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'e history of medicine shows that myocardial infarction is one of the significant causes of death in humans. 'e rapid evolution
in autonomous technologies, the rise of computer vision, and edge computing offers intriguing possibilities in healthcare
monitoring systems.'emajormotivation of the work is to improve the survival rate during a cardiac arrest through an automatic
emergency recognition system under ambient intelligence. We present a novel approach to chest pain and fall posture-based vital
sign detection using an intelligence surveillance camera to address the emergency during myocardial infarction. A real-time
embedded solution persuaded from “edge AI” is implemented using the state-of-the-art convolution neural networks: single shot
detector Inception V2, single shot detector MobileNet V2, and Internet of 'ings embedded GPU platform NVIDIA’s Jetson
Nano. 'e deep learning algorithm is implemented for 3000 indoor color image datasets: Nanyang Technological University Red
Blue Green and Depth, NTU RGB+D dataset, and private RMS dataset. 'e research mainly pivots on two key factors in creating
and training a CNN model to detect the vital signs and evaluate its performance metrics. We propose a model, which is cost-
effective and consumes low power for onboard detection of vital signs of myocardial infarction and evaluated the metrics to
achieve a mean average precision of 76.4% and an average recall of 80%.

1. Introduction

One of the prime factors for sudden death worldwide is
ischemic heart disease, and angina pectoris (chest pain) is its
most common symptom [1]. 'e earliest detection infor-
mation related to signs and symptoms of myocardial in-
farction (MI), and immediately calling emergency services
are the main initiative steps needed to prevent the life risks.
From the onset of symptoms of MI, it is crucial to reach the
hospital within the first one hour. In medical history, few
critical factors related to heart attack symptoms have been
explored, such as people with stroke, heart attack history,
diabetes mellitus, and high cholesterol, and high blood
pressure [2]. 'e research study highlights common

symptoms experienced during MI, wherein the chest pain
factor is the highest with 84% and shortness of breath,
neck/back pain, arm pain, dizziness, and sweating ac-
counting for other factors [3]. Chest pain is the evident
clinical marker of myocardial ischemia in the acute phase
of a suspected acute MI [4]. A person encountering early
warnings and experiences more signs and symptoms of MI
has to seek immediate investigation and treatment by the
doctor to avoid life risks. Considering the relationship
between the duration of pain and mortality rate, patients
with prolonged pain duration had the highest mortality
rate [5]. In recent days, computer-based health monitoring
system investigations during cardiac arrest mainly depend
on investigation reports such as electrocardiogram (ECG),
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echocardiogram, creatine kinase blood test, creatine kinase
MB activity andmass concentration, myoglobin, and cardiac
troponin T [6]. 'e critical patient report will be transferred
to a cardiologist to diagnose and provide treatment either
with conservative or surgical management.

A person experiencing substernal chest pain (angina
pectoris) responds by holding his clenched fist over the
sternum, and it is termed Levine’s sign.'e clenched fist sign
or palm sign/Cossio–Levine sign is dominantly found as a
symptom in patients experiencing MI and angina pectoris
[7]. A study conducted on body language of chest pain
patients at the coronary care unit (CCU) suggests that the
majority of respondents had a clenched fist to the center of
the sternum, flat hand to the center of the sternum, and both
flat hands drawn from the center of the chest outwards, and
68% of the participants were considered to be cardiac. 'e
hand movements of chest pain patients have greater im-
portance in a clinical context [8]. In the initial diagnosis of
myocardial ischemia, the patient’s Levine sign is the most
important to medical practitioners [7]. 'e broader area of
chest pain and discomfort corresponds to a greater prospect
of cardiac ischemia or MI [9]. 'e literature survey reports
that the chances of heart attack cases increase with an in-
crease in age in elderly people [10].

In the public health monitoring system, cardiac fall
detection is a major challenge and crucial for addressing the
emergency for improving the survival rate. A robust, reli-
able, secure, and highly accurate automatic fall detection
system can offer medical assistance to older adults and
cardiac patients. From the literature survey, there are various
risk factors highlighted in fall detection approaches that can
be categorized into environmental, physical, and psycho-
logical principles, as shown in Figure 1 [11]. Exposure to
environmental hazards, loss of vitality in the human body,
and psychological factors that might alter a person’s cog-
nition are amongst the predominant factors for fall-related
events [11]. 'e other research survey highlighted the risk
factors of falling and classified them as intrinsic (e.g.,
physical weakness, visual impairment, and loss of con-
sciousness) or extrinsic (e.g., usage of multiple medications
and psychotropic medication) and environmental hazards
(e.g., low lighting conditions and obstacles) [12]. 'e psy-
chological factors associated with elderly cardiac patients,
such as fear of fall (FoF) syndrome and cardiophobia, are
often neglected [13, 14]. 'e prevalence of falls due to
cardiovascular disorders remains largely unknown [15].'is
work helps in assisting and/or monitoring the patient’s
physical and psychological health through a camera vision-
based approach.

In recent times, the conflation of deep learning ap-
proaches, effective Internet of 'ings (IoT) architectures,
and edge computing platforms are exploited for solving real-
time remote monitoring applications in the healthcare
domain. Artificial intelligence (AI) researchers have paid
significant attention to decreasing number of parameters in
the deep neural networks (DNN), thus reducing the com-
putational burden, achieving low latency and memory,
thereby preserving maximum accuracy for edge AI appli-
cations [16].

Several important works have been carried out in the
medical care domain based on edge platforms. A deep
learning and edge-cloud computing framework for voice
disorder detection and classification is developed [17].
Queralta et al. implemented advanced architecture of low
power wide area network (LPWAN) technology along with
IoT and deep learning algorithms to enhance the quality of
remote health monitoring service. 'e effectiveness of this
architecture is exploited by implementing a fall detection
technique using recurrent neural networks (RNN), and the
data processing and compression is performed via the edge-
fog computing platform [18]. 'e authors proposed a
combination of mobile health (mHealth) platform and a
machine learning approach to develop detection and clas-
sification for skin cancer health issues. 'e on-device in-
ference app developed for medical applications intends to
lower the latency, improvises the privacy issue, and saves
bandwidth [19].

