
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

Differentiable programming for online training of a
neural artificial viscosity function within a
staggered grid Lagrangian hydrodynamics scheme
To cite this article: Pake Melland et al 2021 Mach. Learn.: Sci. Technol. 2 025015

View the article online for updates and enhancements.

You may also like
Random phase screen influence of the
inhomogeneous tissue layer on the
generation of acoustic vortices
Zhiyao Ma, , Jun Ma et al.

-

Multiple off-axis acoustic vortices
generated by dual coaxial vortex beams
Wen Li, , Si-Jie Dai et al.

-

A novel curve fitting method for AV
optimisation of biventricular pacemakers
Hakim-Moulay Dehbi, Siana Jones, S M
Afzal Sohaib et al.

-

This content was downloaded from IP address 106.213.19.213 on 01/07/2023 at 06:43

https://doi.org/10.1088/2632-2153/abd644
/article/10.1088/1674-1056/27/3/034301
/article/10.1088/1674-1056/27/3/034301
/article/10.1088/1674-1056/27/3/034301
/article/10.1088/1674-1056/27/2/024301
/article/10.1088/1674-1056/27/2/024301
/article/10.1088/0967-3334/36/9/1889
/article/10.1088/0967-3334/36/9/1889

Mach. Learn.: Sci. Technol. 2 (2021) 025015 https://doi.org/10.1088/2632-2153/abd644

OPEN ACCESS

RECEIVED

27 August 2020

REVISED

6 December 2020

ACCEPTED FOR PUBLICATION

23 December 2020

PUBLISHED

26 February 2021

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Differentiable programming for online training of a neural artificial
viscosity function within a staggered grid Lagrangian
hydrodynamics scheme
Pake Melland1,5, Jason Albright2 and Nathan M Urban3,4

1 Applied Mathematical and Computational Sciences, University of Iowa, Iowa City, IA 52242, United States of America
2 Applied Physics, Los Alamos National Laboratory, Los Alamos, NM 87544, United States of America
3 Applied Mathematics, Brookhaven National Laboratory, Upton, NY 11973, United States of America
4 Computational Physics and Methods, Los Alamos National Laboratory, Los Alamos, NM 87544, United States of America
5 NSF-funded guest scientist at Los Alamos National Laboratory during summer 2019.

E-mail: pake-hagen@uiowa.edu

Keywords: differentiable programming, Lagrangian hydrodynamics, hybrid modeling, shock waves

Abstract
Lagrangian methods to solve the inviscid Euler equations produce numerical oscillations near
shock waves. A common approach to reducing these oscillations is to add artificial viscosity (AV)
to the discrete equations. The AV term acts as a dissipative mechanism that attenuates oscillations
by smearing the shock across a finite number of computational cells. However, AV introduces
several control parameters that are not determined by the underlying physical model, and hence, in
practice are tuned to the characteristics of a given problem. We seek to improve the standard
quadratic-linear AV form by replacing it with a learned neural function that reduces oscillations
relative to exact solutions of the Euler equations, resulting in a hybrid numerical-neural
hydrodynamic solver. Because AV is an artificial construct that exists solely to improve the
numerical properties of a hydrodynamic code, there is no offline ‘viscosity data’ against which a
neural network can be trained before inserting into a numerical simulation, thus requiring online
training. We achieve this via differentiable programming, i.e. end-to-end backpropagation or
adjoint solution through both the neural and differential equation code, using automatic
differentiation of the hybrid code in the Julia programming language to calculate the necessary loss
function gradients. A novel offline pre-training step accelerates training by initializing the neural
network to the default numerical AV scheme, which can be learned rapidly by space-filling
sampling over the AV input space. We find that online training over early time steps of simulation
is sufficient to learn a neural AV function that reduces numerical oscillations in long-term
hydrodynamic shock simulations. These results offer an early proof-of-principle that online
differentiable training of hybrid numerical schemes with novel neural network components can
improve certain performance aspects existing in purely numerical schemes.

1. Introduction

The Euler equations are a system of non-linear hyperbolic partial differential equations (PDEs) derived from
conservation laws describing the dynamics of a compressible material, for example gases and liquids, at high
pressures, for which the effects of viscosity are neglected [1]. When formulated with Riemann-type initial
conditions, initial conditions that are piecewise constant with a single discontinuity, solutions to the Euler
equations admit shock, contact, and rarefaction waves [2]. Developing numerical methods that can capture
solution profiles exhibiting these low-regularity features is essential in many applications.

Most standard numerical schemes for hyperbolic conservation laws without special modifications
introduce spurious, nonphysical oscillations that occur near shocks. These oscillations are a numerical
artifact caused by the lack of a mechanism in the Euler equation to convert kinetic energy into internal

© 2021 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/abd644
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/abd644&domain=pdf&date_stamp=2021-2-26
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-1980-9072
https://orcid.org/0000-0002-4099-8990
https://orcid.org/0000-0002-2264-3512
mailto:pake-hagen@uiowa.edu

Mach. Learn.: Sci. Technol. 2 (2021) 025015 P Melland et al

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

(c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Figure 1. Solution profiles for the velocity state variable from numerical solutions to the Euler equations. (a) Exact analytic
solution of velocity (black) at t= 0.2 plotted against a solution obtained using an SGH numerical scheme with no AV added
(blue). With no AV spurrious oscillations are sustained before the shock at x≈ 0.85. (b) Velocity solution obtained using excessive
levels of AV (brown); solution profile is smeared over a wide range of computational cells. (c) Velocity solution obtained using AV
that is tuned to reduce oscillations without excessive smearing (green).

energy, and thereby a mechanism to generate the required entropy increase across shocks. Hence, one
approach to suppressing these oscillations relies on augmenting the discrete equations with a mechanism to
increase entropy across shocks.

Specifically, in the context of a staggered-grid Lagrangian hydrodynamics (SGH) scheme considered here
spurious oscillations can develop near shock waves where smoothness assumptions break down (figure 1(a)).
Hence, in order to reduce the oscillations, a fictitious term called artificial viscosity (AV) is added to the
pressure. This approach goes back to the work done by VonNeumann and Richtmyer in [3]. AV fills the role
of the missing dissipative mechanism in the discrete inviscid flow equations and is able to reduce oscillations
near shocks at the cost of smearing the shock profile across several computational cells (figures 1(a) and (c)).

We emphasize that while the addition of AV into an SGH scheme is well-founded, it is not derived from
the conservation laws underlying the Euler equations; AV is a term that is added to improve numerical
aspects of the solution and introduces control parameters that determine its magnitude and other properties.
In particular, the well-known linear-quadratic form of AV, see [4–6], introduces two free parameters to
control its magnitude. Figure 1 illustrates the effects of augmenting pressure with different levels of AV.
Figure 1(a) highlights the profile of a velocity solution obtained with no AV added–spurious oscillations
form before the shock. Conversely figure 1(b) shows a solution obtained with excessive AV–the shock profile
is smeared over several cells. Figure 1(c) shows the velocity solution obtained by tuning parameters [7] in a
traditional AV function to reduce oscillations without excessive smearing of the shock profile. A source of
concern for traditional approaches is that the process of tuning parameters in an AV model can be
immediately limited by the functional form specified for AV, e.g. quadratic or linear-quadratic. Therefore,
the goal of this study is to replace the linear-quadratic form of AV in a Lagrangian staggered grid scheme with
a learnable function, with a neural representation in the form of an artificial neural network (ANN), trained
to reduce oscillations, resulting in a hybrid numerical-neural scheme.

1.1. Computational fluid dynamics andmachine learning
Machine learning algorithms are data-driven and rely on patterns in data rather than explicit computational
instructions. On the other hand, the algorithms used in scientific computing have their roots in solving
explicit, mathematical models typically derived from first principles describing the underlying physics of a
problem. In particular, algorithms in computational fluid dynamics (CFD) historically have taken this
approach to modeling and rely on approximating solutions to the physically derived Navier–Stokes equations
or the inviscid Euler equations using a variety of different numerical methods. The approach taken in this
work seeks to build on the robustness of existing numerical methods, by replacing one component, namely
AV as part of an existing SGH scheme (described in section 2.2), with an ANN. This approach fits into
emerging, but rapidly expanding, work that attempts to combine elements of machine learning with
scientific computing. We note that this general approach is not limited to the field of CFD. For example the
authors in [8] develop the methodology of universal differential equations for effectively enhancing scientific
models with machine learning structures. In the following we review approaches that employ data-driven
components to CFD and PDE models.

