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Abstract: We study cultural dissemination in the context of an Axelrod-like agent-based model describing the
spread of cultural traits across a society, with an added element of social influence. Thismodification produces
absorbing states exhibiting greater variation in number and size of distinct cultural regions compared to the
original Axelrodmodel, and we identify the mechanism responsible for this amplification in heterogeneity. We
develop several new metrics to quantitatively characterize the heterogeneity and geometric qualities of these
absorbing states. Additionally, we examine the dynamical approach to absorbing states in both our Social In-
fluence Model as well as the Axelrod Model, which not only yields interesting insights into the di�erences in
behavior of the twomodels over time, but also provides amore comprehensive view into the behavior of Axel-
rod’s originalmodel. Thequantitativemetrics introduced in this paperhavebroadpotential applicability across
a large variety of agent-based cultural dissemination models.

Keywords: CulturalDissemination, Agent-BasedModeling, Cultural Evolution,OpinionDynamics, CulturalTrans-
mission, Bounded Confidence Models

Introduction

1.1 One of the hallmarks of human society is the tendency for ideas, opinions, and cultures to spread from person
to person, so-called “cultural dissemination.” This field of study has attractedmany scientists interested in the
mechanism of social evolution and cultural propagation, and has broad applications to state formation (An-
derson 1991; Ballas et al. 2005), succession conflicts (Kohler et al. 2000), transitional integration (Axelrod 2006;
Heppenstall et al. 2006), domestic cleavages (Axelrod & Bennett 1993; Barros 2012), etc. In a seminal paper, Ax-
elrod (1997) examined the spread of culture using an agent-basedmodel (Schelling 1971) built on the twin ideas
of homophily, the tendency for people to interact with those more similar to themselves, and cultural assimi-
lation, the idea that interactions cause people to become more similar (Axelrod 1997). These two ingredients
were generally expected by social scientists to generate a self-reinforcing dynamics leading to a global conver-
gence to a single culture. Instead, themodel predicts in somecases thepersistenceof diversity (Castellano et al.
2009).

1.2 In the Axelrod model, agents were placed on the vertices of a two-dimensional grid, and their cultural profile
was expressed as a list of F features, which could be thought of as socially malleable cultural characteristics
such as religious beliefs, language, or fashion preferences. For each feature f , an agent has a particular trait
value q represented by an integer value from0 toQ−1. For example, for the cultural feature language, some of
the possible traits for that feature might include Mandarin (q = 0), Spanish (q = 1), English (q = 2), etc. Thus,
assuming F features andQ traits, the state of each agent iwould be represented as a vector:
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where
σfi ∈ [0, Q− 1] for all f ∈ [1, 2, . . . , F ] (2)

1.3 Agents in the AxelrodModel interact probabilisticallywith neighboring agents on the grid based on their degree
of similarity. Here, a “neighbor” of a given agent is defined as any agent located one unit step away from the
chosen agent (see Figure 1), and the similarity of two agents is based on the fraction of traits the two agents
share.

Figure 1: Each agent is representedby a square in a grid. The yellow squares are one-stepneighbors of the agent
represented by the black square. This definition of neighbors is referred to as the von Neumann neighborhood
of radiusR = 1 under the Manhattan (taxicab) distance (To�oli & Margolus 1987)

1.4 At the start of the simulationeachagent is assignedan initial set of randomtrait values. The cultural statesof the
agents areupdatedas follows: First anagent is selectedat randomalongwithoneof its neighbors; this selection
process is referred to as an “event.” The probability Pi,j that this selected pair (agent i and its neighbor, agent
j) will then interact is computed from their degree of cultural overlap li,j , defined as

li,j =

F∑
f=1

δσf
i ,σ

f
j

(3)

where δσf
i ,σ

f
j
denotes the Kronecker delta function (defined as δx,y = 1 if x = y and 0 if x 6= y). The probability

of interaction is given by

Pi,j =
li,j
F
. (4)