Recently researchers have developed various kinds of
object detection algorithms in the computer vision domain
with real-time solutions implemented using embedded
platforms such as Raspberry Pi 4, Nvidia Jetson TX1, TX2,
Nano, and Jetson AGX Xavier. Considering DNN-based
computer vision tasks, specific hardware design concerns
about energy conservation [20]. Mazzia et al. proposed a
novel approach for apple detection with trained dataset
apple imaged using modified You Only Look Once (YOLO)
v3—a tiny algorithm with embedded platforms: NVIDIA’s
Jetson Nano, Jetson AGX Xavier, and Raspberry Pi 3. 'e
performancemetrics have been evaluated for apple detection
for real-time positions with various background factors, and
the study emphasized that the technique could be employed
on uncrewed ground vehicles for detection with minimal
power consumption [21]. Barba-Guaman et al. explained the
reliable and more accurate measurement technique for
pedestrian and vehicle detection with three pedestrian
metrics such as accuracy, processing time, and recall under
various environmental conditions with NVIDIA Jetson
hardware through a convolution neural network algorithm
[22]. Partel et al. interestingly implemented a weed detection
system for an intelligent plant sprayer system. A deep
learning algorithmic approach was developed to generate
weed maps to identify the unwanted weeds. A performance
analysis was performed by using two embedded GPUs
NVIDIA GTX 1070 Ti and NVIDIA Jetson TX2 [23].
Motivated from this survey, the authors utilize a low cost and
high computing facility of the heterogeneous central pro-
cessing unit (CPU) +GPU SoC system to implement high-
quality CNNs, namely, single shot detector (SSD)MobileNet
V2 and SSD Inception V2 for our application. In our present
work, effort was made to develop a chest pain posture-based
human fall model on NVIDIA Jetson Nano development
board to detect the vital signs during MI.

'e researchers from industries and academia have
mainly focused on improvising the performance of CNNs in
object detection networks by incorporating new architec-
tural design concepts and enhancing the existing algorithmic
approaches. CNN-based structures in object identification
methods are mainly categorized into two types: (i) one-stage
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learning- and (ii) two-stage learning-based classification
schemes. 'e single-stage method uses a simple regression
approach and adopts a full-convolution architecture for
object predictions. 'e main focus in one-stage training
method is to produce outputs by classifying the class in-
formation and localization of the objects in an input image.
Some of the one-stage representation models are SSD,
YOLO, squeezeDet, and retinaNet. In a two-level learning
method, the predictions are performed at two levels. First,
the network proposes a selective search and generates region
of interests, wherein the generated regions are sparse.
Second, region proposals produced are sent for object
classification. Some examples of two-stage networks are
region-based convolution neural network (R-CNN), fast
RCNN, faster R-CNN, recurrent fully convolution network
(R-FCN), and mask RCNN. 'e accuracy of the bounding
box regression of the two-stage model is much superior to
the one-stage model. However, owing to its complicated
architecture, training time is much higher [24]. 'e design
parameter exploration method increases the energy effec-
tiveness of CNN-based object detection solutions on mobile
systems. For example, we can adjust the hyperparameters of
the used CNN model and sacrifice accuracy for speed up
using dimension reduction techniques and other input level
approximation methods. It helps to create a massive space of
design parameters for the target CNN-based object detection
framework. With this sufficiently large design space, we can
evaluate the accuracy and power consumption of different
implementations and search for an appropriate design point
that yields the highest score measured in mAP/WH [25].

'is paper extends our previous work on the nonin-
vasive technique for real-time myocardial infarction de-
tection using faster R-CNN [26]. 'e disadvantage of the
faster-RCNN model is its complex deep learning architec-
ture to deploy on the existing edge embedded devices. To
implement our AI vital signs of the MI object detection
model on embedded edge devices in real time, certain
conditions are required, e.g., high accuracy, fast

computation time, small model size, and efficient energy
consumption. In this present work, we adopt state-of-the-art
CNN lightweight architectures, SSD Inception V2 and
MobileNet SSD V2, a highly efficient, memory-efficient
network for low-powered GPU devices. Our work exploits
transfer learning techniques using the state-of-the-art
lightweight pretrained neural networks such as ConvNets
SSDMobileNet V2 and SSD Inception V2.'ese lightweight
CNN architectures can predict relatively faster than other
algorithms due to their competitive performance by re-
ducing the computational complexity and ease of imple-
mentation for enhanced performance on a low power
embedded edge device. 'e main aim of the work is to
classify and identify the fall states, considering the vital signs
during an emergency of heart attacks such as chest pain,
Levine’s sign, partial fall, and complete fall posture.

1.1. Motivation. Motivated by the stupendous success of
deep learning, research organizations are investigating ap-
plications related to biomedical image and video analysis.
Despite the rapid advancements in low power edge devices,
minimal works are carried out in the healthcare segment
using artificial intelligence and low-powered GPUs, and less
importance is provided in the related research works to find
out the vital signs of MI. 'ere is a vast scope for exploring
the opportunities in noninvasive detection and predicting
cardiovascular diseases and signs of a heart attack.

1.2. Contributions. 'e main contributions of this study are
summarized as follows:

(i) Create a private RMS synthetic dataset as vital signs
of MI with expert annotation. 'e dataset produced
is of a benchmark quality, which would benefit
finding better MI pain elicitation methods.

(ii) Identify, design, and implement a lightweight CNN
approach for an intelligent video surveillance
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Figure 1: Human falling factors.
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system for MI fall events to achieve maximum
accuracy with minimum complexity. 'e neural
network performance developed is analyzed with
two datasets for the performance metrics such as
mean average precision, average recall, F1 score, and
losses.

(iii) We propose a computer vision paradigm technique
based on object detection ConvNets: SSD Mobile-
Net V2 and SSD Inception V2 pretrained networks
for the emergency analysis during cardiac arrest.

(iv) We develop a novel vital sign MI neural network
model characterized by Levine’s sign and fall
identification implemented in a real-time embedded
environment using Jetson Nano, and its run time
performance is evaluated.

'e remainder of the paper is presented as follows.
Section 2 discusses the research background and related
work. Section 3 explains the proposed methodology along
with the dataset utilized and hardware description. Section 4
illustrates experimental results along with detailed discus-
sion. Section 5 draws a conclusion and future works.

2. Related Work

'is section provides basic information on various human
fall detection approaches and edge-based AI applications in
recent years.

Recently, many researchers have put much effort to
develop an accurate and efficient fall detection system with
major safety factors in protecting the elderly people. Here,
fall detection system classification has been discussed to
detect fall incidents among elderly people based on several
factors such as inertia-based, context-based, and radio fre-
quency- (RF-) based systems as shown in Figure 2 [27].
Table 1 presents the summary of fall detection techniques
organized with the following criteria: datasets utilized, the
number of subjects considered as samples, and sensor
modalities and algorithms carried out during their work.

2.1. Wearable Device-Based Approaches. A fall detection-
based device should adopt robustness and high reliability for
real-time scenarios. Wearable technology relies on embed-
ded sensors that detect, analyze, and transmit information
for monitoring human activities. To address the issue of
human-based fall approaches, several innovative research
works have been carried out involving wearable devices with
inertial sensors such as accelerometers, a fusion of accel-
erometer and posture sensors, triaxial accelerometer, gy-
roscope, etc.