Work done in [9] and [10] uses convolutional neural networks (CNNs) to improve computational
efficiency aspects of fluid simulations. In [10] the CNN is trained on fluid simulation velocity fields and
subsequently used as a generative model to produce efficient fluid simulations independent of existing

2

Mach. Learn.: Sci. Technol. 2 (2021) 025015 P Melland et al

solvers. In [9] the CNN architecture is used to replace a linear solver for a projection step inside of an
Eulerian scheme for solving the inviscid Euler equations resulting in a hybrid model designed to improve run
time by replacing the computationally intensive projection step. Similar to [9] the work done in [11] uses
ANNs to simulate higher dimensional PDEs by building a mesh-free ANN trained to satisfy the differential
operator, initial conditions, and boundary conditions. A mesh free PDE simulation is extremely beneficial as
obtaining solutions over fine meshes becomes infeasible as the dimension of the problem increases. In [12]
ANNs are also used for solving high dimensional parabolic PDEs by casting the original PDEs as backwards
stochastic differential equations and using an ANN as an approximation to the gradient of solutions.

Work has also been done directly utilizing the physics of fluid flow. For example, [13] illustrates utilizing
physical principles of a system to inform deep learning models for sea surface temperatures. [14] provides an
example of using constraints from a physical system in a loss function used to train an ANN. Our approach
also relies on the physics of a system by having its computational roots in a physics-based numerical model;
however, we extend physically constrained approaches and suggest a method for end-to-end training of an
ANN while it is embedded in a numerical scheme.

Closely related to our work, [9, 15, 16] use neural-numerical hybrid approaches. In [15] spatial
derivatives are estimated on low resolution grids using ANNs which are trained end-to-end. Sections 6 and 7
of [16] outline a neural architecture used to train parameters in a dissipative Rusanov flux scheme for the
Euler equations with a relatively coarse spatial gird over early time steps. In [16] the entire numerical scheme
is recast as a neural network by representing each computation in the Rusanov scheme with a neural
network. In order to stay consistent during training, the neural architecture is held in place with only
parameters corresponding to numerical viscosity coefficients allowed to change during training. The
parameters are optimized using stochastic gradient descent (SGD) which is advantageous when compared
with performing brute force sweeps over a mesh of 30 parameters (corresponding to the viscosity coefficients
in the Rusanov scheme). Formulating the entire solver as a neural network allowed the required gradients to
be calculated with backpropagation. The neural architecture in [16] is different from the approach we
present in this work. We instead retain the majority of an existing hydrocode used with a traditional
numerical method in its current state, and add a single neural component. We then use a differentiable
programming (section 1.3) paradigm to compute gradients required to train the neural component.
Moreover we aimed to extend beyond a parameter search with the goal of exploring wider ranges of
functional forms of compensatory mechanisms within a numerical scheme using neural functions rather
than using a neural framework to find optimal parameters associated with a particular scheme.

1.2. The need for online training of hybrid simulators
In this work, a ‘hybrid’ simulation refers to a numerical model in which one or more components of the
underlying scheme are replaced with neural networks or other data-driven components. A primary
motivation of hybrid simulation is to replace a component of a numerical model whose form may be poorly
known with a data-driven component that can learn to improve upon existing numerical schemes. In some
cases, it is possible to learn a data-driven component offline by training it to some higher-fidelity reference
data before embedding the trained component into a hybrid code. For example, it may be possible to learn a
fluid dynamics turbulence closure scheme by training an ANN to reproduce data from a high-resolution
direct numerical simulation [17, 18], or to learn a sub-grid scale cloud parameterization scheme for an
atmospheric climate model by training an ANN to reproduce the output of a high-resolution global
cloud-resolving model [19–21]. Once trained to such pre-simulated offline reference data sets, these neural
network emulators of higher-fidelity physics can then be inserted into coarser-resolution models to run
online as a hybrid simulation, with the ANN component replacing existing numerical approximations to
unresolved processes.

In other cases, however, there is no high-fidelity reference data for the behavior of AV, because AV is not
derived from the physics of the system; it is an artificial term added to improve numerical aspects of the
discrete solutions. Therefore, there is no ‘true’ viscosity data set against which to train the ANN. Instead, we
learn the performance of a given AV scheme implicitly through its effect on the final solution generated by
the hybrid model; although there is no reference ‘viscosity’ data from which to compute an AV directly, we
can evaluate the predictions of a hybrid hydrocode to determine whether numerical artifacts such as spurious
oscillations are being suppressed. In a hybrid model that replaces the AV numerical component with an
ANN, this requires online training, by which we mean wrapping the whole hybrid simulator with an
embedded ANN component in a training loop, in order to evaluate its performance and backpropagate its
prediction errors to update the ANN weights. (We outline how this is done in section 3.)

The need for online training is far more general than the particular numerical setting examined in this
paper, however. To further motivate the importance of our approach, we discuss other settings in which
online training of a hybrid model may be necessary or advantageous. Many complex simulations contain

3

Mach. Learn.: Sci. Technol. 2 (2021) 025015 P Melland et al

physical approximation schemes or parameterizations involving ad-hoc or purely empirical functions whose
forms were chosen to invoke good simulation behavior, rather than being derived from any theoretical
consideration. One example is in the K-profile parameterization (KPP) vertical mixing scheme of global
ocean circulation models, which approximates unresolved turbulent mixing processes as a form of vertical
diffusion [22]. KPP contains an arbitrary ‘shape function’ whose role is to artificially enhance or suppress
vertical mixing at different ocean depths to compensate for other limitations in the mixing approximation.
Although the shape function in KPP plays a more physical role than AV does in numerical hydrodynamics,
there is still no reference data against which to train, because the shape function is an ad-hoc empirical
construct.

In other cases, an offline reference data set for training may exist, but it is unclear how or whether it
should be used within a hybrid code. Consider the example, previously discussed, of an ANN emulator of a
high-resolution model embedded into a lower-resolution model as a sub-grid parameterization. An ANN
that correctly emulates a high-resolution model may not produce the intended behavior when coupled to a
second model, due to that model’s different structure and biases. This is related to the well-known
phenomenon that parameter tuning of individual, standalone model components may fail when those
components are coupled together [23, 24], and in a hybrid numerical-neural modeling context, has led to
competing training and coupling approaches [20] vs. [19]. In such settings, it may be advantageous to
supplement an offline pre-training stage with an online training stage to reduce biases or ‘coupling shock’ in
the machine learning component once it is embedded interactively to a numerical solver, an approach that
we take in this work.

To elaborate on the need for offline pre-training in combination with online training of hybrid models,
we emphasize that the online training procedure requires forward simulations of the Euler equations with AV
represented by a neural network. This presents numerical and training difficulties. Poor choices of AV will
prevent a simulation from running to completion. For example, conservation laws can be violated resulting
in the termination of a simulation. Hence, a randomly initialized ANN will most likely add undesirable
values of viscosity in an AV scheme causing numerical instabilities, inconsistencies, and simulation failure.
Additionally, online training is expensive since it requires forward simulations of the SGH scheme. Our
solution, discussed in more detail in the methods, is to pre-train an ANN to reproduce the existing
VonNeumann-Richtmeyer AV scheme currently used in our hydrodynamic simulations. This does not
require expensive forward simulations of the full hydrocode, and initializes the ANN into a known, physically
reasonable state. Furthermore, during the offline training the inputs to the ANN can be sampled in a
space-filling manner [25, 26], rather than restricting the inputs to states generated by a physics model.
Space-filling sampling allows for an ANN that has the potential to generalize to problems with conditions
that may not be present (or hard to achieve) in states generated in an online training setting. Obtaining an
ANN that is generalizable is important as hybrid modeling is expanded to wider ranges of test problems and
applications.

1.3. Differentiable programming for online training of hybrid simulators
Our approach embeds a single machine learning component in an SGH numerical scheme which produces a
hybrid model that is largely based on physics. An ANN, by itself, is typically trained through the
backpropagation algorithm [27, 28], which is a form of parameter optimization based on gradient descent
over a defined loss function. Modern machine learning frameworks such as TensorFlow [29] and PyTorch
[30] compute the necessary gradients of the loss function with respect to ANN weights by constructing a
computational graph of the neural network’s forward pass and traversing it backwards to incrementally
compute gradients via the chain rule, known as reverse-mode automatic differentiation (AD) [31]. (Other
styles of AD are possible besides graph construction, such as source-to-source transformation [32–34] or
continuation-passing [35].)