1.5 Observe that this probabilistic rule implements the idea of homophily, wherein two neighboring agents are
more likely to interact themore similar they are. Note that if two agents share no features (i.e., σfi 6= σfj ∀f ∈
[1..., F ]), then they have zero probability of interacting. When a pair of agents do interact, they will become
more culturally similar, as follows: a random un-shared feature is selected and the chosen agent will change
its trait value (for that feature) to that of its neighbor. This interaction rule implements the notion of cultural
assimilation.
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1.6 These simple dynamical rules lead to some interesting behaviors. Most notably, the twin influences of ho-
mophily and assimilation do not always lead to a purely homogeneous state (a mono-culture), but rather the
agents can settle down into a final configuration characterized by several distinct cultural regions on the grid,
wherein all agents within a given region are completely identical to one another, but share no common traits
with agents in bordering regions. At this stage no further agent-agent interactions are possible and the system
remains frozen in this final configuration known as an “absorbing state."

1.7 Axelrod’s simplemodel of cultural dissemination demonstrating that homophily and assimilation can yield het-
erogeneous societies has sincebeen extendedandgeneralized. For instance, the e�ect of a “massmedia” agent
was studied by Shibanai et al. (2001); see also Daley & Kendall (1964); Peres & Fontanari (2012); Rodríguez et al.
(2009). The e�ect of noise, or “cultural dri�" in the form of random perturbations of cultural features (Gandica
et al. 2013; Klemm et al. 2003; Parisi et al. 2003), the interaction via complex networks rather than a grid (Reia
& Fontanari 2016; Pfau et al. 2013), and the e�ect of increasing the neighborhood size (Stivala & Keeler 2016)
have also been investigated. One interesting class of extensions of Axelrod’s original model which has received
some attention to date, and which is the subject of this paper, involves incorporating the e�ects of social in-
fluence from all neighbors in an agent’s local neighborhood (i.e., “social influence models"). In particular, in
the classic Axelrod Model, during each interaction an agent will only directly compare itself to a single selected
neighbor before potentially assimilating (so-called ‘one-to-one’ communication); in this case, the presence of
the agent’s other equidistant neighbors has no immediate e�ect. In contrast, social influence models directly
incorporate the e�ects of these other neighbors (i.e., ‘many-to-one’ communication) in an attempt to capture
various aspects of local social dynamics.

1.8 Indeed, a variety of models exploring alternative communication schemes di�ering from that of Axelrod have
been proposed (see, e.g., Parisi et al. 2003; Flache &Macy 2011). Seminal works on opinion dynamics/bounded
confidence models by Hegselmann & Krause (2002) and De�uant et al. (2000), for instance, take di�erent ap-
proaches tomany-to-one andone-to-one communication. Related issues are also addressed in social influence
models described by Abelson (1964) and Friedkin & Johnsen (2011). And in more recent work by Keijzer (2018),
a one-to-many communication scheme is explored in the context of online social networks, wherein a single
online agent can potentially influence large numbers of other agents.

1.9 In what follows we first provide some general background on social influencemodels of cultural dissemination
and introduce the main variant that is the focus of this paper (Section 2). In Section 3 we describe our main
numerical findings and associated analysis. In Section 4 we introduce several new metrics for describing the
nature of the absorbing state found in these models. These measures constitute potentially important new
tools for the general study of agent-based cultural dissemination models, and their utility is not limited to the
particular class of social influence models studied here.

