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A Comparison of Lucene Search Queries Evolved as Text
Classifiers
Laurence Hirsch and Teresa Brunsdon

Sheffield Hallam University, Text classification with evolved search queries, Cantor building, Sheffield
Hallam University, Sheffield, UK

ABSTRACT
In this article, we use a genetic algorithm to evolve seven
different types of Lucene search query with the objective of
generating accurate and readable text classifiers. We compare
the effectiveness of each of the different types of query using
three commonly used text datasets. We vary the number of
words available for classification and compare results for 4, 8,
and 16 words per category. The generated queries can also be
viewed as labels for the categories and there is a benefit to a
human analyst in being able to read and tune the classifier.
The evolved queries also provide an explanation of the classi-
fication process. We consider the consistency of the classifiers
and compare their performance on categories of different
complexities. Finally, various approaches to the analysis of
the results are briefly explored.

Introduction and background

Automatic text classification is the activity of assigning predefined category
labels to natural language texts based on information found in a training set
of labeled documents. With the explosive growth in online text, the task has
become critical to many information management tasks.

In the 1980s, a common approach to text classification involved humans in
the construction of a classifier, which could be used to define a particular text
category. Such an expert system would typically consist of a set of manually
defined logical rules, one per category, of type

if {DNF formula} then {category}
A DNF (“disjunctive normal form”) formula is a disjunction of conjunc-

tive clauses. The document is classified under a category if it satisfies the
formula, i.e. if it satisfies at least one of the conjunctive clauses. An oft quoted
example of this approach is the CONSTRUE system (Hayes et al. 1990), built
by the Carnegie Group for the Reuters news agency. A sample rule of the
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type used in CONSTRUE to classify documents in the “wheat” category of
the Reuters dataset is given below.

if((wheat & farm) or (wheat & commodity) or
(bushels & export) or (wheat & tonnes) or
(wheat & winter & ¬ soft))
then WHEAT
else ¬ WHEAT

Such a method, sometimes referred to as “knowledge engineering,”
provides accurate rules and has the additional benefit of being human
understandable—that is, the definition of the category is meaningful to a
human, producing additional uses of the rule including category verifi-
cation. However, the disadvantage is that constructing the required rules
requires significant human input from both those with knowledge of the
domain and of rule construction (Apt´e et al. 1994). Since the 1990s, the
machine learning approach to text categorization has become dominant,
requiring only a set of pre-classified training documents and an auto-
mated classifier. A wide variety of statistical classification systems have
been developed, for example: Naive Bayes, k-nearest neighbor, support
vector machines (SVMs) and neural networks (Baharudin, Lee, and
Khan 2010). Probabilistic classifiers based on numerical models often
require hundreds or thousands of features and are not open to human
interpretation or maintenance.

Human understandable classifiers

It has been recognized that classifiers that are comprehensible have certain
advantages:

1. The classifier may be validated by a human.
2. The classifier may be fine-tuned by a human.
3. The classifier may be used for other tasks such as information extrac-
tion, category labels, or text mining.

Accuracy and interpretability of classifiers are recognized as often
being conflicting goals. As an example, Oracle Corporation offers var-
ious options for classification in their Oracle Text1 product. Two super-
vised classifiers are provided using user-supplied training documents.
The first uses SVM technology and produces opaque classifiers with high
accuracy. The second uses a decision tree to produce classification rules
which are transparent, understandable, and modifiable by a human but
are recognized as having lower accuracy. This example clearly indicates
that readability and modifiability have value to commercial classification
products and, where such features are required as part of the classifier,
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some loss in accuracy is regarded as an acceptable trade-off for a more
comprehensible model. This has led to significant effort being given to
developing human interpretable classifiers, using techniques such as
using automatic query generation (Polychronopoulos, Pendar, and
Jeffery 2014).