One of the challenging problems of the wearable-based
fall approach is to design a low power, highly accurate
detector for both indoor and outdoor environments. 'e
authors designed a low computational cost wearable fall
detector based on a two-level support vector machine and an
online feature extraction method using a 3-axial acceler-
ometer. 'e machine learning-based system works with
multiple sampling frequencies with best accuracy/

complexity tradeoff [28]. A sole smart tracker was designed
using the concept of differential acceleration and time
threshold based on low energy Bluetooth communication
[29]. A fall-detection ensemble decision tree (FEDT) algo-
rithm was proposed by Wu et al. for reliable fall detection in
practical scenario utilizing mobile cloud computing re-
sources [30]. Huang et al. implemented a novel idea of
training free-fall recognition-based hidden Markov model
(HMM) named GFall based on geophones. 'e model de-
veloped intended to reduce the false alarm rate using a
reconfirmation mechanism called energy of arrival (EoA)
positioning for detecting human fall [31]. Tian et al. in-
troduced Aryokee, and frequency-modulated continuous
wave radar- (FMCW-) based signal to overcome the limi-
tations of other wearable fall-based approaches. 'e work
tries to address certain practical challenges such as tackling
complex falls and sudden nonfall movements, detect falls in
other motions, and generalization to the environment and
people [32]. Wang et al. designed a device for free-fall de-
tection through a combination of WiFall, wireless network,
and ML approaches such as SVM and Random Forest. 'e
system leverages channel state information (CSI) as the
criterion uses temporal stability and frequency diversity for
human activity and fall detection [33]. 'e authors pre-
sented a novel compression sensing technique and devised a
shimmer device for fall and human activity detection mainly
to reduce energy consumption. 'e method explores the
advantage of combining two sensors: accelerometer and
gyroscope and incorporates compression sensing capability,
and final classification is performed using theML algorithms
such as ensemble classifier (EC), SVM, decision tree (DT),
and k-nearest neighbor (k-NN) [34]. A fall-based remote
healthcare monitoring was designed by employing IoT-ar-
chitecture-based systems, LPWAN technology, and RNN
deep learning algorithm to increase the effectiveness in
detection and classification [35]. 'ere are major drawbacks
associated with wearable devices such as generation of more
false alarms, devices getting disconnected easily, sensitivity
to external factors, person forgetting to wear, and incon-
venience of wearing it all day long, which makes the system
inconsistent with providing highly accurate automatic fall
detection.

2.2. Camera- (Vision-) Based Approaches. Vision-based
surveillance systems overcome the drawbacks of wearable
fall approaches to impart practical and complex frameworks.
Han et al. uniquely advocated a two-stream approach to
process video data for human fall detection and imple-
mented it using a lightweight CNN VGG network suitable
for deploying onmobile phones [36]. Kong et al. put forward
computer vision-based fall identification for a single and
multicamera video surveillance system. An effective stream
CNN approach is presented, wherein motion images are fed
for silhouette feature extraction in the first two streams and
dynamic images with temporal information fed to the third
stream [37]. 'e authors concentrated on the dynamic and
complex outdoor environment for solving universal human
detection and fall. A Rao-Blackwellized particle filtering is
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utilized for feature extraction from RGB depth images [38].
A deep learning technique of long short-term memory
(LSTM) feed-forward neural network for human fall de-
tection is presented using a transfer learning approach and
outperformed existing works based on hand-crafted features
[39]. A privacy-preserving fall method was proposed,
wherein the Kinect sensor 3D skeleton image input was
utilized to train the SVM classifier. 'e method achieved a
reduction in the number of parameters compared to the
other deep learning approaches with lower time costs [40].
'e authors adopt an approach of vision-based activity
monitoring with a wearable camera worn by the subject
compared to a static camera installed at fixed locations. An
improved variant of the histograms of oriented gradients
(HOG) is implemented along with gradient local binary

patterns (GLBP); an adequate threshold for fall prediction is
estimated by Ali–Silvey distance measure [41]. 'rough
extensive literature survey review, it was found that very few
works have been carried out based on the noninvasive heart
attack detection from color images. Rojas-Albarracı́n et al.
proposed a heart attack detection approach from 1500 RGB
color images using a convolutional neural network [42]. As
examined from the literature survey, deep learning methods
based on advanced convolution networks are more pre-
dominantly applied for classification and localization. CNN
acts as a backbone in object detection prediction networks
by automatically learning salient features. Deep learning
techniques use automatic feature extraction to provide more
accurate and efficient solutions to tackle the real-time
problems in the computer vision domain.

Fall detection

(a) Inertial sensor(s)- based

(b) Context based

(c) RF - based

Wearable/smartphone:
accelerometer/gyroscope/magnetometer/

barometer/surface electromyography

Vision:
camera/depth camera/kinect/thermal

environmental-based:
vibration/infrared/acoustic/sound 

sensor/pressure/PIR motion

Doppler/radar/WiFi/ETS

(d) Inertial sensor(s)- based

Same sensor fusion:
accelerometer/accelerometer + gyroscope

hybrid sensors fusion:
accelerometer + camera/

aceelerometer + microphone

Figure 2: Fall-based methods.

Table 1: Fall detection techniques.

Author Datasets No. of subjects (age) Sensor Algorithms
Saleh and Jeannès [28] Simulated 23 (19–30), 15 (60–75) Accelerometer (waist) SVM
Zitouni et al. [29] Simulated 6 (N/A) Accelerometer (sole) 'reshold

Wu et al. [30] Public
(simulated) 42 (N/A), 36 (N/A) Accelerometer (chest and thigh) Decision tree

Huang et al. [31] Simulated 12 (19–29) Vibration HMM
Tian et al. [32] Simulated 140 (N/A) FMCW radio CNN
Wang et al. [33] Simulated N/A WiFi SVM, Random Forests
Kerdjidj et al. [34] Simulated 17 (N/A) Accelerometer, gyroscope Compressive sensing

Queralta et al. [35] Public
(simulated) 57 (20–47) Accelerometer, gyroscope,

magnetometer LTSM

Han et al. [36] Simulated N/A Web camera CNN
Kong et al. [37] Public Public Camera (surveillance) CNN

Ko et al. [38] Simulated N/A Camera (smartphone) Rao-Blackwellized
particle filtering

Shojaei-Hashemi et al. [39] Public
(simulated) 40 (10–15) Kinect LSTM

Min et al. [40] Public
(simulated) 4 (N/A), 11 (22–39) Kinect SVM

Ozcan et al. [41] Simulated 10 (24–31) Web camera Relative-entropy-
based
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'e most popularly used human fall-based publically
available datasets have been summarized in Table 2. In-
formation consists of a number of subjects, the age range of
participants, the total number of samples, and sensors and
their positions in the dataset. Scenario of the data collection
zone has been summarized [43].