Social Influence Model

Background

2.1 Kuperman (2006) has previously introduced several Axelrod-likemodels of cultural disseminationwhich incor-
porate a form of social influence factor (referred to by Kuperman as “cultural a�inity”) similar in spirit to that
which will be considered here. In one such model studied by Kuperman, during an interaction the selected
agent will compare a randomly selected feature with that of its chosen neighbor, but rather than automatically
changing its trait value for that feature to match that of its neighbor it will first survey its entire local neigh-
borhood and will only change its trait value if doing so would increase the total number of matches the agent
has with its neighbors on the given feature. If changing the trait value would result in fewer total matches with
neighbors, no switch is done. In cases of a tie the agent would change its trait value with probability 0.5. As
will be described shortly, our model of social influence is similar but avoids a hard cut-o� in the trait-switching
rule by employing instead a probabilistic trait-switching rule which allows formoremalleability in its represen-
tation of everyday social interactions. Kuperman (2006) also introduced a second social influence-type model
in which an agent does the same evaluation as in the first, but rather than just examining the neighbors for the
selected feature, the agent looks at the overall overlap for all features in determiningwhether to switch the trait
for the selected feature. Again, this model utilizes a hard cut-o�, majority rule for trait assimilation rather than
the more fluid, probabilistic trait-switching rule that we will consider. We do note, however, that one (analyt-
ical) advantage of Kuperman’s hard cut-o� rule is that it allows for the introduction of a Lyapunov function to
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determine local stability at a given time step, without having to wait for the numerical model to reach a final
absorbing state as Axelrod did.

2.2 Flache & Macy (2011) also analyzed a cultural dissemination model involving social influence. In this model, an
agent is randomly selected and thenwill interactwith some to all of its neighbors based on homophily, wherein
the agent decideswhether or not to interact based on the proportion of all features that are shared by the agent
and its neighbor. (In this model, there is also probability r

′
that the decision to interact will be reversed.) A�er

the agent chooses the neighbors to interact with, these neighbors are gathered in an influential set S and the
agent chooses randomly one of its featureswhich is di�erent fromat least one of the neighbors in the setS. The
agent will then adopt a new trait value so that a�er adoption, the new trait is dominant in set S. However, if
there is more than one trait that satisfies the above rule, the agent will randomly select one from among these
traits. Flache & Macy (2011) find that this form of social influence helps to maintain a diversity of cultures and
in fact produces more culturally distinct regions as the grid size is increased, in contrast to Axelrod’s original
model where increasing grid size decreases cultural diversity and leads to a more mono-cultural state.

A probabilistic social influencemodel

2.3 Theanalysis of social influence studied in thisworkdi�ers from the influential earlierworks of Kuperman (2006)
and Flache & Macy (2011) in two important respects. First, the interaction rules considered in our model have
an intrinsic probabilistic component (based on a certain weighting of the agent’s local neighborhood) that ren-
ders agent-interaction outcomes less rigid compared to prior models employing deterministic rules with hard
cuto�s and fixed outcomes. Secondly, unlike those previous works, our analysis is highly focused on quanti-
fying the degree of cultural heterogeneity in a social influence network once it settles into an absorbing state,
and thus shouldbeviewedas complementary to thoseotherworks. Importantly,we introduceanumberof new
metrics for assessing theheterogeneity and relatedgeometric aspects of the absorbing stateswhichhavebroad
applicability. Our model also retains the original simplicity of Axelrod Model in that during any interaction an
agent will still only be able to switch its trait value for a specific feature to that of its selected neighbor, unlike
themore complicated scenario examined by Flache &Macy (2011) which considers a “modal” trait from a group
of neighbors and also incorporates the possibility of reversing an interaction. This simplicity yields some new
insights into the e�ects of social influence in such models, including the underlying dynamical mechanisms
responsible for the system’s behaviors.

