatorname{div}(|\nabla w|^{p-2}\nabla w) \\ &- \beta^{p}|\nabla w|^{p}\frac{d[(\frac{v}{v-l})^{p-1}h(v)]}{dv}h^{\frac{1}{p-1}}(v)\frac{v}{v-l} \\ &= -\beta^{p-1}\frac{v^{p-1}}{(v-l)^{p-1}}h(v)\operatorname{div}(|\nabla w|^{p-2}\nabla w) \\ &- (p-1)\beta^{p}|\nabla w|^{p}h^{\frac{1}{p-1}}(v)(1+\frac{l}{v-l})^{p-1}\frac{-l}{(v-l)^{2}}h(v) \\ &- \beta^{p}|\nabla w|^{p}h^{\frac{1}{p-1}}(v)(1+\frac{l}{v-l})^{p}h'(v) \\ &\geq -\beta^{p-1}\frac{v^{p-1}}{(v-l)^{p-1}}h(v)\operatorname{div}(|\nabla w|^{p-2}\nabla w) \\ &= b(x)\beta^{p-1}\frac{v^{p-1}}{(v-l)^{p-1}}h(v) \\ &\geq b(x)(v-l)^{p-1}\frac{v^{p-1}}{(v-l)^{p-1}}\frac{g(v)}{v^{p-1}} \\ &= b(x)g(v) \quad x \in \mathbb{R}^{N}, \end{aligned}$$

Moreover, since $\Phi(0) = 0$, it is clear that $v(x) \to l$, as $|x| \to \infty$.

Proof of Theorem 2 Consider the perturbed problem

$$-\mathsf{div}(|\nabla u_k|^{p-2}\nabla u_k) + p(x)|\nabla u_k|^q = f(x, u_k), u_k > l > 0, x \in B(0, k), u_k = l, x \in \partial B(0, k), \quad (25)$$

where $B(0,k) = \{x \in \mathbb{R}^N : |x| < k\}$, $k = 1, 2, 3, \cdots$. Let $U_k(x) = u_k(x) - l$, where $U_k(x)$ is the solution of (18). Then, it follows by Lemma 2.3 that problem (18) has one solution $U_k \in C^{1+\alpha}(B(0,k)) \cap C(\overline{B}(0,k))$, thus, problem (25) has one solution $u_k \in C^{1+\alpha}(B(0,k)) \cap C(\overline{B}(0,k))$. Put

$$u_k(x) = l, \quad \forall |x| > k.$$

Let v be as in Lemma 2.5, we assert that

$$u_k(x) \le v(x), \quad x \in \mathbb{R}^N, k = 1, 2, 3 \cdots.$$
 (26)

Indeed,

$$-\mathsf{div}(|\nabla v|^{p-2}\nabla v) \ge b(x)g(v(x)) \ge f(x,v) - p(x)|\nabla v|^q,$$

By the comparison principle argument, we can obtain (26).

Now, we need to estimate $\{u_k\}$. For any bonded $C^{2+\alpha}$ -smooth domain $\Omega' \subset \mathbb{R}^N$, take Ω_1 and Ω_2 with $C^{2+\alpha}$ -smooth boundaries, and K_1 large enough, such that

$$\Omega^{'} \subset \subset \Omega_1 \subset \subset \Omega_2 \subset \subset B_k, \quad k \ge K_1,$$

Note that

$$v(x) \ge u_k(x) \ge \underline{U}(x) > l, \quad \forall \ x \in B(0, K_1), \tag{27}$$

121

where $\underline{U}(x) = \underline{u}(x) + l$, and $\underline{u}(x)$ is defined by Lemma 2.3. When $B(0, K_1)$ is the substitution for Ω in the proof of Lemma 2.3, by (n3) it is easy to see that $\underline{U}(x)$ is the sub-solution of (25). Let

$$\rho_k(x) = f(x, u_k(x)) - p(x) |\nabla u_k(x)|^q, x \in \overline{B}(0, K_1),$$

For $k \in N$ We consider the problem

$$-\operatorname{div}(|\nabla u_k|^{p-2}\nabla u_k) = \rho_k(x), \quad x \in \Omega', \quad u_k = \underline{U}, \quad x \in \partial \Omega', \quad (28)$$