'e sophisticated deep learning-based architectures
require heavy computational resources for implementa-
tion. Deep learning models can be deployed in centralized
cloud computing platforms, which offer significant options
for high performance computation. However, some certain
challenges and constraints make ML data services between
devices and cloud environments impractical such as pri-
vacy, financial overheads, latency factor, and energy that
affects the performance of the system. Some of these
problems can be majorly resolved through edge computing,
commonly known as “edge AI” in any computing field
whose performance is evaluated locally obtained data from
any sensing devices or database. Barba-Guaman imple-
mented a regression approach through YOLO network
targeting classification and localization in object identifi-
cation. Four different models are deployed on single-board
computers using deep learning algorithms for object
identifications, specifically SSD MobileNet V1, SSD
MobileNet V2, Penet, and Multiped, and performance
comparisons were carried out [22]. In real-world scenario
applications such as drones, autonomous driving, and
robotics, there are certain constraints associated, including
computational resources, to pursue high accuracy from a
limited computational cost. 'e state-of-the-art computer
vision algorithms these years are applied to robotic ap-
plications, which are able to achieve better metrics per-
formance such as recognition rate and detection accuracy.
'e authors Gu highlighted two concepts for nonlinear
models to improve the recognition rate and path planning
of robotic performance. In tennis ball collection robot
using deep learning algorithms, two important tasks were
performed: (i) pointer network model to resolve travelling
salesman problem as path planning and (ii) YOLO model
for real-time object detection. 'ese two concepts were
deployed on the NVIDIA Jetson TX1 board for perfor-
mance evaluation in the optimal path finding in tennis ball
[44]. Authors in [45] demonstrated the usage of the
YOLOv2 algorithm to develop unmanned aerial vehicle
(UAV) utilizing NVIDIA Jetson TX2 for emergency
analysis. 'e author achieved an optimal solution in object
detection configurations with parametric resolved using
mathematical equations. 'e experimental analysis is
evaluated for detection accuracy, speed of detectors using
CPUmultiscale aggregated channel feature (ACF) detector,
and YOLOv2. YOLOv2 shows better performance than
ACF in evaluating the performance metrics such as frame
rates and detection accuracy.

3. Proposed Methodology

3.1. Overview of the Proposed Model. In this proposed work,
two state-of-the-art convolutional blocks are combined as a
single lightweight advanced architecture to implement an

object detection task into a computationally intensive GPU
embedded device.

3.1.1. Single Shot Detector (SSD). 'e single shot multibox
detector (SSD) architectural model adopts feed-forward
convolutional network to achieve exemplary performance in
object detection. 'e network efficiently performs locali-
zation and classification of objects in a single forward step.
'e entire SSD model consists of mainly two segments: the
base network, which performs high-quality image feature
extraction and the SSD, which evaluates the classification
result. In the case of the MobileNetV2 SSD [46] network
shown in Figure 3, MobileNetV2 extracts the image features
and subsequent convolution layers of SSD perform the
classification task. SSD inherits the concept of anchor box
strategy and feature pyramid structure from the faster
RCNN algorithm to generate default boxes of various aspect
ratios and scales followed by a nonmaximum suppression
technique to produce the final detections. 'e performance
of a single shot multibox detector (SSD) is measured by
scaling down both the model size and the complexity using
multiple feature maps in a network to enhance the metrics
speed and removing the proposed regions to predict large
objects through deeper layers and smaller ones with shallow
layers in applications such as mobile and embedded devices
[47].

Every prediction of the object in an image originates
from a concept of boundary box in SSD. Feature maps of
different resolutions are applied to the preprocessed image
in a convolutional manner to create overlapped bounding
boxes. Several multiresolution boxes called default boxes of
different scales and sizes are generated relative to the input
image. In every selected feature map, there are f frames that
contrast in size and width-to-height proportion. 'e SSD
model manually defines a collection of different aspect ratios
for the default boxes and is denoted as
ar ∈ 1, 2, 3, (1/2), (1/3){ }. 'e dimensions of width and
height for each default box can be computed with the
formula (wa

k � sk

��
ar

√
), (ha

k � sk

��
ar

√
), respectively. Score

values are evaluated for every box, and the highest score is
selected finally as a class for the bounded box. 'e scale of
every default boxes for every feature can be evaluated using
the following equation:

Sk � Smin +
Smax − Smin

m − 1
(f − 1), (f ∈ [1, m]), (1)

where m is the total number of feature maps and Smin Smax
are the lowest and highest scaling factors to be set,
respectively.

3.2. 0e Proposed Method. Figure 4 shows the methodology
of the proposed work. 'e entire work is divided into two
stages as follows: the training stage and the detection stage.
'e steps for both stages are structured below.

'e methodology includes three main stages: (i) input
stage, (ii) training stage, and (iii) detection or output
stage. 'e input stage incorporates raw input images from
two datasets: custom synthetic dataset (RMS) and public
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benchmark dataset (NTU RGB +D). Subsequently, the
preprocessing technique is carried out to downsize the
images for improving the training speed and to avoid
overfitting problems. 'e region of interest (RoI) (chest
pain posture and partial and complete fall postures) of
every image is marked using the Labellmg software.
During the training stage, the custom dataset is trained
using the COCO pretrained (TensorFlow Zoo) CNN
models, namely, SSD Inception V2 and SSD MobileNet
V2. 'e training of the CNN model is performed on the
workstation, and the model has been deployed on the
Jetson hardware platform. During the final detection
stage, real-time detection is carried out on Jetson Nano
board by connecting a single camera, and a trained CNN
model is used to detect the vital sign postures of MI as
shown in Figure 5.

3.3. Dataset Collection and Preprocessing. During deep
learning algorithm implementation, the input dataset quality
and the total number of images play a significant role in the
final performance of the network. A benchmark standard is
followed while collecting data samples from two different
sources and classified as follows.

3.3.1. Action Recognition Dataset (NTU RGB+D). 'e
benchmark dataset NTU RGB+D [48] contains about
56,000 video samples and 4 million frames with 60 action
classes. Shahroudy et al. highlighted the limitations of most
of the currently available RGB+D-based action recognition
benchmarks, specifically clear distinction of class labels, lack
of training samples, variety of subjects, and proper place-
ment of cameras. Henceforth, the NTU RGB+D database

Table 2: Human fall-based open datasets.