2.4 We construct our Social Influence Model by introducing one extra step into the dynamical update rules used
in the original Axelrod Model. Just as before, we start by assuming a randomly selected agent i and one of its
neighbors (agent j) will interactwith probability given by Equation 4, thereby incorporating homophily into the
model. Assuming the pair do interact, a randomunshared feature f is then selected (i.e., a feature forwhich the
two agents have di�erent associated trait values). The new social influence component now comes into play as
follows: Rather than agent i automatically switching its trait value to match that of its selected neighbor (i.e.,
σfi → σfj ) as in the original Axelrod Model, instead agent i first surveys its local neighborhood to probabilisti-
cally assess how favorable such a switchwould be. In particular, the agent will be less inclined to switch its trait
to that of the selected neighbor agent j if doing so would lower agent i’s overall concordance on that trait with
all of its other neighbors. More precisely, letNi denote the local neighborhood of agent i, which is defined here
to include agent i’s four nearest neighbors (see Figure 1)plus agent i itself. Agent i surveys its neighborhoodand
counts the total number of its neighbors that share its trait value σfi . We refer to this number as the occurrence
Oi(σ

f
i ) of trait σfi , defined as:

Oi(σ
f
i ) =

∑
n∈Ni

δσf
n, σ

f
i
, (5)

where again δx,y signifies a Kronecker delta function. Agent i also counts up the total number of its neighbors
that share agent j’s trait value σfj ; the occurrence of trait σ

f
j , denotedOi(σ

f
j ), is given :

Oi(σ
f
j ) =

∑
n∈Ni

δσf
n, σ

f
j
. (6)

The probability Qfi,j that agent i will switch its trait value for feature f (i.e., σ
f
i → σfj ) is determined by the

relative number of occurrences of each trait in the agent’s local neighborhood, namely:

Qfi,j =
Oi(σ

f
j )

Oi(σ
f
i ) +Oi(σ

f
j )
. (7)

JASSS, 24(4) 5, 2021 http://jasss.soc.surrey.ac.uk/24/4/5.html Doi: 10.18564/jasss.4633



The basic idea behind the switching probability Qfi,j is that, owing to local social influence, if a person is sur-
rounded by many people who think like them on a particular issue, they would be less likely to assimilate to
a new viewpoint when interacting with someone holding that di�erent view. Likewise, a person holding an
outlier view not shared by most of their local neighbors may bemore amenable to switching.

2.5 To further clarify the e�ects of social influence, we highlight here some aspects of the switching probability
described by Equation 7. As a reminder, we reiterate that in the local trait occurrence counts (Equations 5 and
6) defined above, the summations are over agent i’s entire neighborhoodNi, which by definition includes not
only agent i’s four nearest neighbors but also agent i itself. So, for example, in the extreme case where agent i
andall of its neighbors except agent j share the same trait for the given feature f , then the switching probability
is relatively low, namely 1

5 (i.e., agent i is unlikely to change its trait since it is already in harmony with most
agents in its local neighborhood). On the opposite extreme, consider an agent who is entirely surrounded by
neighbors whom all share a common trait value which di�ers from that of agent i itself. In this case, the agent
is in the minority and the switching probability becomes quite large, namely 4

5 , indicating that the agent has a
high chance of assimilating. Note here, however, that the model allows for some degree of “stubbornness,” or
perhaps “free will,” since an outlier agent can still potentially retain its minority trait despite the homogeneity
of its local neighbors.

2.6 To summarize, in our Social Influence Model there is an event (i.e., the random selection of an agent i and one
of its neighbors j), an interaction probability Pi,j (determining if selected agents i and j will interact), and,
when an interaction does occur, a switching probabilityQfi,j (determining if agent iwill switch its trait value for
feature f to that of agent j). The switching probability incorporates the social influence of other agents in the
given agent’s local neighborhood.

Results and Discussions

3.1 In this section, we present our major observations and discuss the implications of the added social influence
factor compared to the original AxelrodModel. Our focus is on the level of cultural heterogeneity/homogeneity
produced once the system settles into a final absorbing state. This yields not only a better understanding of the
role of social influence in cultural dissemination, but also provides some deeper insights into Axelrod’s original
model.