Genetic methods in text classification

Genetic methods such as Genetic Programming (GP) and Genetic
Algorithms (GA) are stochastic search methods inspired by biological evolu-
tion. Genetic methods have been employed at various stages of the text
classification process (Espejo, Ventura, and Herrera 2010)—for example, in
calculating useful term weights (Baharudin, Lee, and Khan 2010; Escalante
et al. 2015; Uysal and Gunal 2014). Luo (Luo and Zincir-Heywood 2006)
describes a system where recurrent linear GP is used to classify documents
that are encoded as word sequences. Genetic methods have also been used to
induce rules or queries useful for classifying online text (Hirsch, Hirsch, and
Saeedi 2007; Pietramala et al. 2008; Smith and Smith 1997). In this case, the
evolution requires a fitness test based on some measure of classification
accuracy. A similar approach has been applied in an unsupervised context
(Hirsch and Di Nuovo, 2017).

Proposed system

We propose a system to produce readable classifiers in the form of compact
Apache Lucene search queries containing a small number of words. A search
query is generated for each of the categories of the dataset such that each
query is a binary classifier for that particular category. Thus, to classify a
document as belonging to a category, we need simply to determine if the
document is returned by the search query. We evaluate the effectiveness of
various evolved queries on three different text datasets (see below) using a
maximum of 4, 8, and 16 words per category. Fitness is accrued for indivi-
duals producing classification queries which retrieve positive examples of the
category but do not retrieve negative examples from the training data. We
use the ECJ (http://cs.gmu.edu/~eclab/projects/ecj/) Java library for evolu-
tionary computation in all the experiments reported here.

Apache lucene

Systems using methods based on Darwinian evolution are generally compu-
tationally intensive. In our case, each individual in the population will
produce a search query for each category of the dataset and the fitness is
evaluated by applying the search query to a potentially large set of text
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documents. With a population of a reasonable size (for example, 1024
individuals) evolving over 100 or more generations, it is critical that such
queries can be executed in a timely and efficient manner. For this reason, we
decided to use Apache Lucene which is an open source high-performance,
full-featured text search engine. We use Lucene to build inverted indexes on
the text datasets and to execute the queries produced by the GA.

Pre-processing

Before we start the evolution of classification queries, a number of pre-
processing steps are made.

1. All the text is placed in lower case.
2. A small stop set is used to remove common words with little semantic

weight.
3. For each dataset, a Lucene inverted index is constructed and each

document is labeled (using Lucene fields) according to its category
and its test or training status.

F1 fitness

As mentioned above, each query is actually a binary classifier. That is, it will
classify any document as either in a given category or outside that category.
The following measures are therefore useful:

Recall rð Þ¼ the number of relevant documents returned
the number of relevant documents

(1)

precision pð Þ¼ the number of relevant documents returned
the number of documents returned

(2)

The F1 measure is also commonly used for determining classification effec-
tiveness and has the advantage of giving equal weight to precision and recall.
F1 is given by:

F1 ¼ 2pr
pþ r

(3)

F1 also gives a natural fitness measure for an evolving classifier where
documents in the training set are the fitness cases. A similar approach is
also taken in the Olex-GA (Pietramala et al. 2008) and GPTC systems
(Hirsch 2010). The micro-average is a global calculation of F1 regardless of
category and the macro-average is the average of F1 scores for all the
categories.
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F1 word list

The total number of unique words in a document collection can be quite
large. If each word were given as a potential feature for a GA system, the size
of the search space would become prohibitive. We therefore use the following
procedure to reduce the number of dimensions. For each category of the
dataset, an ordered list of potentially useful words is constructed which we
call the “F1WordList.” Each word found in the relevant category of the
training data is scored according to its effectiveness as a single-term classifier
for that category. So, for example, if we find the word “oil” in the training
data for a particular category, we construct a query based on the single word
which will retrieve all documents containing the word “oil”. We give the
word a value (F1 score) as determined by the number of positive and
negative examples retrieved by the single-term query from the training
data. We can then create an F1WordList of length n for each category by
simply ordering the words according to their corresponding F1 values and
selecting the top n words. In our system, 300 words are available for
classification purposes. A negative list, useful for queries containing a NOT
operator, is created by reversing the two sets such that a high scoring word
will retrieve few documents from the current category but a large number of
documents from other categories.