Dataset/year Sensors Number of subjects (age) Total samples Position of sensing points Scenario
UP-Fall (2019) A, C, E, L, IR, G 17 (18–24) 561 H, F, N, Wa, Wr, An Lab
SisFall (2017) A, G 38 (19–75) 4505 Wa Gym, hall
UniMiB SHAR (2017) A 30 (18–60) 7013 T N/A
NTU (2016) K 40 (10–35) 56000 Ce Lab
UMA Fall (2016) A, G, M 17 (18–35) 531 An, Ch, T, Wa, Wr Home
MobiAct (2016) A, G,O 57 (22–47) 2526 T Gym, hall
MobiFall (2013) A, G, O 24 (22–47) 630 T Gym, hall
Note. N/A: not appropriately defined; C: RGB camera; A: accelerometer; G: gyroscope; O: orientation measurements; K: Kinect sensor; M: magnetometer; IR:
infrared sensor; L: luminosity sensor; E: electroencephalography (EEG) headset; Ce: ceiling; T: thigh (pocket); Wa: waist; Wr: wrist; An: ankle; Ch: chest; H:
head; N: neck; F: floor.

Training data MobileNet V2 Single shot multiBox detector (SSD)
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has tried to overcome the limitations. Every frame is cap-
tured by a highly variant camera setting located at horizontal
angles −45, 0, +45 fixed at the same height. 'e video frames
were captured with three cameras simultaneously. In RGB
videos, every frame has been captured with a pixel size of
1920×1080. 'e dataset consists of three categories: (i)
mutual actions, (ii) medical conditions, and (iii) daily
routine actions. 'e present work incorporates the medical
condition action category 3D RGB images of chest pain and
falling down classes as A45 and A43, respectively, shown in
Figure 5.

3.3.2. Private Dataset: RMS. A self-made dataset RMS
consists of 3D depth RGB images captured using a closed-
circuit television CCTV and OnePlus five smartphone
camera by simulating the real-life heart attack chest pain and
fall scenarios indoors. 'e dataset encloses images and
videos captured under different chest pain and fall scenarios,
such as fall from standing position, sitting on chair posture,
walking, sitting on bed position, considering the routine
human activities. 'e dataset consists of 1500 images of
resolution 4608× 3456 captured under different lighting
conditions and recording angles. Figure 6 shows the RGB
images of our private RMS dataset. Table 3 highlights the
description of the dataset used in our work.

As a preprocessing technique, the images obtained from
video frames are scaled down in size to reduce the com-
putational burden. 'rough the scaling process, the pixel
width and height of the images were scaled down to
1067×800 pixels to avoid the quality of original image
degradation. 'e images from both datasets combined were

randomly split as train and test set in a ratio of 1 : 0.3. 'e
annotation procedure is performed using the Labellmg tool,
wherein the ROI of images are selected as shown in Figure 7.
'e annotation technique is employed for the manual la-
belling of every training image prior to the training process,
and the counterpart XML file format for target box location
was generated. In this work, the images are classified into
three main classes: (i) chest pain posture, (ii) partial fall, and
(iii) complete fall.

3.4. Hardware Description. 'e present research work in-
cludes the concept of edge AI where signal acquisition, the
processing, is performed locally on the embedded platform
during real-time. 'e training process is performed on a
dedicated workstation since the deep learning model
training with larger dataset demands high computational
power. Later the trained model is deployed on the target
hardware, Nvidia Jetson Nano, for the inference process.

State-of-the-art neural network architectures applied for
performing specialized computations require parallelized
computing graphical processing unit (GPU). 'e parallel
combination of the computational processing unit (CPU)
and GPU is utilized for real world complex applications like
object detection to achieve high throughput, accuracy, high
bandwidth, etc. To achieve high-performance gaming and
high end graphics, applications rendering NVIDIA Cor-
poration developed with added techniques a new computed
device architecture and cuda DNN library to enrich system
performance. Each one of cuda cores or stream processors
acts as subunits of GPUs, which performs the tasks in
parallel and independently to accelerate the system

(a) (b) (c)

(d) (e) (f )

Figure 5: Levine’s pose, fall posture images from the NTU RGB+D dataset. (a) Levine’s sign standing pose. (b) Partial fall pose. (c) Levine’s
sign sitting pose. (d) Partial fall pose. (e) Partial fall pose. (f ) Levine’s sign standing pose.
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performance. 'e salient features of NVIDIA Jetson Nano
are lightweight, low power consumption, and perfectly
suited for graphical applications. In general, algorithmic
approaches implemented using deep learning techniques
to train large data will increase the computational cost and
memory bandwidth. To achieve this low cost, a powerful
accelerating hardware need to be incorporated; one such
hardware device is Jetson Nano NVIDIA. 'e Jetson
device is preconfigured with 2 GB reserved swap memory
and 4 GB total RAM memory. We have utilized the entire
swap memory for executing the object detection code to
avoid out of memory issue. Figure 8(a) shows the Jetson
Nano device [49], and Figure 8(b) shows system
interfacing.

3.5. Training. Model training is an automatic technique of
parameter fitting in the deep learning network. For efficient
training of the proposed network, the CNNs SSD Inception
V2 and SSD MobileNet V2 used the pretrained weights as
the initialization from the COCO dataset [50]. 'e pre-
trained networks are being downloaded from the official
model Zoo-TensorFlow. Training a complex DNN archi-
tecture for a large dataset demands high performance
computer system. 'e training of heavyweight DNNs on a
powerful graphical processing unit (GPU) improves the
performance and also reduces the training time. In this
present research work, we used a computer system with a
CPU: Intel(R) core(TM) i7-7700 CPU @3.60GHz, graphics
card: Intel R HD Graphics 630, and 12GB DDR4 RAM. A

(a) (b) (c)

(d) (e) (f)

Figure 6: Levine’s sign, fall posture images from the private RMS dataset. (a) Levine’s sign standing pose. (b) Complete fall pose at office.
(c) Complete fall pose at corridor. (d) Chest pain standing pose. (e) Levine’s sign sitting pose. (f ) Levine’s sign standing pose.

Table 3: Complete dataset consisting of chest pain posture, partial fall, and complete fall.

Dataset Scenario Number of images Resolution after preprocessing
NTU RGB+D Lab 1500 1240× 600
Custom RMS Home, office, lab 1500 1067× 800

(a) (b) (c)

Figure 7: Region of interest selection for different postures.
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dedicated high-performing GPU can be used for training the
computationally expensive deep learning models. 'e object
detection dataset consists of three main posture classes: (i)
Levine’s sign, (ii) partial fall, (iii) complete fall; the total data
consist of 3000 training images and 500 test images. 'e
gradient descent optimization function is used to optimize
the loss parameter, while the learning rate is set as 0.004 and
the batch size as 24. 'e training took on average one
hundred hours for SSD Inception V2 using the TensorFlow
framework. 'e main termination criteria of training con-
sidered was theminimum loss function andmaximummean
average precision. After training the deep learning model, it
is deployed to the Jetson Nano Embedded platform.
Figure 8(b) shows the Jetson Nano setup along with the
camera for the real-time performance evaluation of the
model.