3.2 For the ensuing discussion of heterogeneity/homogeneity, we first introduce some basic terminology 1. As the
agents on the lattice interact and evolve, distinct cultural regions candevelop. Here, a “cultural region” denotes
a group of adjacent, culturally identical agents which share all the same traits as one another at somemoment
in time. Cultural regions are generally somewhat fluid – they can morph and even dissolve owing to ongoing
interactions between the agents just inside the cultural region and the neighboring agents just outside the re-
gion. A slightly stronger concept is that of a “cultural zone,” which is a cultural region of identical agents with
the added property that the agents inside the zone have no traits in common whatsoever with agents that lie
just outside the zone’s border. This means that no direct interactions can occur between the agents just inside
and just outside the zone boundary since they share no common traits (see Equation 4). Hence cultural zones
tend tobemore stable structures than cultural regions. Note, however, that this doesnotmean that once a zone
forms it will remain intact throughout all time. Indeed, cultural zones can themselves evolve and even dissolve.
This is because outside agents which are not part of a cultural zone are continuing to update and change their
trait values, and eventually some of the agents which lie just outside the zone boundary (and which formerly
had no traits in commonwith the agents inside the zone) nowmight share some common traits with them – in
other words, the cultural zone has now gone back to being a cultural region in which the agents on either side
of the region’s border can interact and evolve owing to the presence of these common shared traits. Finally,
we note that once the entire system eventually settles down into its fixed, final configuration (the “absorbing
state”), all further spatiotemporal evolution ceases and the system essentially “freezes” into a set of distinct,
static, cultural zones. We refer to these as “frozen zones.” This is the asymptotic behavior that we will primarily
focus on; however, as we will show, to understand this asymptotic behavior it is necessary to also understand
the dynamical processes (i.e., the formation, dissolution, and evolution of cultural regions and zones) leading
up to the absorbing state.

Amplification of heterogeneity

3.3 Our first finding, illustrated in Table 1, concerns the number of distinct zones in the absorbing states. Data de-
rived from 100 runs of both the Social InfluenceModel and theAxelrodModel on a 30×30 grid, with five features
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(F = 5) and ten traits per feature (Q = 10), shows that the Social InfluenceModel hasmanymore frozen zones
compared to the corresponding Axelrod Model at those same parameter values.

Social Influence Model Axelrod Model
Average number of frozen zones 8.0± 0.3 1.34± 0.06
Average number of events 23,534,000 7,413,000

Average number of interactions 376,200 1,821,000

Table 1: Data from 100 runs of bothmodels with the grid size of 30× 30. Five features with ten traits per feature
were used; the simulations were run until an absorbing state was reached. Note the significant increase in
the number of frozen cultural zones with the inclusion of the social influence factor. Here, “event” refers to a
selection of an agent and one of its neighbors, and an “interaction” refers to an exchange of traits between the
selected pair.

3.4 Thenumerically observedamplificationof heterogeneity (i.e., increase in thenumberof frozen zones) under so-
cial influence compared to the AxelrodModel holds for a broad spectrumof di�erent parameter choices (F,Q),
as illustrated in Table 2. As is seen, direct comparison of the two models at the same parameter values shows
that the inclusion of the social influence factor increases heterogeneity compared to the Axelrod Model. We
seek to elucidate the dynamical mechanisms underlying this e�ect.

# of Frozen Zones
Social Influence Axelrod

(F,Q) = (5,5) 1.1 1
(5,10) 8 1.34
(5,15) 59 10
(10,5) 1 1
(10,10) 1.12 1
(10,15) 2.1 1.04

Table 2: Data from 50 runs of both Social Influence and Axelrodmodels with the grid size of 30×30 for di�erent
pairs of feature and trait values; the simulations were run until an absorbing state was reached. Note in partic-
ular that the number of frozen zones at any given set of parameter values (F,Q) is consistently higher in the
Social Influence Model than in the corresponding Axelrod Model (except for situations in which both models
exhibit a single mono-culture).