GA parameters

We used a fixed set of GA parameters in all our experiments and these are
summarized in Table 1. Subpopulations (island model) are used as a
method of increasing diversity in the GA population. Only limited com-
munication (immigration/emigration) is allowed between subpopulations.
In our case, we exchanged three individuals between the two subpopula-
tions every 20 generations.

Table 1. GA Parameters.
Parameter Value

Population 1024
Generations 120
Selection type Tournament
Tournament size 5
Termination Max generations
Mutation probability 0.1
Reproduction probability 0.1
Crossover probability 0.8
Elitism No
Subpopulations 2 (exchange 3 individuals every 20 generations)
Chromosome length variable
F1WordList length 300
Engine ECJ 21: http://cs.gmu.edu/~ eclab/projects/ecj/
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Experiments

In all the experiments reported here, the GA system only had access to
the training data. The evolution for each dataset was repeated three times.
The final result was determined by applying the best queries evolved to
the test data. There were a number of objectives for the experiments:

1. To evolve effective classifiers against the text datasets.
2. To automatically produce compact and human understandable classi-
fiers in search query format using a small number of features.

3. To evaluate the classification effectiveness of a variety of Lucene query
types.

Datasets

Three commonly used text datasets were used.

Reuters-21578 (R10)

Reuters-21578 news collection contains 21,578 news articles in 135 categories
collected from the Reuters newswire in 1987. In our experiments, we use the
“ModApt´e split”—a partition of the collection into a training set and a test
set that has been widely adopted by text categorization experimenters. We
use the top 10 (R10) most populous categories which are comprised of 9,980
news stories. The R10 is one of the most widely used text datasets in text
classification research. An in-depth discussion of the Reuters dataset is given
in Debole and Sebastiani (2005).

WebKB

WebKB collected 8,282 web pages from computer science departments of
several universities in 1997 by the Carnegie Mellon University Text Learning
Group. Each page belongs to only one of the seven categories, though three
are discarded following previous research. Totally, 4,199 documents with
four categories remain: “Student,” “Faculty,” “Course,” and “Project.” A
test/train split is also defined (Craven et al. 1998).

20 newsgroup (20NG)

The 20 newsgroups collection, set up by Lang (1995), consists of 20,000 docu-
ments that are messages posted to Usenet newsgroups, and the categories are the
newsgroups themselves. We use the training/test split from the website http://
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qwone.com/~jason/20Newsgroups/. Some of the newsgroups are very closely
related to each other (e.g. comp.sys.ibm.pc.hardware/comp.sys.mac.hardware),
while others are highly unrelated (e.g. misc.forsale/soc.religion.christian). The
data in this set are considered particularly noisy and as might be expected they
include complications such as duplicate entries and cross postings.

Performance

Queries must be evolved for each category of the document set and each
individual in the evolving population must fire a Lucene query to obtain its
fitness. All experiments were run on an Intel i5 3330 processor running at
3.00GHz with 8GB of memory. Such a system generated the classification
queries for the R10 dataset listed in Table 4 in just over 3 minutes.
Considering the number of queries and documents in the set, we would suggest
that this result is a testament to the efficiency of ECJ and Lucene. The result of all
the training work is a set of search queries. To test the R10 classifier requires the
execution of 10 search queries and the result will be delivered in a time frame
below human perception. The fact that search queries will scale up to large text
databases, including the web, is well known.

Query types

A GA was used to evolve seven different types of query for classification
purposes. A full description of the indexing system and query syntax is given
at the official Lucene site (http://lucene.apache.org/) together with the Java
source code and other useful information concerning Lucene. To help explain
the GA, let us assume that we are evolving a classifier for the R10 “crude”
category. The first eight words of the F1WordList are shown in Table 2. We
explain the types of queries and how they are combined. After each heading, we
give the resulting query acronym in brackets.