In a hybrid physical-neural simulation model containing a machine learning component, the ANN
weights effectively become new tunable parameters of the numerical solver. In order to train a hybrid model
via gradient descent, it is necessary to differentiate a loss function, comparing the simulation output to
training data, with respect to the neural network weights. This entails differentiating the entire hybrid code,
not just the ANN, with respect to the ANN weights. If the code were entirely a numerical PDE solver,
differentiating a functional of the PDE solution with respect to some of its parameters would correspond to
the well-known construction of an adjoint PDE system.

Differentiating through our hybrid solver to train a neural network embedded in an existing numerical
scheme is possible using differentiable programming [34], which allows for differentiation of arbitrary
programs (as opposed to functions). This simply amounts to a recognition that AD is not limited to the
particular ANN architectures to which backpropagation is traditionally applied, but rather can apply to
general program structures, including the loops, conditional statements, and mathematical function calls

4

Mach. Learn.: Sci. Technol. 2 (2021) 025015 P Melland et al

that comprise scientific numerical codes. Using the Flux and Tracker packages [36, 37] of the Julia scientific
programming language, we apply reverse-mode AD to our entire hybrid simulator, constructing a
computational graph through both the numerical PDE and ANN portions of the code. This corresponds to
computing an adjoint through the PDE portion of the code, and backpropagating through the ANN portion
of the code. With respect to the PDE portion, it corresponds to a ‘discretize-then-adjoint’ approach [38], in
which an adjoint is constructed from an existing discretized PDE solver, as opposed to an
‘adjoint-then-discretize’ approach in which a continuum adjoint PDE would be constructed from the
continuum Euler equations and then discretized [39].

1.4. Outline
This remainder of the paper is organized as follows: In section 2 the inviscid Euler equations and associated
shock tube-type Riemann problems are reviewed. In section 2 we also provide a brief description of the
Lagrangian SGH scheme with AV that we will apply throughout the remainder of this work. Section 3
provides necessary background on ANNs and describes the offline and online training of the ANN.
Numerical results are presented in section 4. In section 5 we describe several challenges associated with
training an ANN in the context of hybrid numerical methods as well as future directions motivated by this
work.

2. Inviscid fluid dynamics

The Euler equations of fluid dynamics [1, 2] can be formulated in a Lagrangian frame, in which case the
movement of individual control volumes are tracked. In one-dimension, the Euler equations in the
Lagrangian frame take the form

u=
dx

dt
dρ

dt
= ρ∇· u

ρ
du

dt
=−∇p

ρ
dε

dt
=−p∇· u. (1)

Here x, u, ρ, p, and ε represent the position, velocity, mass density, pressure, and specific internal energy,
respectively, of amarked fluid particle. The equations of motion (1) are also supplemented with a
thermodynamic equation of state (EOS). Throughout we assume the EOS assumes the form of an ideal gas

p= P(ρ,ε)
∆
=(γ− 1)ρε, (2)

where γ is the ratio of specific heats at fixed volume and pressure.

2.1. The shock tube problem
The Euler equations can be used to model one-dimensional shocktube experiments [40]. Shocktube
problems have exact solutions, which can be used as reference solutions to determine the accuracy of any
numerical scheme. These simplified problems also exhibit many features of more complex flows including
rarefaction, contact, and shock waves. For a detailed presentation of applying the method of characteristics
to obtain exact solutions to shocktube problems, which belong to the more general class of Riemann
problems for the Euler equations, see Toro [2].

Physically, a shock tube experiment involves a cylinder filled with two species of gas separated by a thin
barrier or membrane. At time t= 0 the barrier is removed and the gas is allowed to flow. Assuming that the
gas species to the left of the barrier has higher pressure, then these initial conditions drive a shock wave that
propagates into the lower pressure gas on the right. Across the shock wave the flow exhibits a jump
discontinuity in all state variables. Behind the shock wave at the interface between the two gases, a contact
discontinuity (that also propagates to the right) separates the two gas species. At the contact surface the
density exhibits a jump discontinuity, but velocity and pressure remain continuous. In addition to the two
right-moving discontinuities, there is a left moving rarefaction wave that forms a continuous transition
connecting the left most high pressure state and the contact wave. Figure 2 illustrates the different features
observed in the shock tube.

Numerical methods associated with solving the Euler equations and other hyperbolic PDEs that admit
discontinuous solutions must be designed to handle numerical inconsistencies that arise as a result of the

5

Mach. Learn.: Sci. Technol. 2 (2021) 025015 P Melland et al

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 2. (a) Diagram illustrating a shock tube problem with Riemann initial conditions. In this paper we consider the region to
the left of the barrier to initially have higher values for pressure and density than the region to the right. In both regions, the state
variables are initially constant. At t= 0 the barrier is removed and the gas is allowed to flow. (b) An exact solution for density to a
shock tube problem at some time t=T. The right moving shock and contact discontinuities and left moving rarefaction wave are
indicated. (c) An exact solution for pressure to the same shock tube problem as in (b).

breakdowns in continuity, e.g. shock waves and contact structures. In this work, we focus on resolving the
solution near the chock in the setting of shocktube-type Riemann problems. In particular, the challenge is
maintaining a sharp solution profile at the shock and while reducing the aforementioned spurious
oscillations in the solution (see section 2.2). Numerical methods that satisfy both properties are called high
resolution methods as described in [1].

It is possible to compute exact solutions to the shock tube problem using iterative schemes [2]. In this
work we used the FORTRAN code provided at (http://cococubed.asu.edu/code_pages/exact_riemann.
shtml) to generate reference solutions. Hereafter, reference solutions are referred to as exact solutions. Exact
solutions are a useful starting point for developing numerical methods since they provide a reference for
verifying the performance of a new method. Moreover, for the work presented in this paper, the exact
solution is invaluable as it is additionally used as reference data for training an ANN.

2.2. Staggered grid hydrodynamics
The SGH scheme with AV that applied is described in [3, 6, 41]. We provide a brief outline of the major steps
below.

The discrete equations are solved on a pair of so-called staggered grids in which the spatial domain Ω is
divided into cells. The first grid divides Ω into cells [xni ,x

n
i+1] with coordinates x

n
i . The second grid divides Ω

into cells [xni+1/2,x
n
i+3/2] with coordinates given by the cell centers xni+1/2 = 0.5(xni + xni+1). In the Lagrangian

frame, since the mesh moves with the velocity field of the flow, the coordinates depend on both space and
time indexed here by i and n, respectively. In the staggered-grid framework, velocities uni are calculated at cell
nodes xni defined on the first grid, while density, pressure, and internal energy are calculated at cell centers
xi+ 1/2 on the dual grid. Cell-centered quantities are correspondingly denoted ρi+1/2,pi+1/2, and εi+ 1/2.
These quantities represent volume-averages over each computational cell.

The solution is calculated in planar geometry using a second-order in time and space scheme outlined in
[6, 41]. In the following equations, the subscripts denote the spatial discretization and the superscripts denote
the temporal indexing. To solve for the state variables at tn+1 = tn +∆t, first compute the predictor values:

u⋆,n+1
i = uni −∆t

pni+1/2 − pni−1/2

mi
(3)

u⋆,n+1/2
i =

uni + u⋆,n+1
i

2
(4)

x⋆,n+1
i = xni +∆tu⋆,n+1/2

i (5)

ρ⋆,n+1
i+1/2 =

mi+1/2

x⋆,n+1
i+1 − x⋆,n+1

i

(6)

6

http://cococubed.asu.edu/code_pages/exact_riemann.shtml
http://cococubed.asu.edu/code_pages/exact_riemann.shtml

Mach. Learn.: Sci. Technol. 2 (2021) 025015 P Melland et al

ε⋆,n+1
i+1/2 = εni+1/2 − pni+1/2∆t

u⋆,n+1/2
i+1 − u⋆,n+1/2

i

mi+1/2
(7)

p⋆,n+1
i+1/2 = P

(
ρ⋆,n+1
i+1/2 ,ε

⋆,n+1
i+1/2

)
. (8)

Then the predictor values are adjusted with a corrector stage, where the pressure is replaced by its predictor
value above, pni+1/2 7→ p⋆,n+1

i+1/2 :

un+1
i = uni −∆t

p⋆,n+1
i+1/2 − p⋆,n+1

i−1/2

mi
(9)

un+1/2
i =

uni + un+1
i

2
(10)

xn+1
i = xni +∆tun+1/2

i (11)

ρn+1
i+1/2 =

mi+1/2

xn+1
i+1 − xn+1

i

(12)

εn+1
i+1/2 = εni+1/2 − p⋆,n+1

i+1/2∆t
un+1/2
i+1 − un+1/2

i

mi+1/2
(13)

pn+1
i+1/2 = P

(
ρn+1
i+1/2,ε

n+1
i+1/2

)
. (14)

It is important to note that in the Lagrangian frame, in contrast to the Eulerian frame, the mass of a cell
mi+ 1/2 is constant (as is the mass at the cell edgesmi = (mi−1/2 +mi+1/2)/2), so there is no need for the
temporal superscript on the mass variable. Additionally one must specify boundary conditions; in this work
we fix the velocity at the boundary to be zero, u1 = un+1 = 0. The time step∆t is chosen to satisfy a standard
CFL condition with safety coefficient λ.