3.6. Performance Evaluation Metrics. COCO evaluation
object detection metrics was used to evaluate our CNN
model. Bifurcating effectively the various problems of chest
pain sign detection and fall detection is a major task in this
work. 'erefore, the SSD Inception/MobileNet models are
incorporated to achieve the detection performance accu-
rately. In this performance evaluation, the key factors are
considered as average precision, average recall, F1 score,
losses, and frames per second.

3.6.1. Confusion Matrix (CM). It is applied to outline the
accomplishment of a classification model:

(a) True positives (TP) indicate number of both true
cases for classifier prediction and the correctness of
the class to point out the ground-truth bounding box

(b) False positives (FP) (type I error) indicate the count
cases for true classifier prediction, and the false class
in correction leads to improper object detection

(c) False negatives (FN) (type II error) indicate the
count cases for false classifier prediction, and the true
class in correction leads to improper object detection

(d) True negatives (TN): indicate number of both false
cases for classifier prediction and correctness of the
class to point out the ground-truth bounding box.

It is observed from the literature survey that the true-
negative result in object detection provide only marginal
information based on a number of bounding boxes in the
video analysis. Figure 9 indicates the confusion matrix.

3.6.2. Intersection over Union (IoU). It is a measurement of
the overlapping area using two bounding boxes: ground
truth box Bp and predicted box Bgt.

Finally, IoU can be used to measure the possibility of TP
and/or TN cases in the detection process. IoU is defined as
the ratio of an intersection area vs overlapped area of both
bounding boxes (predicted and ground truth) as depicted in
Figure 10. 'e IoU is measured as follows:

IOU �
Area Bp ∩Bgt􏼐 􏼑

Area Bp ∪Bgt􏼐 􏼑
. (2)

IoU threshold provides a metric to estimate the level of
intersection between the predicted bounding box and
ground truth, which in turn helps in estimating TP, FP, TN,
and FN cases. For example, a value of 0.75 IoU threshold
means that the intersection of both the bounding box is
above 0.75%. While the case is considered true positive if the
threshold of 0.75 is exceeded, else marked as FP. Depending
upon the object detection application, the threshold value is
set for IoU inaccurate decision making of TP and FP. IoU
with the defined threshold will be able to show the per-
fectness of overlapped bounding box areas.

3.6.3. Precision (P). Precision (P) is the accurate mea-
surement of positive predictions. It is estimated that, with
the ratio of true positives to the sum total of the positive
predictions, the total positive predicted values are obtained.
It is the similarity indexing factor of the machine learning
network that evaluates the defined relevant objects. 'is
metric is estimated as follows:

P �
TP

TP + FP
�

TP
total number of ground truths

. (3)

3.6.4. Recall (R). Recall (R) is the ratio of a number of true-
positive cases detected against the sum of true-positive and
false-negative predictions. It indicates all relevant ground

(a) (b)

Figure 8: (a) Jetson Nano and (b) Jetson NANO board configuration.
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truth bounding boxes of a model. Recall predicts the true-
positive rate or sensitivity calculated by the ratio of true-
positive values and the total of true positives and false
negatives. Recall is one of the performance evaluation
metrics of object detection model to determine all real-
izable ground-truth bounding boxes. Recall is measured
as follows:

R �
TP

TP + FN
�

TP
number of predictions

. (4)

3.6.5. Average Precision (AP). 'e average precision (AP) is
the mean value of precision reference to defined recalls (j). A
given set of N images and stationary values of each IOU
helps in evaluating the mean of AP in the detection process.
'e metric AP is estimated as follows:

AP �
1
N

􏽘

N

i�1

1
M

􏽘

M

j�1
Precisioni Recallsj􏼐 􏼑. (5)

Here, Precisioni is a function of Recallsj. 'is precision
metric performs a major role in the object detection model
with the prediction score value of each object to highlight the
confidence level.

3.6.6. F1-Score. 'e F1-score is expressed by a real integer
that highlights the accomplishment rate and is expressed by
a combination of two quantitative parameters: precision and
recall rate.'ese twometrics plays a major role in estimating
F1 score of the framework, and F1 score is calculated as
follows:

F1 − score � 2∗
precision∗ recall
precision + recall

. (6)

3.6.7. Losses. 'e overall loss is split into two main losses:
(i) localization loss and (ii) confidence loss. 'e locali-
zation loss gives an estimate of the mismatch between the
final predicted bounding box and the ground truth box.
'e SSD model mainly considers the predictions from
positive matches, which are closer to ground truth boxes,
thereby ignoring the negative matches. 'e confidence
loss is a loss value while performing the class prediction. It
is a measure of the confidence of a network while esti-
mating the objectness of the computed bounding box. 'e
total loss factor of the SSD network can be evaluated
from (7).

Let x
p
ij � {1, 0}; x

p
ij is a measure used for comparison of

the ith− default box to the jth− ground truth box of category
P. In this matching plan of action, if 􏽐ix

p
ij ≥ 1, the overall

loss function L(x, c, l, g) is expressed in terms of the
weighted sum of the localization (loc) and the confidence
loss (conf ),

L(x, c, l, g) �
1
N

Lconf(x, c) + ∝Lloc(x, l, g)􏼂 􏼃, (7)

whereN is the number of matched default boxes. IfN� 0, we
set the loss to 0. 'e localization loss is a smooth L1 loss
between the predicted box (l) and the ground truth box (g)
parameters. We regress to offsets for the center (Cx, Cy) of
the default bounding box (d) and for its width (w) and height
(h),

Lloc(x, l, g) � 􏽘
N

i∈Posm ∈ Cx,Cy,w,h􏼈 􏼉

􏽘

​
x

k
ijsmoothL1

l
m
i − g

m
j􏼐 􏼑,

(8)

where

g
cx
j �

g
cx
j − d

cx
i􏼐 􏼑

d
w
i

,

g
cy

j �
g

cy

j − d
cy

i􏼐 􏼑

d
h
i

,

(9)

g
w
j � log

g
w
j

d
w
i

􏼠 􏼡,

g
h
j � log

g
h
j

d
h
i

⎛⎝ ⎞⎠.

(10)

'e confidence loss is the softmax loss over multiple
class confidences (c),

IoU =
Area of overlap

Detection box

Ground truth box

Detection box

Ground truth box

Area of union

Figure 10: Intersection over union.

Prediction

True class

+ve

–ve

–ve+ve

Type II
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False negative

False positiveTrue positive

True negative

Type I
error

Figure 9: Confusion matrix.
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Lconf(x, c) � − 􏽘
N

iεPos
x

P
ijlog C

p

i􏼐 􏼑 − 􏽘
N

iεNeg

log C
0
i􏼐 􏼑, (11)

where

C
P
i �

exp C
p
i􏼐 􏼑

􏽐p exp C
p
i􏼐 􏼑

, (12)

and the weight term ∝ is set to 1 by cross-validation.