Table 2. R10 Crude category F1WordList.
0 oil

1 crude
2 barrels
3 opec
4 petroleum
5 energy
6 barrel
7 production
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OR (OR)

When the OR operator is applied to two or more words, it is simply required
that one of the words occurs in a document for that document to be
returned. Our results show that highly effective classifiers can be evolved
using OR queries which clearly achieve one of the primary goals—namely to
be easily interpreted by a human. As mentioned above, as a pre-processing
step for each category we construct an F1WordList of 300 words which are
likely to be useful for classifier query construction. A four word query could
be constructed from a randomly generated GA such as:

We create a Lucene Boolean query and add the term “barrels” from the list
(in Lucene syntax using BooleanClause.Occur.SHOULD) and then repeat the
process for the words “crude,” “petroleum,” and “oil” as determined by
Table 2. The query will then return documents which contain any of the
four selected words and we can calculate the F1 fitness as determined by the
number of relevant and irrelevant documents returned.

AND (ANDOR)

Where words are joined by the AND operator in Lucene (BooleanClause.
Occur.MUST), all the words in the query are required to exist in a document
for it be returned. It is unusual to evolve classifiers that return more than a
few documents for three or more words connected with AND in any of the
datasets we use. However, if we apply the OR operator on a number of two
word AND queries (a conjunction of disjunctions) then we can evolve
effective classifiers, and this is the approach taken here. For example, the
following four word ANDOR query which was evolved on the trade category
of the R10 achieves an F1 score of 0.699 on the test set:

(+exports +trade) (+trade +u.s)
In Lucene syntax, “+” indicates that the word MUST occur for the docu-

ment to be returned but since there is an implicit OR between the two
brackets, the query will return a document if it contains the words (“exports”
AND “trade”) OR (“trade” AND “u.s”).

NOT (ORNOT together with SFNOT)

NOT, on its own, is not a useful operator but may improve classification
effectiveness when combined with others. We test NOT combined with a
multi-word OR query and NOT combined with SpanFirst (see below). The

6 1 4 0
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following example query gives an F1 of 0.683 for the category talk.politics.
mideast of the 20NG:

-code turkish israeli israel
where a minus sign in Lucene query syntax indicates that the word MUST

NOT occur if the document is to be returned. The query will return any
document containing any of the words “turkish, israeli, israel” but NOT
containing the word “code”.

Spanfirst (SF)

A SpanFirst query restricts a query to search in the first part of a document,
which is defined as some number of words from the start. This appears to be
useful since the most important information in a document is often at the
start of the text (Hirsch 2010). For example, to find all documents where
“barrel” is within the first 100 words, we could use the Lucene query:

new SpanFirstQuery(new SpanTermQuery(new Term(“contents”,
“barrel”)),100);

In this paper, we simplify the format and write the above as: (barrel 100).
A more complex query might be: (barrel 100) (oil 20), which would retrieve
documents where the word “barrel” occurred within the first 100 words of a
document OR the word “oil” occurred within the first 20 words.

Using the F1WordList from Table 1, such a query could be defined using
the following GA:

Spannear (SN)

We use Lucene SpanNear to evolve queries that will match words
occurring within 10 words of each other. For example, the following
query evolved on the R10 corn category (scoring F1 0.843 on the test
set) indicates that one of the word pairs in brackets must occur within
10 words of each other in a document if it is to be returned:

(corn usda 10) (tonnes maize 10) (u.s corn 10) (wheat corn 10)
The advantage of this query type is that it might capture multi-word units

useful for classification purposes.

Minimumnumbershouldmatch (MinShld)

A Lucene Query can be constrained to match at least a certain number of
clauses. In our experiment, we employ a specialized query which takes a

6 100 1 20
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given set of words and will only return a document if at least two of the
specified words occur in the document. For example, the following query
evolved to classify the comp.graphics documents of the 20NG, scoring F1:
0.422:

(polygon graphics image lines)~ 2

A document must contain at least two of the words listed in brackets
before it is returned.