Figures 2(b) and (c) show the exact solutions for density and pressure in the Sod shock tube problem
[42], a Riemann problem with discontinuous initial data:

(ρ0,p0,u0) =

{
(1.0,1.0,0.0), x< 0.5

(0.125,0.1,0.0), x> 0.5
, (15)

solved over the spatial domain Ω= [0, 1] with the initial barrier at x= 0.5. The corresponding numerical
solutions shown in figure 1 and those used in the remainder of this paper are computed with N = 100 cells.
The initial conditions for the Sod test problem result in a relatively mild shock, which is useful for developing
SGH numerical methods thus we consider the Sod problem for the rest of this paper and focus on reducing
pre-shock oscillations (figure 1(a)) while maintaining a sharp shock resolution without excessive smearing.
Since the velocity variable exhibits the largest, most rapid, oscillations the exact solution for velocity was used
as a reference solution during the online training of the ANN.

2.2.1. Artificial viscosity
In the presence of shockwaves, the equations (3)–(14) are augmented with AV [3, 4, 6, 43] to reduce the
formation of spurious oscillations behind the shock. The AV term, denoted by q is added to the pressure,
p 7→ p+ q, in equation (1), and it acts as a dissipative mechanism. In this work we apply a standard
quadratic-linear form of the AV with the formulation

qni+1/2 =

{(
cq |∆uni |+ cscℓ

)
ρni+1/2 |∆uni | , ∆uni ⩽ 0

0, ∆uni > 0
(16)

as suggested in [43]. The inputs into the q(·) function are (∆u, ρ, cs) where cs represents the sound speed:

cs =

√
γ
p

ρ
. (17)

In the discrete equations (3)–(14) AV is a local quantity defined at cell centers, qi+ 1/2 used to augment
pressure pi+1/2 7→ pi+1/2 + qi+1/2. The inputs into q(·) given in (16) are therefore also the discretized

7

Mach. Learn.: Sci. Technol. 2 (2021) 025015 P Melland et al

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

(b)

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Figure 3. (a) Velocity at t= 0.2 solved using SGH scheme with two different sets of coefficients cq and cℓ. Larger viscosity values
reduce oscillations near the shock with the trade off of a widened shock profile; smaller viscosity values may be insufficient to
suppress oscillations. (b) Plots of AV given by equation (16) obtained using two sets of coefficients.

quantities (∆uni ,ρ
n
i+1/2, c

n
s,i+1/2) where∆uni is the difference in velocity between cell endpoints,

∆uni = uni+1 − uni .
The quadratic coefficient cq and the linear coefficient cℓ are parameters chosen by the user. Since these

coefficients are introduced as part of the numerical scheme, they are not constrained by the physical
properties of the gas being modeled. Yet, naive choices can lead to overly oscillatory or overly smeared
solutions as well as other non-physical characteristics in the solution. Figure 3(a) shows numerical solutions
for velocity with AV added using two sets of coefficients. As illustrated in figure 3(a) choosing values of cq
and cℓ larger in magnitude tends to produce numerical solutions with reduced oscillations near the shock at
the cost of a smeared shock profile. In contrast, the profile of solutions obtained using coefficients relatively
smaller in magnitude can fail to sufficiently reduce oscillations. Figure 3(b) shows the functional form of AV
using equation (16) and it can be seen that less AV is added at the shock when coefficients cq and cℓ are
smaller in magnitude.

Figure 3 illustrates that there is a trade off between oscillation suppression and shock maintenance when
choosing the coefficients cq and cℓ. That is, adding excessive AV overly smears solutions, but adding
insufficient AV fails to suppress oscillations [6]. Since the choices for the coefficients cq and cℓ are not
physically constrained, one may choose to optimize these parameters so that they minimize the
aforementioned trade-off between overly oscillatory and overly smeared solutions. This can be achieved with
a brute force parameter sweep of the coefficients. However, this derivative-free approximation approach
becomes infeasible in higher dimensions. Moreover, the optimal trade off is constrained by the chosen
functional form of the q(·) function given by (16). Therefore, the goal of this work is to replace the
linear-quadratic AV function with an ANN trained to minimize a loss function designed to capture the
trade-off between highly oscillatory and overly smeared solutions. Our hypothesis is that an ANN allows for
more functional flexibility than the user-specified q(·) function with constant coefficients.

2.2.2. Generalizing artificial viscosity
As mentioned in section 2.2.1 the optimal of balance pre-shock oscillations with a sharp shock profile is
constrained by the choice of viscosity function. Therefore, our aim was to explore a more general functional
form for AV by replacing an explicit formula with a learned neural viscosity function represented by an ANN.

In the context of ANNs, the universal approximation theorem [44] states that a feedforward neural
network with sigmoidal activation can approximate any continuous function up to an arbitrary level of
precision, provided there are enough nodes in the network. Given this general theorem, the idea behind our
approach is that the ANN will approximate a functional form of the AV that can better optimize a prescribed
loss function to determine an optimal AV value q. In particular, by replacing a fixed functional form
of AV with a more general, data-driven ANN, we allow for an exploration to more general functional
forms for AV.

As a starting point for the ANN, we constructed a network to have the same inputs as the q(·) function in
(16), namely∆u, cs, and ρ. The ANN then produces a single scalar output corresponding to the AV term that
is used to augment pressure in (3)–(14). That is, if we let qNN(·) represent the ANN that will serve as AV,

8

Mach. Learn.: Sci. Technol. 2 (2021) 025015 P Melland et al

Figure 4. Schematic overview of neural artificial viscosity training. The neural network has inputs (∆u, ρ, cs) and is pre-trained
using a regression-based approach against a surrogate quadratic-linear viscosity function qtrain with the same inputs. The neural
network parameters are updated using the gradients of the MSE loss function Coff(·) given by (21). Following the pre-training
step, the neural network is embedded as AV in an SGH scheme, and its inputs are now the discretized counterparts to the
pre-trained inputs. The loss function Con(·) given in (22) compares the discrete solution ui(T) against an exact reference solution
uref at the same time T. The online gradients required for updating network parameters are calculated with differentiable
programming methods offered by the Julia programming language.

we have that qNN : R3 → R. In particular, note that qNN, just is a potentially non-linear function with a neural
representation. In close analogue to (16) we similarly formulate the neural viscosity as a local quantity:

qnNN,i+1/2 = F
(
θ;∆uni ,ρ

n
i+1/2, c

n
s,i+1/2

)
. (18)

The function F(θ; ·) represents a learnable neural function whose construction is described in more detail in
section 3.

3. Artificial neural networks

ANNs are functions F(θ;x) that map input variables x to output variables y. In this work we used multi-layer
perceptrons, networks that are densely connected and for which each layer’s output successively serves as the
next layer’s input given by the relation

v(ℓ+1) = σ
(
W(ℓ)v(ℓ) + b(ℓ)

)
. (19)

Here v(ℓ) represents the output of the ℓth layer in the network.W(ℓ) is the weight matrix whereW(ℓ)[i, j]
represents the connection from the jth computational node in layer ℓ to the ith node in layer ℓ+ 1. The
components in the vector b(ℓ) represents the bias that shifts the threshold for the activation function σ(·) for
each node in layer ℓ+ 1. The collections {Wℓ} and {bℓ} together are represented concisely by θ.

ANNs are trained by optimizing the parameters θ to minimize a loss function C(θ;x,y) using a
collection of training data {x,y}. The cost function is typically minimized through variants of SGD in which
partial derivatives of C(θ,x,y) are calculated with respect to each parameter in θ. ANNs have been
particularly successful in regression and classification settings. For an introduction to neural networks and
other machine learning topics, the book by Strang [45] and the references within are a good resource. The
computing software Julia and its Flux package [36] offers first class support for training ANNs and calculates
derivatives using AD [31]. The Flux package in Julia was used to train the ANNs in this work. The schematic
overview for the offline and online training of the ANN is shown in figure 4. In the next two sections, we
provide more details for each training step.