3.6.8. Frames per Second (FPS). FPS is a unit that measures
the camera performance. 'e frame rate indicates the
amount of individual video frames that a camera captures
per second. FPS provides a performance measurement of
motion videos on a display device.

4. Results and Discussion

'e deep learning CNN algorithmic model experiments
were performed to examine the efficiency of the advocated
neural network model for the application of vital signs of MI
detection. 'e model utilizes the TensorFlow library and
Keras APIs, and the prototype model is built using python
programming. 'e network developed using a deep learning
framework is optimized to run on the parallelized CUDA
architecture NVIDIA GPU for executing the kernels. 'e
scores of the predicted box are displayed along with the chest
pain Levin’s posture and fall postures for the trained CNN
SSD Inception V2 network, as shown in Figure 11.

A single-camera modality connected to Jetson Nano is
used for real-time inferencing. 'e trained CNN model
successfully performs classification and localization, where
Levine’s sign and fall detections were identified. Figure 12
shows the real-time detection of chest pain posture and fall
along with their predicted score values.

4.1. Precision Evaluation. In computer vision object detec-
tion, the main performance metric measurement is mean
average precision. Considering the COCO benchmark
performance metric, both the average precision and mean
average precision are evaluated as the same unique measure.
'e mean average precision (mAP) values are plotted
considering the IoU values ranging from 0.5 to 0.95 with an
incremental step size value of 0.05 as shown in Figures 13(a)
and 13(b). 'e mAP graphs for IoU values of constant 0.5
and 0.75 are shown in Figures 13(c) and 13(d), respectively.
Table 4 shows the results of the mAP value, mAP large value,
and mAP at 0.5 IoU and at 0.75 IoU.

4.2. Average Recall Evaluation. 'e COCO object detection
criteria highlight the predefined areas of various sizes of
objects in the image for the detection process. 'e average
recall evaluation designates the total number of detection per
image considering the object sizes: (i) size of the object less
than 322 pixels is considered to be smaller, (ii) object size
between 322 and 962 pixels are considered as medium, and
(iii) size of an object greater than 962 pixels are treated as

large. 'e standard areas mentioned is compared with the
segmentation mask in an image for the object detection
process. Figure 14 shows the graphical plots of average recall
values under different conditions of total detections per
image such as 1, 10, and 100. 'e tabulation of results are
shown in Table 5.

4.3. F1-Score Evaluation. F1-score is a measure of the
weighted average or harmonic mean between precision and
recall values. F1-score/F1-measure mainly considers false-
positive and false-negative values, and the range is between 0
and 1. 'e highest value of the F1-score indicates low false
positives and false negatives, suggesting fewer false alarms in
the model. 'e main aim of the object detection model is to
achieve high precision recall values, in turn obtaining a high
F1 score. Table 6 highlights the mAP, recall, and F1-score
values.

4.4. Loss Function Evaluation. 'e overall loss function the
SSD network is evaluated as classification, regularization,
and localization loss.'emain objective of training our deep
learning object detection model is to minimize the error
function, subsequently reducing the total loss of the net-
work. Figure 15 depicts the decreasing values of different loss
values of the network which are tabulated in Table 7.

4.5. Training Time Comparison. Training of two image
datasets NTU RGB+D and RMS is performed in the
workstation with two CNN models. Table 8 shows the
training time taken for sixteen thousand steps. 'e SSD
MobileNet V2 COCO model takes more time in training
compared to SSD Inception V2 COCO.

4.6. Embedded Implementation. NVIDIA’s Jetson Nano
development kit platform incorporates neural network li-
braries and frameworks to efficiently implement the com-
puter vision models practically. 'e training of the SSD
CNNmodel is performed on the workstation, and the model
has been deployed on the Jetson hardware platform; the
performance was being tested in terms of the frame rate and
power consumption. 'e board supports two power modes,
in particular, MaxN (10 watts) and 5W (5 watts). Both the
modes can be configured for various CPU frequencies and
the number of cores. Table 9 shows the frames per second
and power consumption for two different CNN architec-
tures that are implemented. 'e idle state measurement
indicates the test measurement performed without an al-
gorithm running onboard and no external hardware in-
terface connections such as keyboard, monitor, and mouse.

4.7. Results: Comparison with Other Works. From the ex-
tensive research survey that was carried out by the authors, a
comparison is made with the object detection algorithm-
based fall detection approaches. Table 10 gives the com-
parison between Wang and Jia [51] and Lu and Chu [52].
Table 11 shows a performance comparison in terms of

12 Advances in Human-Computer Interaction



(a) (b)

(c) (d)

Figure 11: Predicted simulated results of SSD Inception V2 for three classes of the vital signs of myocardial infarction.

(a) (b)

(c) (d)

Figure 12: Real-time detection of vital signs of MI such as Levine’s sign posture and fall condition postures with their score values.
(a) Complete fall posture in living room conditions, (b) partial fall posture, (c) Levine’s sign identification in an indoor environment, and
(d) chest pain posture.
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frames per second considering different hardware utilized to
solve the fall detection problem.

4.8. Discussion. 'e computer vision domain has achieved a
stupendous success lately and has attracted researchers to
solve challenging applications of object detection. In this
paper, the authors attempted to evaluate the state-of-the-art
DNN object detection algorithms, specifically SSD Mobi-
leNet and SSD InceptionNetV2 for the vital signs of heart
attack recognition. 'is proposed work contemplates the
image dataset from RGB videos of NTU RGB+D and
proposed synthetic RMS database captured from high res-
olution cameras. 'e three prime possible vital sign postures
of chest pain and fall were being analyzed, and the ConvNet
model was developed, and the performance analysis was
carried out. 'e three possible conditions of heart attack
postures simulated help in understanding the severity of the
pain.'is acts as a pain estimate to call for an emergency and
help in diagnosing the patient at the earliest. 'e posture-

based data at the place of heart attack can act as a primary
report for diagnosis. During the real-world deployment of
deep learning applications on the edge devices, certain crucial
factors are considered: high accuracy, energy efficiency, low
cost, lightness and portability, and low power consumption.
Some of the works performed explore the use of deep learning
techniques on single-board computers/embedded platforms,
namely, Raspberry Pi and NVIDIA Jetson series. 'e works
justify the usage of Jetson Nano for real-time computer vision
tasks for its high performance per watt and considerable high
performance with a lower computational cost for lighter
neural network models [56, 57]. 'rough the experiments on
Jetson Nano, real-time performance is evaluated by consid-
ering the shortcomings of the object detection algorithm on
the embedded platforms. Our results obtained on the power
consumption of the nanodevice are comparable with the
similar works implemented on image and video processing
applications. Examples include power consumption for real-
time prediction using two-dimensional deep CNN of around
5.57W considering 10 k dataset in [56] and around 9.3W in
[57]. 'e work can be considered as an impressive example of
GPU and CPU cooperation for implementing the deep
learning architecture that enables highly accurate detection
with lesser computational cost in a more economical way. Our
proposed MI vital sign detection system can run the Inception
V2 SSD andMobileNet V2 SSD CNNmodel on an embedded
GPU platform at frames per second that can be considered for
practical implementation to emergency fall situations. We
investigated other high performing object detection models