Since \underline{U} is a sub-solution and v is a super-solution, the above problem has at least a solution $\underline{U}(x) \leq u_k(x) \leq v(x)$. This in particular gives local bounds for the sequence $\{u_k\}$ which in turn leads to local bounds in $C^{1+\alpha}$. Thus for every $m \in N$, we can select a sequence $\{u_k^m\}$ which converges in $C^{1+\alpha}(\overline{\Omega'})$. A diagonal procedure gives a subsequence (denoted again by u_k) which converges to a function u in $C^1(\overline{\Omega'})$, and u satisfies

$$-\mathrm{div}(|\nabla u|^{p-2}\nabla u) + p(x)|\nabla u|^q = f(x,u), \ x \in \overline{\Omega'},$$

By (27), we obtain that

$$u > l, x \in \overline{\Omega'}$$

and we can obtain that $u \in C^{1+\alpha}(\overline{\Omega'})$. Since Ω' is arbitrary, we also see that $u \in C^{1+\alpha}_{loc}(\mathbb{R}^N)$. It follows by (26) that

$$\lim_{|x| \to \infty} u(x) = l$$

The proof is finished.

5 Conclusions

The boundary value quasilinear differential equation systems (1) and (22) are mathematical models occurring in the studies of the p-Laplace equation, generalized reaction-diffusion theory, non-Newtonian fluid theory, and the turbulent flow of a gas in porous medium. In the non-Newtonian fluid theory, the quantity p is characteristic of the medium. Media with p > 2 are called dilatant fluids and those with p < 2 are called pseudoplastics. If p = 2, they are Newtonain fluids. When p=/ 2, the problem becomes more complicated since certain nice properties in herent to the case m = 2 seem to be lost or at least difficult to verify. The main differences between m = 2 and m =/ 2 can be founded in (Guo, 1992; Guo and Webb, 1994). When p = 2, it is well known that all the positive solutions in C2(BR) of the problem

4u + f(u) = 0 in BR;

u(x) = 0 on @BR;

are radially symmetric solutions for very general f (see Gidas and Nirenberg, 1979). Unfortunately, this result does not apply to the case p = / 2. Kichenassary and Smoller showed that there exist many positive nonradial solutions of the above problem for some f (see Kichenassamy and Smoller, 1990). The major stumbling block in the case of p = /2 is that certain nice features inherent to the case p = 2 seem to be lost or at least difficult to verify. In this paper, we first provide a suitable supersolution for problem (1) and show the existence of positive solutions in bounded domain. Then, we prove Theorem 1, moreover, we have studied the case l > 0.

Acknowledgement

Project Supported by the National Natural Science Foundation of China (No.11171092); the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No.08KJB110005).

References

Chen, C. S., Liu, S., Yao, H. P. (2011). Existence of solutions for quasilinear elliptic exterior problem with the concave-convex nonlinearities and the nonlinear boundary conditions, J. Math. Anal. Appl. 383, No. 1, 111-119.

Chen, C. S., Wang, Z. Q., Wang, F. P. (2010). Existence and nonexistence of positive solutions for singular p-Laplacian equation in \mathbb{R}^N , Bounded. Value Probl, Art. ID 607453, 17pp.

Chen, C. S., Zhu, S.L., Shi, L. F. (2011). Remarks on nonexistence of solutions of mixed sublinear and superlinear elliptic equation in \mathbb{R}^N , J. Math. Anal. Appl. 379, No. 1. 8-14.

Cistea, F., Răulescu, V.D. (1999). Existence and uniqueness of positive solutions to a semilinear elliptic problem in \mathbb{R}^N , J. Math. Anal. Appl. 229, 417-425.

Diaz, J. (1985). Nonlinear Partial Differential Equations and Free Boundaries, vol. I: Elliptic Equation, Res. Notes Math. vol. 106. Pitman Advanced Publishing Program, Boston.

Dinu, T.L. (2003). Entire positive solutions of the singular Emden-Fowler equation with nonlinear gradient term, Results Math.43, 96-100.

Dinu, T.L. (2006). Entire solutions of sublinear elliptic equations in anisotropic media, J. Math. Anal. Appl. 322, 382-392.

Gilbar, D., Trudinger, N. S. (1997). Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin Heidelberg New York.

Gidas, B., Ni, W.M., Nirenberg, L. (1979). Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68, 209-243.

Goncalves, J.V., Santos, C.A. (2006). Existence and asymptotic behavior of non-radially symmetric ground states of semilinear singular elliptic equations, Nonlinear Anal. 65, 719-727.