3.1. Offline pre-training
The offline training was done for two primary reasons. The first is to understand what is required,
particulary in terms of the neural architecture (number of hidden layers, number of nodes, and activation
functions), for an ANN to reproduce the traditional quadratic-linear AC form, and to test whether small
errors made by the ANN approximation to the existing AV scheme will drastically worsen results. For
example, naive choices for AV can lead to nearly immediate failure of the SGH scheme to run to
completion–it was essential to have a starting point for AV to be confident that the hydrocode could reliably
reproduce solutions before attempting to improve AV. The second motivation is that the quadratic-linear

9

Mach. Learn.: Sci. Technol. 2 (2021) 025015 P Melland et al

Figure 5. Sampling distributions of density, pressure, and∆ velocity used for offline training of ANN.

choice for AV has been studied extensively and has been shown to produce reasonably non-oscillatory
solutions and with minor modifications can be used in more than one dimension [43].

The ANN was trained in a classic regression setting against the surrogate q(·) function given by (16) with
parameters cq = 0.3 and cℓ = 0.3. These parameters were chosen by previous work done in [7] to minimize
L1-error for the density state variable. Additionally, this choice of coefficients corresponded to
near-minimum L1 error for the remaining state variables with reasonably suppressed pre-shock oscillations.
The offline pre-training was done purely against the surrogate q(·) function, independent of the SGH
scheme, and hence is termed offline training.

The surrogate quadratic-linear q(·) function (16) has inputs (ρ,∆u, cs) and maps to a single scalar
output, hence the ANN was structured the same way–to have three inputs whose layers terminated to a single
output node. To generate training data in the offline setting we first had to generate input variables
(ρ,∆u, cs). First values for ρ (density) were sampled uniformly from the interval [0, 1.125]. These values
extend to values of density that are not attained in the Sod shock tube problem, but ensured that ANN would
not be forced to extrapolate for density values not present in offline training when used in the hydrocode.
Next values for p (pressure) were sampled uniformly from the interval [0, 1.1]. While pressure is not a direct
input into the quadratic-linear q(·) function, the values for ρ and p were used together to generate values for
sound speed, cs, using equation (17) for the speed of sound.

Stratified sampling with two sources was used to generate samples for∆u. The first source was a uniform
sample from the interval [−0.9, 0.7] and represented an extension of a plausible range of values∆u could
achieve in the Sod problem. The second source for the∆u sample came from sampling from a normal
distribution with mean 0 and standard deviation 0.01. The normal distribution closely matched the
distribution of values for∆u obtained from a numerical solution to the Sod shock tube problem with AV
given by (16) . Sampling∆u partially from the normal distribution was especially crucial given that in the
solution to the Sod shock tube problem∆u takes on the value zero at a large number of computational cells
and care was required to avoid under sampling at values near zero. The uniform sampling portion of∆u
helped maintain the ANN’s ability to generalize when∆u is not zero (specifically at the shock). Sampling
distributions for density, pressure, and change in velocity are shown in figure 5. Values for training outputs
were obtained by evaluating the surrogate quadratic-linear q(·) function using the randomly generated
training data, (ρ,∆u, cs), as inputs into (16). The space-filling sampling described above improves the
likelihood that the offline-trained ANN can generalize to problems with different density ratios and shock
intensities (such as the Le Blanc test problem [46]).

Overall N = 100 000 data points were generated and split with Ntrain = 80000 points used for training
and Ntest = 20000 points used for validation. In accord with standard ANN training practices values for each
input variable ρ,∆u, and cs were standardized to have mean 0 and standard deviation 1. The training
outputs were transformed by taking the 5th root of the output values, 5

√
q(·). Other transformations

(standardization, log-transformations, and other values for nth roots) were tested for the output data.
Ultimately the 5th root was chosen because this transformation exaggerated differences between zero and
numerical values for q very near zero, but the transformation allowed for a flexibility in the ANN that would
be utilized during the online training of the network.

The ANN was initialized with bias vectors b(ℓ) ≡ 0 and weight matricesW(ℓ) uniformly distributed with
mean zero and small variance. The network had a depth of four hidden layers with each hidden layer having
a width of 64. The activation function for each hidden layer node was the leaky rectified linear unit function

leakyReLU(x) =

{
x, x⩾ 0

0.01x, x< 0
. (20)

10

Mach. Learn.: Sci. Technol. 2 (2021) 025015 P Melland et al

The ANN was trained using the Adam optimization method, a gradient-based method for optimizing
stochastic objective functions [47]. Additionally mini-batch training with batch size |B|= 32 was used
during the offline training. In the mini-batch process a sample (rather than a single point as in classic SGD)
of size |B| is taken from the training data and used to calculate gradients. During the offline training mean
squared error (MSE) was used as a cost function:

Coff(θ) =
1

m

m∑
i=1

(q̂i − qi)
2 (21)

where q̂ represents the output of the ANN. The training process was concluded once the MSE calculated on
the validation set was within 1.0× 10−5. The entire offline training procedure (data generation, model
training, and model saving) took between 1 and 2min on a personal desktop (3.4 GHz processor and 16GB
RAM), yielding a neural AV function that serves as an initial viscosity model for the online training
procedure.

3.2. Online training via differentiable programming
After an ANN that could reliably be used in the SGH scheme (see section 4) was obtained from offline
training, the next step was to replace the surrogate q(·) function with the offline pre-trained ANN in the
hydrocode. The parameters in the ANN were updated by computing a loss function using an exact solution
for velocity as a reference solution. This training is done while implementing the hydrocode and is hence
called online training. It is important to note again that it is a significant advantage to have exact data (which
is possible with the Euler equations) for the online training.

The loss function used in the online training was a linear combination of L1-error and change in total
variation∆TV :

Con(θ) = λ1∆TVu +λ2‖u‖L1 , (22)

where

‖u‖L1 =

∑
i |uref,i − uNN,i|∆xi∑

i |uref,i|∆xi
(23)

TVu =
∑
i

|ui+1 − ui| (24)

∆TVu =
|TVuref −TVuNN |

TVuref

. (25)

Here uref and uNN represent the exact solution for velocity and the numerical solution for velocity using the
ANN as viscosity. Lower L1 errors correspond to solutions with a sharp shock profile, while lower∆TV
errors correspond to solutions with reduced oscillations, thus the loss function in (22) reflects the tradeoff
between oscillation reduction and shock width maintenance. This loss function was used in [41] as an error
function in an SGH with AV problem close to that discussed in this paper.

Since this is a hybrid numerical-neural model, taking the gradient of the loss function with respect to the
ANN parameters requires differentiating through the whole hybrid model. In the physics model the
differentiation is the adjoint and in the neural network it is backpropagation, but in both cases differentiating
through the entire code is required to get the derivatives needed for gradient descent optimization, i.e.
differentiable programming. We use reverse-mode tracing AD in the Flux package [37] in the Julia
programming language [48] to facilitate the differentiation. Julia, a high-level, high-performance scientific
computing language is ideal for writing codes that combine numerical simulations, such as differential
equations solvers, with machine learning [34, 49, 50].

We emphasize that the online training procedure is quite different from the classical regression setting
since we are no longer specifying a functional form for AV. Instead we are optimizing the ANN to minimize a
loss function designed to take on large values for overly oscillatory solutions (∆TV-error) and overly
smeared shock profiles (L1-error). Specifically, the SGH scheme with the ANN as viscosity was ran forward
until t= 0.05 (approximately 50 time steps determined by CFL condition). The loss function (22) was
calculated with λ1 = 0.5091 and λ2 = 0.4909 using the numerical and exact solutions for velocity at this time
point. In general these coefficients introduce additional parameters that may need to be adjusted to a
particular problem. The cost function was calculated locally at computational cells around the shock. Recall

11

Mach. Learn.: Sci. Technol. 2 (2021) 025015 P Melland et al

(a)

200 400 600 800
-3

-2

-1

0

1

2

3

4

(b)

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

(c)

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Figure 6. (a) Standardized global L1 and∆TV errors evaluated at t= 0.2 obtained during online training of ANN. The ANN
obtained at iteration 210 was selected and saved to be used as AV in the SGH scheme. (b) The offline trained ANN (magenta)
evaluated using state variables at t= 0.2 compared to the surrogate q(·) function (green) evaluated at the same time point. (c) The
online trained ANN (red) against the surrogate q(·) function.

that in the Lagrangian frame, the grid cell locations evolve in time (specifically accumulating in areas before
the shock). Hence a shock-width of 0.05 was specified before training and the cost function was calculated at
all cells that lied within this pre-specified distance of the shock. The parameters in the ANN were updated
using AD (still using the capabilities of the Flux package in Julia). We stress that at no point in the online
training is the surrogate q(·) function explicitly used.