Results

The results in Table 3 show the F1 values for the seven query types discussed
above on our three datasets for queries using each of 4, 8, and 16 words, with
the best results displayed in bold. Some conclusions can be drawn:

1. SF (SpanFirst) queries produce the most accurate classification queries
for all datasets and query sizes.

2. NOT can improve classification accuracy in some cases but the effect is
generally quite marginal.

3. SN (SpanNear) (which is a special type of AND) is generally the worst
performing classifier.

4. Simple OR queries are more effective classifiers than a combination of
two word AND queries.

Table 3. Results Summary.

Number R10 WebKB 20News

of Words Query Micro Macro Micro Macro Micro Macro

4 OR 0.817 0.788 0.691 0.671 0.589 0.572
ORNOT 0.828 0.784 0.721 0.692 0.563 0.544
ANDOR 0.793 0.755 0.660 0.644 0.517 0.498
SF 0.847 0.810 0.751 0.764 0.594 0.579
SFNOT 0.851 0.813 0.767 0.772 0.569 0.550
SN 0.691 0.657 0.676 0.682 0.363 0.349
MinShld 0.817 0.784 0.678 0.664 0.559 0.541

8 OR 0.855 0.823 0.719 0.698 0.639 0.630
ORNOT 0.853 0.815 0.736 0.718 0.621 0.611
ANDOR 0.816 0.785 0.699 0.688 0.588 0.572
SF 0.884 0.846 0.757 0.765 0.647 0.635
SFNOT 0.882 0.843 0.798 0.796 0.635 0.621
SN 0.792 0.746 0.714 0.733 0.451 0.438
MinShld 0.853 0.815 0.715 0.699 0.639 0.630

16 OR 0.860 0.819 0.719 0.700 0.669 0.666
ORNOT 0.874 0.829 0.736 0.705 0.668 0.664
ANDOR 0.866 0.818 0.739 0.720 0.634 0.624
SF 0.901 0.858 0.775 0.777 0.693 0.689
SFNOT 0.904 0.862 0.795 0.795 0.688 0.682
SN 0.829 0.756 0.769 0.772 0.527 0.515
MinShld 0.889 0.847 0.738 0.713 0.639 0.631
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5. MinShld (MinimumShouldMatch) is an interesting variant on OR and
AND and performs slightly better than AND.

The results above were found by averaging the F1 scores (micro and macro)
for each query type, number of words and data source combination. This
averaging is over the three repetitions and over all categories in each of the
data sources. However, this loses much of the information in the results. For
example, how consistent are the queries? Are there some categories that are
“hard” to correctly identify and for which a particular query type is success-
ful? Such sentiments have been pointed out before van Rijsbergen (1979) and
Goutte and Gaussier (2005).

A classical statistical ANOVA of the results has been successfully carried
out in other studies, for example, ￼Lennon et al. (2013) and
Phachongkitphiphat and Vateekul (2014). The former fit models to
Precision, Recall, and F1 by first employing the arcsine square root transfor-
mation. A similar attempt was made here, employing a variety of transfor-
mations, and even the Beta Regression approach of Cribari-Neto and Zeileis
(2010)￼. However, the resulting analyses required all the higher interaction
terms, making any interpretation difficult, and the residuals had a highly
leptokurtic distribution questioning the validity. This was mainly due to
some extreme residuals coupled with others at or near zero.

Such non-normality of experimental results in the context of information
retrieval and classifiers is well established (e.g. (van Rijsbergen 1979; chapter
7, and (Demšar 2006)). ￼ (Demšar 2006)￼ and (Garcia et al. 2010)￼
investigated the use of non-parametric tests, but these require the assumption
that all classifications are independent and that the underlying distribution of
the metric is symmetric. Given that the results here come from just three data
sources, the first of these is unlikely. Also, since there are only three repli-
cates, the second is not possible to ascertain. van Rijsbergen (1979) suggests
that the use of a non-parametric test may be performed to provide a con-
servative result. Consequently, the results were analyzed using SAS statistical
software and non-parametric Cochran–Mantel–Haenszel tests were per-
formed using the rank option in PROC FREQ, making these tests equivalent
to the Friemann test, but controlled over relevant sub-groups. Two tests were
performed on the F1 measures, one comparing the seven query types while
controlling for the number of words and category within each data source,
and the second on the number of words while controlling for the query types
and categories. These gave statistically significant results beyond even the
0.01% significance level. Hence, this suggests that, even being conservative,
the differences between query types and between number of words are
genuine.