0.76

0.72

0.68

0.64

0.6

0.56

0 2k 4k 6k 8k 10k 12k 14k 16k

mAP
Tag: detectionboxes_precision/mAP

(a)

0.76

0.56

0.72

0.68

0.64

0.6

0 2k 4k 6k 8k 10k 12k 14k 16k

mAP (large)
Tag: detectionboxes_precision/mAP (large)

(b)

1

0.996

0.992

0.988

0 2k 4k 6k 8k 10k 12k 14k 16k

mAP@.50IOU
Tag: detectionboxes_precision/mAP@.50IOU

(c)

0.95

0.85

0.75

0.65

0.55

0 2k 4k 6k 8k 10k 12k 14k 16k

mAP@.75IOU
Tag: detectionboxes_precision/mAP@.75IOU

(d)

Figure 13: Mean average precision values of SSD InceptionNet V2 at various IoU. (a) mAP values, (b) mAP (large) values, (c) mAP@0.5
IoU, and (d) mAP@0.75 IoU.

Table 4: Precision values of the SSD Inception V2 at different IoU
values.

No Evaluation metric Value (%)
1 Mean average precision (mAP) 76.4
2 Mean average precision (large) 76.4
3 Mean average precision@50 IoU 100
4 Mean average precision@75 IoU 96.5
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Figure 14: Average recall values considering the number of detections per image. (a) AR@1 values, (b) AR@10 values, (c) AR@100 values,
and (d) AR@100(large) values.

Table 5: Average recall values of SSD Inception V2.

Sl. No Evaluation metric Value (%)
1 Average recall@1 80.0
2 Average recall@10 80.0
3 Average recall@100 80.0
4 Average recall@100 (large) 80.0

Table 6: Mean average precision, recall, and F1-score values of the SSD MobileNet V2 and SSD Inception V2.

Backbone DCNN Mean average precision (%) Recall (%) F1 score (%)
SSD Inception V2 COCO 76.4 80.0 78.1
SSD Mobilenet V2 COCO 68.7 72.8 70.6
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Figure 15: Continued.
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such as SSD ResNet50 and SSD ResNet101 for training using
the same database. Although both models showed significant
improvement in mAP and recall values during training due to

its complexity of deep learning architecture, deploying on
Jetson Nano edge device consumes lot of memory and shows
extreme low frames per second on real-time inference. 'e

Table 8: Measurement of training time and the number of steps of different SSD models.

Convolution neural networks Training time (hrs) Number of steps (K)
SSD Inception V2 COCO 93 16
SSD MobileNet V2 COCO 110 16

Table 9: Measurement of frames per second.

Edge device CNN model Power modes (Watts) Frames per second Power consumption (Watts)

Jetson Nano

Idle MaxN — 1.24

SSD MobileNet V2 MaxN 4.33 4.02
5 2.18 3.15

SSD Inception V2 MaxN 4.01 4.13
5 2.08 3.28

Table 10: Performance comparison with related works.

Paper Model Dataset Mean average precision (%)

Wang and Jia [51] SSD321 ResNet101 VOC2007 + 2012 77.1
SSD500 ResNet101 VOC2007 + 2012 80.6

Lu and Chu [52] SSD MobileNetV1coco Private 40.3
'e proposed work SSD Inception V2 coco Private RMS database and NTU RGB 76.4
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Figure 15: Loss curves of the SSD Inception V2 model.

Table 7: Loss factors measured by SSD Inception V2.

Type of loss Loss type Loss value
1 Classification loss 1.2836425
2 Regularization loss 0.5324396
3 Localization loss 0.19522505
4 Final total loss 2.0113058

Table 11: Time cost indicated in terms of frames per second.

Paper Camera Hardware Frames per second
Rougier et al. [53] 4 Core 2 Duo 5
Yun and Gu [54] 1 Core i7 0.076
Feng et al. [55] 1 Core i5 11
'e proposed work 1 Core i7 7.583
'e proposed work 1 Jetson Nano 4.33
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performance can be further enhanced by using precision and
inferencing using TensorRT for the edge platform. During the
course of experimentation, the Jetson Nano device encounters
a rise in temperature for long durations of work with the large
datasets. 'is overheating of the device could be avoided by
installing a suitable ventilation system prescribed by NVIDIA.

4.9. Limitations. 'e few shortcomings found in the present
research work are discussed as follows: first, the number of
RGB images used for training is 3000 when both private
RMS and public NTU+RGB datasets are combined. More
images can be considered for training to enrich the per-
formance of the DL-CNN model. Second, the training
images can be incorporated with data augmentation tech-
niques to enrich the training of the CNN model, which in
turn could increase the performance metrics. 'ird, our
model fails to recognize falls under extremely low light
conditions. Finally, high level GPUs that achieve higher
throughput with lesser latency can be utilized to minimize
the training hours for the developed MI detection model.

5. Conclusion and Future Work

Artificial intelligence-based pain management strategies and
automated fall identification through a specialist system is an
advancing area of research in smart health informatics. 'e
AI procedure advocated in this present work can have useful
implications for the medical diagnostic domain and opens
up new possibilities for automatic pain therapeutic practices
considering medical practitioners and other healthcare re-
searchers. In this study, we propose a supervised learning
object detection method from 3D RGB for enhancing the
performance of vital signs of MI fall detection. A state-of-
the-art lightweight CNN structure InceptionNet V2 SSD and
MobileNet V2 SSD is put forward for training Levine’s sign
posture and fall posture RGB images from video frames for
classification. In this proposed DNN CNN object detection
model, five performance parameters were estimated for
optimum performance in Levine’s chest pain posture, partial
fall, and complete fall. 'e performance evaluation high-
lights that the InceptionNet V2 SSD can attain a mean
average precision of 76.4% and a recall of 80%. 'e ex-
perimental results show that our network can be used as a
practical setting for real-time vital sign MI detection with
GPU embedded implementation. 'e results highlight that
the adopted deep learning model performs better than other
existing object detection lightweight classificationmodels. In
the future work, the spatiotemporal video analysis will be
considered for further enhancing the object detection model
performance and developing an intelligent video surveil-
lance alarm system as smart healthcare for detecting the
emergency encountered with the heart attack falls for early
assistance.
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