Since the loss function was computed locally at early time points in the solution, care was required to
terminate training before the ANN would become overly specialized at the local grid cells and early stopping
time. The goal of this work was to illustrate that modifying the functional form of AV can improve aspects of
the numerical solution; optimizing the online training procedure was not a primary goal. Therefore global L1
and∆TV errors evaluated at a final stopping time of t= 0.2 were used to determine the termination of the
online training procedure; after each training iteration the system was allowed to evolve to the final time
t= 0.2 with the updated ANN and global L1 and∆TV errors were calculated and recorded at these points.
After many training iterations these values were evaluated to decide a proper termination point for the online
training. Figure 6(a) shows the tracking of global errors at the stopping time of t= 0.2 during the online
training. The online procedure for the Sod problem up to training termination lasted on the order of 30 s
(personal desktop 3.4 GHz processor and 16 GB RAM). For problems with more intense shocks, the online
training time would likely increase due to grid-refinement and time-stepping changes.

4. Results

4.1. An offline trained ANN emulates surrogate q in Sod shock tube
The first result of this work was successfully replacing the surrogate quadratic-linear q(·) function with an
offline trained ANN to act as AV in the SGH scheme. This was a critical step toward illustrating that the ANN
could reliably be used as AV in the SGH scheme and produce empirically stable solutions. It was a possibility
that errors from using an ANN to approximate AV could propagate leading to unstable solutions. Figure 7
shows solutions obtained using the quadratic-linear viscosity function given by (16) and solutions obtained
using the offline trained ANN as AV. Observe that in these figures the two numerical solutions are closely
aligned indicating that an ANN is able to replicate solutions obtained using the traditional quadratic-linear
viscosity function. Errors computed against the exact solution are shown in table 1. The percent change in
errors obtained with neural viscosity compared to errors obtained using quadratic-linear viscosity are small.
The L1 error in the three state variables differ by less than 0.5%, and the∆TV errors differ by at most 1.15%.
This indicated that it was possible to use a neural viscosity function in a numerical scheme, which was
essential for the ultimate goal of performing end-to-end training of an ANN embedded in an SGH scheme.
Figure 6(b) compares the functional forms of the quadratic-linear q(·) function and the neural viscosity
evaluated with the final state variables as inputs. The two plots are closely aligned again indicating that the
offline pre-training produced an ANN that can mimic the behavior of the quadratic-linear viscosity
function, and that errors presented by an ANN would not cause early termination of the SGH scheme.

4.2. An online trained ANN reduces pre-shock oscillations in Sod shock tube
The purpose of the online training procedure was to direct an ANN to suppress pre-shock oscillations while
maintaining a sharp shock profile. An implicit goal is maintaining precision across all phases of the solution,
not just improving aspects at the shock. It is important for the ANN to be flexible enough to yield reliable

12

Mach. Learn.: Sci. Technol. 2 (2021) 025015 P Melland et al

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Figure 7. State variables at t= 0.2 solved using SGH scheme with surrogate q(·) function (green) AV against the offline trained
ANN (magenta). A comparison of the global errors associated with two numerical solutions is presented in table 1.

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Figure 8. State variables at t= 0.2 solved using SGH scheme with surrogate q(·) function (green) AV against the online trained
ANN (red). A comparison of the global errors associated with two numerical solutions is presented in table 1.

(a)

0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88
0

0.2

0.4

0.6

0.8

(b)

0.6 0.65 0.7 0.75 0.8 0.85
0.89

0.9

0.91

0.92

0.93

0.94

(c)

0.84 0.86 0.88 0.9 0.92 0.94
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 9. Velocity plots localized about the shock at t= 0.2. The left pane shows the entire shock. The middle pane zooms in on
grid points before the shock. The markers indicate the velocity values at the cell edges of the spatial grid. The right pane focuses
on grid points after the shock.

results at regions away from the shock. Figure 8 illustrates that the online ANN maintains the global
precision observed with the surrogate q(·) function.

Figure 9 focuses on the behavior of the solution localized about the shock illustrating the suppression of
pre-shock oscillations. Figure 9(a) highlights the preservation (and slight improvement) of the shock profile.
Before the shock, the solution obtained using the ANN as AV, uNN (red), lies above (and hence closer to the
exact curve) the solution obtained using the surrogate q(·) function, uQL. After the shock the two curves
remain closely aligned. Figure 9(b) emphasizes the reduction in pre-shock oscillations for uNN compared to
uQL; the solution uNN is nearly monotone across this region.

Despite being trained against an exact solution for velocity, oscillations were also suppressed in the other
state variables. Figures 10(a) and (b) show the suppression of oscillations in density and pressure respectively
by plotting the state variables localized at spatial cells before the shock. The reduction in oscillations for all
state variables is quantified using the change in total variation,∆TV given by (25); the maintenance (and in
fact slight improvement) of the shock profile is quantified using the L1 norm given by (23). Table 1 contains

13

Mach. Learn.: Sci. Technol. 2 (2021) 025015 P Melland et al

Table 1. Global error values for different types of AV using error formulas given in (23)–(25). Percent changes are calculated against
errors given by solutions obtained using the surrogate q(·) function with parameters cq = 0.3, cℓ = 0.3 labeled in the table by (⋆). The
percent changes are calculated according to equation (26). Arrows indicate an increase (up arrow) or decrease (down arrow) in
calculated error. The largest percent reduction in error for each metric is shown in bold.

∥ρ∥L1 ∥p∥L1 ∥u∥L1
AV Error % change from ⋆ Error % change from ⋆ Error % change from ⋆

⋆cq = 0.3, cℓ = 0.3 0.0107 NA 0.0116 NA 0.0282 NA
Offline ANN 0.0107 ↑ 0.02% 0.0116 ↓ 0.10% 0.0283 ↑ 0.33%
Online ANN 0.0105 ↓1.18% 0.0114 ↓1.56% 0.0275 ↓2.50%

∆TVρ ∆TVp ∆TVu

AV Error % change from ⋆ Error % change from ⋆ Error % change from ⋆

⋆cq = 0.3, cℓ = 0.3 0.0619 NA 0.0479 NA 0.0531 NA
Offline ANN 0.0621 ↑ 0.17% 0.0473 ↓ 1.15% 0.0525 ↓ 1.03%
Online ANN 0.0524 ↓15.39% 0.0377 ↓21.29% 0.0396 ↓25.41%

(a)

0.6 0.65 0.7 0.75 0.8 0.85
0.245

0.25

0.255

0.26

0.265

0.27

(b)

0.6 0.65 0.7 0.75 0.8 0.85

0.29

0.295

0.3

0.305

Figure 10. Density and pressure plots localized before the shock at t= 0.2. The left pane shows the density solution before the
shock. The markers indicate the state variable values at the cell centers of the spatial grid. The right pane shows the pressure
solution before the shock.

these values which were computed at t= 0.2 against an exact solution. In order to measure the improvement
of the solutions obtained using online trained neural viscosity compared to the solutions obtained with
quadratic-linear function, the percent change was calculated according to the formula

%change=
errorQL − errorNN

errorQL
× 100. (26)

Equation (26) was used for computing changes in each error measurement, L1 and∆TV, for each of the state
variables and these values are shown in table 1.

5. Summary and discussion

Many numerical methods used in fluid dynamics will produce spurious oscillations near discontinuities and
hence require additional modification, such as AV, to handle these special features. The additional terms and
modifications have the advantage of allowing very general numerical methods to be specialized to particular
problems and applications. However, in many cases the theoretical justifications for fixing the introduced
control parameters to particular values is limited. Therefore, in this work we took a hybrid simulation
approach and replaced a component of a numerical model, containing arbitrary control parameters, with a
data-driven component that can learn to improve its performance with the proper training data.