The failure of the statistical modeling approach means that to understand
the true pattern of the F1, recall, and precision results, we must drill into the
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data in other ways, achieved here by plotting the data at various levels of
granularity.

Initially, the classifiers are compared by plotting boxplots for each query
type using all instances in the data so that each box has values from all three
datasets, all categories and all number of words.

Figure 1 shows boxplots for each query type aggregated over all datasets,
categories, and number of words. They are arranged in rank order using the
mean of F1 for each query type. They confirm the results seen in the table
above. However, it should be noted that all the boxes overlap, so alternative
ranking of queries may be reasonable for some combinations of category and
number of words. The range and interquartile range for each query are quite
large compared with the bounds on F1 (0 ≤ F1 ≤ 1), showing quite varied
success of the classifiers. SpanNear10 is the most dispersed having the longest
whiskers (largest range) and a longer box (largest interquartile range).

The precision and recall are included in the left plot of Figure 2. From this
plot, it can be seen that while SpanNear10 has the lowest F1 on average, it
also appears to have the best precision, although the other query types do not
lag far behind. This is off-set by its very poor recall. All the other query types
have less of a disparity between recall and precision. We may presume that
this indicates that two word units may be good indicators of category
membership when they are found but do not occur with sufficient frequency
across all documents to achieve high accuracy when measured by F1. The
optimum recall for the other queries is OR slightly ahead of SpanFirst. This

Figure 1. Comparison of all F1 Measures Across all datasets, categories and Number of Words,
arranged in order of F1 mean.
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might also be expected, since the requirement of SpanFirst is more exacting
than OR.

The results for the different number of words as well as query type plots
are shown in the right of Figure 2. In general, F1 increases with the number
of words but not dramatically, nor by the same amount for each classifier.
For example, there is little difference in using 16 rather than 8 words for
MinShould. Dispersion also tends to be lower with more words, again with
MinShould being the notable exception. This may be a result of the way the
query works, in that extra words can be added without necessarily making a
substantial change to the set of documents returned. This reduction in the
dispersion of the F1 measures is more notable using eight rather than four
words; 16 makes relatively less difference. Thus, the goal of making queries
more interpretable by using fewer words can be achieved with little reduction
in effectiveness.

Figure 3 shows a selection of the individual boxplots at the most granular
level, for each category, number of words and query type separately.
Categories 1, 3, and 9 in the R10 dataset (only category 3 is shown) have
high F1 values across the board, showing that these categories are “easier” to
classify. Such “easy” categories also tend to be more consistent (all three runs
gave similar results so that the boxes are small). Further examples are 6 and 8
in 20 NG, and 0 in WebKB. Low F1 measures such as for categories 12, 13,
and 19 in the 20NG source (19 not shown) illustrate “hard” categories that
are also more dispersed. SpanNear10 (SN) usually is the lowest F1 measures
and ANDOR often has the second lowest. For “easy” categories, this usually
no longer holds with ANDOR performing equally well and sometimes also
SpanNear10 (e.g. category 3 in R10).

There are examples and counterexamples where the number of words
makes quite a difference in mean F1 (13 vs 2 in 20NG for example). More

Figure 2. Comparison of F1, Recall and Precision across all datasets, categories and number of
words (left) together with comparison of all F1 Measures across all datasets and categories by
number of words (right). Both arranged in order of F1 mean.
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words also tend to make the results more varied, although there are excep-
tions such as 0, 3, and 18 20NG (8 more varied than 16). Two categories give
unique results: category 2 in WebKB shows SpanNear10 outperforming all
but the two SpanFirst Queries with all other queries performing badly.
Category 7 in R10 shows greater dispersion, particularly for SpanNear10. A
detailed study of the relationship between the categories and the results for
different query types could prove a fruitful area of research, by, for example,
identifying in which circumstances two word units may be useful for
classification.