Goncalves, J.V., Silva, F.K. (2010). Existence and nonexistence of ground state solutions for elliptic equations with a convection term, Nonlinear Analysis, 72, 904-915.

Guo, Z. M. (1992). Some existence and multiplicity results for a class of quasilinear elliptic eigenvalue problems, Nonlinear Anal. 18, 957-971.

Guo, Z. M, Webb, J.R.L. (1994). Uniqueness of positive solutions for quasilinear elliptic equations when a parameter is large, Proc. Roy. Soc. Edinburgh, 124 A, 189-198.

Goncalves, J.V., Silva,F.K. (2010). Existence and nonexistence of ground state solutions for elliptic equations with a convection term, Nonlinear Analysis, 72, 904-915.

Kichenassamy, S., Smoller, J. (1990) .On the existence of radial solutions of quasilinear elliptic equations, Nonlinearity, 3, 677-694.

Ladyzenskaja, O. A., Ural'tseva, N. N. (1968). Linear and Quasilinear elliptic Equations, Academic Press, New York.

Liu, C. L., Yang, Z.D. (2007). Existence of large solutions for a quasilinear elliptic problem with a gradient term, Appl.Math. Comput. 192(2), 533-545.

Liu, C. L., Yang, Z. D. (2008). Existence of large solutions for a quasilinear elliptic problem via explosive sub-supersolutions, Applied Mathematics and Computation 199, 414-424.

Liu, C. L., Yang, Z. D. (2010). A boundary blow-up for a class of quasilinear elliptic problems with a gradient term, J Appl Math Comput, 33, 23-34.

Miao, Q., Yang, Z. D. (2008). Bounded positive entire solutions of singular p-Laplacian equations, Nonlinear Analysis. 69, 3749-3760.

Miao, Q., Yang, Z.D. (2010). Boundary blow-up solutions for a class of quasilinear elliptic equations, Applicable Analysis .Vol. 89, No. 12, December, 1893-1905.

Miao, Q., Yang, Z. (in press). Quasilinear elliptic equation involving singular non-linearities, International Journal of Computer Mathematics.

Mohammed, A. (2009). Ground state solutions for singular semi-linear elliptic equations, Nonlinear Analysis, 71, 1276-1280.

Santos, C. A., (2010). Non-existence and existence of entire solutions for a quasi-linear problem with singular and super-linear terms, Nonlinear Anal. 72(9-10), 3813-3819.

Shen, Y., Zhang, J.H. (2011). Existence of positive entire solutions of a semilinear p-Laplacian problem with a gradient term, Differential Equations Applications, Volume 3, Number 2, 225-233.

Tolksdorf, P. (1983). On the Dirichlet problem for quasilinear equations in domains with conical boundary points, Commun Partial Differ Equ. 199, 773-817.

Xue, H., Shao, X. (2009). Existence of positive entire solutions of a semilinear elliptic problem with a gradient term, Nonlinear Anal.71, 3113-3118.

Xue, H. (2011). Ground state solutions for a semilinear elliptic problem with a convection term, J. Math. Anal. Appl. 384, 439-443.

Yang, Z. (1997). Non-existence of positive entire solutions for elliptic inequalities of p-Laplace, Appl. Math. 12, 399-410.

Yang, Z., Yang, H.S. (2001). A priori for a quasilinear elliptic P.D.E. non-positone problems, Nonlinear Anal. 43, 173-181.

Yang, Z. (2006). Existence of positive entire solutions for singular and non-singular quasi-linear elliptic equation, J. Comput. Appl. Math. 197, 355-364.

Yang, Z. D. (2006). On the existence of multiple positive entire solutions for a class of quasilinear elliptic equations, International Journal of Mathematics and Mathematical Sciences, Article ID 34538, 1-19.

Yang, Z. D., Yu, C. W. (2010). Ground state solutions for singular quasilinear elliptic equations, Communications in Mathematical Analysis.9(2), 12-21.

Yuan, J. L., Yang, Z. D. (2010). Existence and asymptotic behavior of radially symmetric ground states of quasi-linear singular elliptic equations, Applied Mathematics and Computation 216, 213-220.

Yuan, J. L., Yang, Z.D. (2010). Existence of bounded positive solution of quasilinear elliptic equations, Applicable Analysis. 89(8), 1229-1239.

©2012 Li and Yang; This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.