In the particular context of Lagrangian SGH schemes for modeling flows with shock waves, AV
introduces several options that must be supplied by a user. First, a functional form for AV must be specified.
A given functional form also introduces control parameters that are not constrained by material properties of
the gas or fluid. Therefore, in practice AV is tuned according to empirical success in improving model
performance. However, the performance of the numerical scheme is immediately constrained by the

14

Mach. Learn.: Sci. Technol. 2 (2021) 025015 P Melland et al

functional choice for AV. Using an ANN as a guide, we are able to explore a broader space of functions,
potentially different from fixed AV formulations (linear-quadratic, for example)

Section 4 provides a preliminary proof-of-concept that a novel online training procedure of an ANN
leads to a functional form of AV different from what is explicitly given in (16). Since there is no ‘true’
viscosity data set against which to train the ANN, we trained the ANN through the performance of a given
AV scheme implicitly through its effect on the final solution generated by the hybrid model. To calculate
gradients of the loss function with respect to parameters in the ANN we applied reverse-mode AD to the
entire hybrid simulator using the Flux and Tracker packages of the Julia scientific programming language. We
found that online training over early time steps of a simulation produced a neural AV function capable of
reducing numerical oscillations in long-term hydrodynamic shock simulations.

As mentioned in section 2.2.1, adding larger amounts of viscosity tends to lead to solutions that are
smeared across a wider range of computational cells. Figures 6(b) and (c) offer an interesting counter to this
rule. The online trained ANN (figure 6(c)) adds slightly higher levels of AV across the spatial region
containing the contact discontinuity before the shock, and adds less viscosity at the shock. This is interesting
since in most cases adding less viscosity would lead to more oscillatory solutions. In fact, slightly altering the
functional form of AV across the contact discontinuity helps to decrease oscillations behind the shock
reducing the need for larger values of AV at the shock, helping to maintain a sharp shock profile. This
evidence suggest that the online training of a hybrid model can aid in the exploration for alternative
functional forms for viscosity that can improve the trade off between pre-shock oscillations and smearing of
the shock profile.

When establishing the limitations of novel numerical methods, one is typically concerned with
demonstrating various consistency, stability, and convergence properties. While these properties can be
rigorously analyzed using a number of existing tools, e.g. Taylor series, for more traditional closed form
discretization procedures, the ANN introduces new challenges to assessing model performance. In future
work, one approach that could be used to assess convergence is to test an ANN-AV scheme over a wider suite
of test problems and computationally measure convergence as an empirical starting point. Another possible
approach to assessing the convergence of a hybrid model is to analyze the functional form of the neural
viscosity and search for a closed form function with the same behavior as the neural AV. Such an explicit
function could then be used to assess convergence of the model using traditional techniques. Moreover, a
closed formulation increases the possibility of a functional interpretation of the neural viscosity set in the
context of the underlying physical system, which is typically not possible with a deep ANN.

The Sod shock tube is a standard test problem for numerical schemes in 1D planar geometry. In [6] Noh
formulates the same quadratic-linear viscosity functional for schemes in cylindrical and spherical
geometries. In these geometries the radially symmetric Noh problem [6] is a commonly used test problem.
Since the Sod problem was specifically considered in this work, simulations in non-planar geometries were
not calculated. Given the same formulation of the surrogate quadratic-linear viscosity in cylindrical and
spherical geometries, however, future works should test that the same methodologies presented here can be
applied to schemes for 1D problems in such geometries.

Generalizing the neural AV scheme to higher dimensions will most likely require a reconfiguration of the
neural network input–output structure. A common approach to improving AV schemes in higher
dimensions is to formulate AV as a tensor instead of a scalar [43]. Similarly, a neural AV function should be
adjusted accordingly and thus the input–output structure of the network would need to be changed. For
example, in higher dimensions, we expect that components would need to be added to the AV function to
account for the direction of discontinuity propagation. In a neural network this would correspond to
additional input into the network to provide directional knowledge, and the output of the network would
likewise need to indicate which computational cells need to be augmented with AV.

The theory of computing numerical solutions to PDEs is a rich and widely studied field equipped with
many techniques that can be applied to a wide array of problems. The suggestion in this work is not to
replace existing methods with purely machine learning based methods. Instead, we suggest adding data
driven components to a model, when appropriate (e.g. a neural viscosity function), yielding a hybrid model
that remains primarily based on the physics of the underlying problem. In this work we were able to train an
ANN capable of reducing pre-shock oscillations in a hydrodynamic shock simulation. We believe these
numerical results offer an early proof-of-principle that online differentiable training of hybrid numerical
schemes with novel neural network components can improve certain performance aspects alongside
conventional discretization techniques used in numerical schemes.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

15

Mach. Learn.: Sci. Technol. 2 (2021) 025015 P Melland et al

Acknowledgments

This research was supported in part by an appointment with the National Science Foundation (NSF)
Mathematical Sciences Graduate Internship (MSGI) Program sponsored by the NSF Division of
Mathematical Sciences. This program is administered by the Oak Ridge Institute for Science and Education
(ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and NSF. ORISE
is managed for DOE by ORAU. All opinions expressed in this paper are the authors’ and do not necessarily
reflect the policies and views of NSF, ORAU/ORISE, or DOE. This research was also supported in part by the
National Nuclear Security Administration (NNSA) Advanced Simulation and Computing (ASC) program,
Advanced Technology Development and Mitigation (ATDM) subprogram. This work was performed under
the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos
National Laboratory under Contract No. DE-AC52-06NA25396. The authors gratefully acknowledge the
support of the US Department of Energy National Nuclear Security Administration Advanced Simulation
and Computing Program. We thank the anonymous reviewers for their time and efforts to provide
constructive feedback to initial manuscripts. Their comments helped to improve and clarify points made in
this paper.

ORCID iDs

Pake Melland https://orcid.org/0000-0003-1980-9072
Jason Albright https://orcid.org/0000-0002-4099-8990
Nathan M Urban https://orcid.org/0000-0002-2264-3512

References

[1] LeVeque R J 1992 Numerical Methods for Conservation Laws vol 132 (Berlin: Springer)
[2] Toro E F 2013 Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Berlin: Springer Science

& Business Media)
[3] VonNeumann J and Richtmyer R D 1950 J. Appl. Phys. 21 232–7
[4] Wilkins M L 1980 J. Comput. Phys. 36 281–303
[5] Caramana E, Burton D, Shashkov M J and Whalen P 1998 J. Comput. Phys. 146 227–62
[6] Noh W F 1987 J. Comput. Phys. 72 78–120
[7] Urban N, Shashkov M and Albright J 2019 Machine learning-based optimization strategies for artificial viscosity part IIMachine

Learning for Computational Fluid and Solid Dynamics (Santa Fe, NM, 19–21 February 2019) (available at: https://
permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-19-21431)

[8] Rackauckas C, Ma Y, Martensen J, Warner C, Zubov K, Supekar R, Skinner D and Ramadhan A 2020 (arXiv:2001.04385)
[9] Tompson J, Schlachter K, Sprechmann P and Perlin K 2017 Accelerating Eulerian fluid simulation with convolutional networks

Proc. 34th Int. Conf. on Machine Learning vol 70 (JMLR. org) pp 3424–33 (https://proceedings.mlr.press/v70/tompson17a.html)
[10] Kim B, Azevedo V C, Thuerey N, Kim T, Gross M and Solenthaler B 2019 Computer Graphics Forum 38 59–70
[11] Sirignano J and Spiliopoulos K 2018 J. Comput. Phys. 375 1339–64
[12] Han J, Jentzen A and Weinan E 2018 Proc. Natl Acad. Sci. 115 8505–10
[13] de Bezenac E, Pajot A and Gallinari P 2017 (arXiv:1711.07970)
[14] Zhu Y, Zabaras N, Koutsourelakis P S and Perdikaris P 2019 J. Comput. Phys. 394 56–81
[15] Bar-Sinai Y, Hoyer S, Hickey J and Brenner M P 2019 Proc. Natl Acad. Sci. 116 15344–9
[16] Mishra S 2018 (arXiv:1807.09519)
[17] Maulik R, San O, Rasheed A and Vedula P 2019 J. Fluid Mech. 858 122–44
[18] Mohan A T, Lubbers N, Livescu D and Chertkov M 2020 ICLR 2020 Workshop on Integration of Deep Neural Models and Differential

Equations Embedding hard physical constraints in convolutional neural networks for 3d turbulence (https://openreview.
net/forum?id=IaXBtMNFaa)

[19] Rasp S, Pritchard M S and Gentine P 2018 Proc. Natl Acad. Sci. 115 9684–9
[20] Brenowitz N D and Bretherton C S 2018 Geophys. Res. Lett. 45 6289–98
[21] O’Gorman P A and Dwyer J G 2018 J. Adv. Model. Earth Syst. 10 2548–63
[22] Large W G, McWilliams J C and Doney S C 1994 Rev. Geophys. 32 363–403
[23] Hourdin F et al 2017 Bull. Am. Meteorol. Soc. 98 589–602
[24] Schmidt G A, Bader D, Donner L J, Elsaesser G S, Golaz J C, Hannay C, Molod A, Neale R and Saha S 2017 Geosci. Model Dev.