3.5 In broad intuitive terms, the increase in overall heterogeneitymight seemingly arise in part because, under the
action of social influence, the borders of a cultural region tend to be less susceptible to infiltration by outside,
neighboring agents. Consider, for instance, an agent just inside the border of a cultural region, and focus on
some particular feature f with trait value q. This agent shares this same trait value with all its neighboring
agents inside its cultural region. Thus, when that agent interacts with a neighbor with a di�erent trait value q′
residing just outside the cultural region, under the Social Influence Model the agent has only a low probability
of switching its trait valueQfi,j << 1 compared to Axelrod-likemodels where, in e�ect,Qfi,j = 1. Thus, without
social influence, boundaries between cultural regions tend to be more vulnerable to the introduction of new
traits, and the resulting dissolution of borders increases the likelihood that the final absorbing state will be
relatively homogeneous, or perhaps even mono-cultural. However, this simplistic description is insu�icient.
The actual dynamical portrait is more nuanced, and it is necessary to examine more deeply the underlying
mechanisms and processes by which distinct cultural regions and zones can form and evolve. In what follows
we isolate and adjust various parameters of themodels to better understand thesemechanisms responsible for
the increase in heterogeneity. Our work enjoys certain parallels with the important earlier findings of Flache &
Macy (2011) on thee�ectsof social influence. Although theSocial InfluenceModel studiedhere (andour focuson
thepropertiesof theabsorbingstate)di�ers fromthatof Flache&Macy (2011) inmultiple respects (e.g., the latter
incorporates selection error, “modal” traits, cultural perturbations, and a di�erent social interaction scheme),
nonetheless we will observe a qualitative harmony between the two models, which speaks to the robustness
of the underlying mechanisms responsible for the amplification of heterogeneity under social influence.

3.6 Before proceeding, we remark that some additional preliminary insight into the amplification of heterogene-
ity under social influence can be obtained by performing a type of sensitivity analysis, wherein one smoothly
transitions between the Social Influence Model and the original Axelrod Model. Recall that the key di�erence
between the twomodels is that in the former there is a socially derived switching probabilityQfi,j (see Equation

JASSS, 24(4) 5, 2021 http://jasss.soc.surrey.ac.uk/24/4/5.html Doi: 10.18564/jasss.4633



7) that is determined by howwell a given agent “fits” with its local neighbors, whereas in the Axelrodmodel the
e�ective switching probability is essentially unity. By introducing an auxiliary parameter α which varies be-
tween 0 and 1, we can define a modified switching probabilityW f

i,j via:

W f
i,j = (1− α)Qfi,j + α. (8)

Observe that settingα = 0 corresponds precisely to the Social InfluenceModel, while settingα = 1 reproduces
the Axelrod Model. By varying αwe can smoothly transition between the twomodels. As an illustration, Figure
2 shows the fractionof the lattice takenupby largest frozen zone as a functionofα; the increase in homogeneity
with α (i.e., as one moves towards the Axelrod Model) is clearly seen.

Figure 2: Fraction of lattice taken up by largest frozen zone versus α, with α = 0 (Social Influence Model) and
α = 1 (AxelrodModel). 100 trials were conducted for each value ofα. All trials were conducted on a 30×30 grid
with F = 5 features andQ = 10 trait values, until an absorbing state was reached.

3.7 In what follows we conduct a detailed examination of various facets of the Social Influence Model to better
understand the e�ects of social influence on cultural assimilation, and identify and analyze the underlying dy-
namical mechanisms responsible for the behaviors seen.