Figure 3. Box-plots of F1 for each Category, Number of words and Query type for a selection of
categories and Sources. Note that as this is based on only three data points, the top of the box
will be the maximum, the bottom the minimum and if there is a middle line it will be the middle
point.
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Readability

Creating compact classifiers that are human readable is one of the main
objectives of this work. We give some examples of evolved classifiers in
Tables 4 and 5. Although unexpected terms sometimes appear, the queries
generated are quite readable and, critically, offer an explanation of how the
classifier works. Note that in the case of SpanFirst, we have ordered the query
terms by the SpanFirst integer value that indicates the number of words from
the start of the document in which a word must appear for the document to
be returned. So for example “oil” may occur in many documents outside the
crude category but is unlikely to occur within the first 27 words of a
document not in that category (Table 4). We also note that the query evolved
for the wheat category (F1 of 0.893) outperforms the human constructed rule
discussed in the introduction (F1 of 0.84) and is arguably more readable,
using only three words.

Future work

The current system produces binary classifiers that simply indicate whether a
document is contained within a particular category. Indexing systems such as
Lucene incorporate complex and highly efficient scoring systems so that the
set of documents matching a query are ranked according to some measure of

Table 5. 20NG OR with 4 words (showing only the rec category).
Category F1 Query

rec.autos 0.637 cars car wharfie automotive toyota
rec.motorcycles 0.798 moa bikes dod motorcycle bike
rec.sport.baseball 0.599 phillies jays pitching baseball cubs
rec.sport.hockey 0.777 nhl devils playoffs hockey playoff

Table 4. R10 SpanFirst with 8 words.
Category F1 Query

Acq 0.835 (acquired 48)(offer 124)(merger 146)(sell 147)(stake 186)(acquire 188)(sells 237)
(acquisition 240)

Corn 0.876 (soybean 36)(corn 231)(cordoba 241)(maize 248)(belt 291)
Crude 0.829 (oil 27)(refinery 49)(crude 52)(gasoline 87)(petroleos 87)(opec 159)(barrels 258)(barrel

284)
Earn 0.967 (split 41)(profit 44)(net 46)(earnings 47)(loss 86)(vs 115)(results 227)(dividend 289)
Grain 0.97 (corn 97)(cereals 108)(rice 132)(wheat 141)(crop 179)(barley 200)(grain 206)(maize 280)
Interest 0.747 (leaves 4)(deposit 21)(discount 22)(room 24)(rate 29)(rates 31)(repurchase 78)(money

84)
Money-
fx

0.798 (yen 15)(dollar 45)(money 58)(currency 71)(cooperate 90)(currencies 171)(fed 191)
(monetary 201)

ship 0.793 (port 58)(strike 62)(shipping 75)(tankers 96)(vessels 187)(freights 234)(ships 287)(vessel
297)

trade 0.746 (payments 6)(account 22)(trade 29)(sanctions 36)(retaliation 139)(textiles 221)
(protectionism 253)(tariffs 295)

wheat 0.893 (commodity 4)(temperatures 53)(wheat 204)
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closeness to the query. We believe that this could be incorporated into the
fitness test to enhance classification accuracy. We are also working on
developing an unsupervised learning system for clustering sets of documents
using search queries to retrieve disjoint sets of documents. In addition, we
believe that there is a need to drill into results as this can show the con-
sistency of classifiers and aid in our understanding of when and why one
works over another. It is hoped to revisit the statistical modeling approach of
the experiments conducted here to find a more suitable way to quantify this.

Conclusion

We have evolved a number of classifiers using queries of 16 or fewer words for
each category of the dataset. The queries produced are readable and compact.
Surprising levels of classification accuracy can be achieved using only four words
and a simple OR-based query, whereas AND type queries are less accurate.
There are obvious advantages to the query format of the classifiers as they are
ready to apply to large text datasets and are in a format that can be easily refined
or tuned by a human analyst. These simple queries are also surprisingly con-
sistent, even for categories that are “hard” for the algorithm to get right.

Note

1 http://www.oracle.com/technetwork/database/enterprise-edition/index-098492.html.
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