10 3207
[25] Santner T J, Williams B J, Notz W and Williams B J 2003 The Design and Analysis of Computer Experiments vol 1 (Berlin: Springer)
[26] Pronzato L and Müller W G 2012 Stat. Comput. 22 681–701
[27] Rumelhart D E, Hinton G E and Williams R J 1986 Nature 323 533–6
[28] Hecht-Nielsen R 1992 Theory of the backpropagation neural network Neural Networks for Perception (Amsterdam: Elsevier)

pp 65–93
[29] Abadi M et al 2016 Tensorflow: a system for large-scale machine learning 12th USENIX Symp. on Operating Systems Design and

Implementation (OSDI 16) pp 265–83
[30] Paszke A et al 2019 Pytorch: an imperative style, high-performance deep learning library Advances in Neural Information Processing

Systems 32 eds HWallach, H Larochelle, A Beygelzimer, F d’Alché-Buc, E Fox and R Garnett (Curran Associates, Inc.) pp 8026–37
[31] Baydin A G, Pearlmutter B A, Radul A A and Siskind J M 2018 J. Mach. Learn. Res. 18 1–43 (https://jmlr.org/papers/

v18/17-468.html)

16

https://orcid.org/0000-0003-1980-9072
https://orcid.org/0000-0003-1980-9072
https://orcid.org/0000-0002-4099-8990
https://orcid.org/0000-0002-4099-8990
https://orcid.org/0000-0002-2264-3512
https://orcid.org/0000-0002-2264-3512
https://doi.org/10.1063/1.1699639
https://doi.org/10.1063/1.1699639
https://doi.org/10.1016/0021-9991(80)90161-8
https://doi.org/10.1016/0021-9991(80)90161-8
https://doi.org/10.1006/jcph.1998.6029
https://doi.org/10.1006/jcph.1998.6029
https://doi.org/10.1016/0021-9991(87)90074-X
https://doi.org/10.1016/0021-9991(87)90074-X
https://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-19-21431
https://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-19-21431
https://arxiv.org/abs/arXiv:2001.04385
https://proceedings.mlr.press/v70/tompson17a.html
https://doi.org/https://doi.org/10.1111/cgf.13619
https://doi.org/https://doi.org/10.1111/cgf.13619
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.1073/pnas.1718942115
https://doi.org/10.1073/pnas.1718942115
https://arxiv.org/abs/arXiv:1711.07970
https://doi.org/10.1016/j.jcp.2019.05.024
https://doi.org/10.1016/j.jcp.2019.05.024
https://doi.org/10.1073/pnas.1814058116
https://doi.org/10.1073/pnas.1814058116
https://arxiv.org/abs/arXiv:1807.09519
https://doi.org/10.1017/jfm.2018.770
https://doi.org/10.1017/jfm.2018.770
https://openreview.net/forum?id=IaXBtMNFaa
https://openreview.net/forum?id=IaXBtMNFaa
https://doi.org/10.1073/pnas.1810286115
https://doi.org/10.1073/pnas.1810286115
https://doi.org/10.1029/2018GL078510
https://doi.org/10.1029/2018GL078510
https://doi.org/10.1029/2018MS001351
https://doi.org/10.1029/2018MS001351
https://doi.org/10.1029/94RG01872
https://doi.org/10.1029/94RG01872
https://doi.org/10.1175/BAMS-D-15-00135.1
https://doi.org/10.1175/BAMS-D-15-00135.1
https://doi.org/10.5194/gmd-10-3207-2017
https://doi.org/10.5194/gmd-10-3207-2017
https://doi.org/10.1007/s11222-011-9242-3
https://doi.org/10.1007/s11222-011-9242-3
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/s11222-011-9242-3
https://jmlr.org/papers/v18/17-468.html
https://jmlr.org/papers/v18/17-468.html

Mach. Learn.: Sci. Technol. 2 (2021) 025015 P Melland et al

[32] Horwedel J, Worley B, Oblow E, Pin F and Wright R 1988 Gress (gradient enhanced software system) version 0. 0 user’s manual
Technical Report (Oak Ridge National Laboratory (ORNL))

[33] Kubota K and Iri M 1990 PADRE2, version 1—user’s manual Research memorandum RMI 90–01
[34] Innes M, Edelman A, Fischer K, Rackauckas C, Saba E, Shah V B and Tebbutt W 2019 (arXiv:1907.07587)
[35] Wang F, Decker J, Wu X, Essertel G and Rompf T 2018 Backpropagation with callbacks: foundations for efficient and expressive

differentiable programming Adv. Neural Inform. Process. Syst. 31 10180–91
[36] Innes M 2018 J. Open Source Softw. 3 602
[37] Innes M, Saba E, Fischer K, Gandhi D, Rudilosso M C, Joy N M, Karmali T, Singh A P and Shah V 2018 (arXiv:1811.01457)
[38] Gunzburger M 2000 Flow Turbul. Combust. 65 249–72
[39] Asch M, Bocquet M and Nodet M 2016 Data Assimilation: Methods, Algorithms and Applications (Philadelphia, PA: SIAM)
[40] Sod G A 1977 J. Fluid Mech. 83 785–94
[41] Albright J and Shashkov M 2020 Comput. Fluids 104580
[42] Sod G A 1978 J. Comput. Phys. 27 1–31
[43] Caramana E J, Shashkov M J and Whalen P P 1998 J. Comput. Phys. 144 70–97
[44] Cybenko G 1989Math. Control Signals Syst. 2 303–14
[45] Strang G 2019 Linear Algebra and Learning From Data (Wellesley, MA: Wellesley-Cambridge Press)
[46] Loubére R 2005 Validation test case suite for compressible hydrodynamics computation Technical Report (Los Alamos, NM: Los

Alamos National Laboratory) (available at: http://loubere.free.fr/images/test_suite.PDF)
[47] Kingma D P and Ba J 2014 (arXiv:1412.6980)
[48] Bezanson J, Edelman A, Karpinski S and Shah V B 2017 SIAM Rev. 59 65–98
[49] Rackauckas C, Ma Y, Dixit V, Guo X, Innes M, Revels J, Nyberg J and Ivaturi V 2018 (arXiv:1812.01892)
[50] Rackauckas C, Innes M, Ma Y, Bettencourt J, White L and Dixit V 2019 (arXiv:1902.02376)

17

https://arxiv.org/abs/arXiv:1907.07587
https://doi.org/10.21105/joss.00602
https://doi.org/10.21105/joss.00602
https://arxiv.org/abs/arXiv:1811.01457
https://doi.org/10.1023/A:1011455900396
https://doi.org/10.1023/A:1011455900396
https://doi.org/10.1017/S0022112077001463
https://doi.org/10.1017/S0022112077001463
https://doi.org/10.1016/j.compfluid.2020.104580
https://doi.org/10.1016/0021-9991(78)90023-2
https://doi.org/10.1016/0021-9991(78)90023-2
https://doi.org/10.1006/jcph.1998.5989
https://doi.org/10.1006/jcph.1998.5989
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
http://loubere.free.fr/images/test_suite.PDF
https://arxiv.org/abs/arXiv:1412.6980
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://arxiv.org/abs/arXiv:1812.01892
https://arxiv.org/abs/arXiv:1902.02376

	Differentiable programming for online training of a neural artificial viscosity function within a staggered grid Lagrangian hydrodynamics scheme
	1. Introduction
	1.1. Computational fluid dynamics and machine learning
	1.2. The need for online training of hybrid simulators
	1.3. Differentiable programming for online training of hybrid simulators
	1.4. Outline

	2. Inviscid fluid dynamics
	2.1. The shock tube problem
	2.2. Staggered grid hydrodynamics
	2.2.1. Artificial viscosity
	2.2.2. Generalizing artificial viscosity

	3. Artificial neural networks
	3.1. Offline pre-training
	3.2. Online training via differentiable programming

	4. Results
	4.1. An offline trained ANN emulates surrogate q in Sod shock tube
	4.2. An online trained ANN reduces pre-shock oscillations in Sod shock tube

	5. Summary and discussion
	Acknowledgments
	References