Heterogeneity and lattice size

3.8 One intriguing and relevant observation from the original Axelrod Model is its behavior over varying grid sizes.
As one can see in Figure 3, as grid size increases, the average number of frozen cultural zones in the Axelrod
Model initially increases, but as the grid size surpasses 6 × 6 the number of frozen zones begins to decrease
and eventually a mono-cultural state reigns, in which the majority of trials result in an absorbing state that is
completely homogeneous. In contrast, in the Social Influence Model – at those same parameter values F,Q –
the number of frozen zones continues to increase (somewhat linearly) with grid size. This qualitative distinc-
tion between the observed behaviors of the twomodels is surprising because the underlying di�erences in the
agent-agent interaction rules between the AxelrodModel and the Social InfluenceModelmay appear to be rela-
tivelymodest. Recall that the onlymodificationmade by the Social Influence Model is the inclusion of a simple
switching probabilityQfi,j < 1which takes into account an agent’s cultural a�inity with its local neighbors, un-
like the Axelrod Model. An analysis (below) of the underlying processes governing the formation and growth of
distinct cultural zones will help to clarify the distinctions that emerge in the behaviors of the twomodels under
the same parameter values F,Q, and ultimately help elucidate the mechanisms responsible for the amplifica-
tionof heterogeneity under social influence. Wenote that thebehavior displayed in Figure 3 alsooccurs at other
parameter values (F,Q); see, for instance, Figure 21 in Appendix Fwhich is taken at (F,Q) = (7, 15).Moreover,
as an additional point of comparison, we also constructed a di�erent social influence model (in Appendix E)
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- a stripped down version of an earlier social influence model by Flache & Macy (2011) - and observe a similar
increase in heterogeneity with lattice size, which suggests certain universal dynamical e�ects are at play.

3.9 Before delving into these causes, we briefly remark here that, from the interesting work of Castellano et al.
(2000, 2009)(see also Klemm et al. 2003), we know that in the original Axelrod Model the choice of simulation
parameter F = 5 lies on the “order” side of a non-equilibrium, order-disorder phase transition, in contrast to
whatwe observe (for the sameparameter choice) in our Social InfluenceModel. While the issue of the existence
and nature of phase transitions in such models is quite interesting and discussed further in Appendix C, it re-
mains somewhat outside the central focus of this paper. Instead, for purposes of understanding amplification
of heterogeneity under social influence compared to the Axelrod Model (as seen in Table 2 and Figure 3), we
concentrate on a detailed examination of the dynamical processes underlying zone formation in thesemodels.

Figure 3: Number of frozen cultural zones versus lattice size (where lattice size = (width)2). 100 trials were
conducted for each lattice width from 2 to 22; 50 trials each for lattice widths from 24 to 40; 20 trials for each
width from 50 to 100; and 10 trials for lattice width 120. All trials were conducted with F = 5 features and
Q = 10 trait values, until an absorbing state was reached.

3.10 In his original paper, Axelrod lays out two general mechanisms that govern the system’s behaviors at di�er-
ent grid sizes, and we will analyze these mechanisms in both the Axelrod Model and Social Influence Model.
The first mechanism, which we will refer to as a “multiplicity e�ect,” is fairly straightforward. The multiplicity
e�ect reflects the observation that the number of possible frozen cultural zones increases with grid size ow-
ing to the presence of more agents (i.e., borrowing language from statistical mechanics, more microstates are
possible with larger lattices). This explains the initial growth seen in Figure 3 in the number of frozen zones
for the Axelrod Model. But there is a second competing e�ect at play in the Axelrod Model which tends to
favor homogeneity at large lattice sizes. This second mechanism, which we will call “the dominant-regions
e�ect” is more complicated. Generally, this e�ect states that, given two similar regions that can interact, dur-
ing their subsequent dynamical evolution the larger region is more likely to completely eliminate the smaller
region than vice versa, leaving just a single cultural region. As Axelrod (1997) explains, this process can be
understood as follows: Imagine a simplified model with 10 agents in total, lined up along a one-dimensional
lattice. Suppose these agents have two cultural features, each with two possible trait values, 0 and 1. Next
imagine that, at the start of the simulation, the grid is divided into two cultural regions, where all agents on
the le� half of the grid are in cultural state [0, 0] while those on the right half are in state [0, 1], as shown:
[0,0] [0,0] [0,0] [0,0] [0,0] [0,1] [0,1] [0,1] [0,1] [0,1]. Any change to the current configuration of the system
will be initiatedby the twocenter agents on theboundary separating the twocultural regions. These twoagents
have an equal probability of being selected and having their cultural vector changed to that of the other agent,
leaving two possible outcomes, namely

[0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,1] [0,1] [0,1] [0,1] (9)
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or

[0,0] [0,0] [0,0] [0,0] [0,1] [0,1] [0,1] [0,1] [0,1] [0,1] (10)

3.11 Depending on the agent selected, one cultural region will grow and the other will shrink. The system will con-
tinue to evolve in this manner until one region completely absorbs the other and no further interaction is pos-
sible. Since only one pair of agents can interact at a time, and since they have an equal probability of being
changed, the entire scenario can be e�ectively modeled as a random walk. In the scenario described above,
both regions initially started with five agents, and thus either region is equally likely to absorb the other. How-
ever, if the initial sizes of the cultural regions were di�erent, then the probability of the larger region absorbing
the smaller onewould be higher because the larger regionwould have a shorter randomwalk. Thismeans that
the probability of a region absorbing another region varies directly with size. Although the above illustration
of the dominant-regions e�ect was for a very simple one-dimensional version of the Axelrod model, the same
basic premise could presumably hold for more complex, higher-dimensional models.

3.12 As a test of this idea, we conducted 1,000 trials of both the AxelrodModel and the Social InfluenceModel on the
(2-dimensional) lattice of agent states shown in Figure 4.

Figure 4: Le�: An initial configurationwith one large cultural region and several small regions which each share
only one common trait with the dominant region. Right: The most typical final configuration seen when the
system settles into the absorbing state.

3.13 Note that this starting lattice (on the le� of the figure) has one large dominant cultural region and five smaller
regions that each share only one trait with the dominant region. The simulations reveal that once the system
reached a final absorbing configuration, the result was a mono-culture in a large majority of the runs. Specif-
ically, the simulations resulted in a mono-culture in 75% of the runs for the Axelrod Model and in 90% of the
runs for the Social Influence Model. This indicates that the dominant-regions e�ect is at work in both models
(and appears in fact to be modestly stronger in the Social Influence Model). This e�ect helps to explain the de-
cline in the overall level of heterogeneity seen in the Axelrod model, since larger grids facilitate larger cultural
regions, and by the dominant-regions e�ect these larger regions will absorb the smaller regions around them,
becoming even more dominant as they grow, thereby creating a positive feedback loop that typically results
in a final, mono-cultural absorbing state. In short, for the Axelrod model we see that the multiplicity e�ect fa-
voring heterogeneity wins out over the dominant-regions e�ect for small lattice sizes, but for large lattice sizes
the dominant-region e�ects favoring homogeneity begins to predominate (Figure 3). However, this explanation
seems to fail for the Social Influence Model and in fact presents a paradox: Given that the dominant-regions ef-
fect is in fact moderately stronger in the Social Influence Model than the Axelrod model, why does the number
of frozen zones in the Social Influence Model continue to increasewith region size (Figure 3)?

3.14 To resolve this seeming paradox, we must examine more closely the cultural profile of the final mono-culture
and the underlying processes that led to it. The first key observation is that the cultural profile of the mono-
culture in the final absorbing state is not necessarily the same as the cultural profile of the initial dominant
region. As a dominant region absorbs the surrounding regions, it can sometimes adapt, taking traits from the
smaller regions before subsuming them. This occurredmore frequently in the AxelrodModel than the Social In-
fluenceModel (e.g., data associatedwith Figure 4 reveals thatwhen amono-culture formed, the final absorbing
state di�ered from the initial dominant region in about 63%of trials for the AxelrodModel but only in about 9%
of trials for the Social Influence Model). The reduced probability of trait exchange in the Social Influence Model
(owing to Qfi,j < 1) significantly increased the overall resistance of large cultural regions from changing as a
whole. This aspect of the Social Influence Model provides a clue in explaining its behavior, as we now describe.

3.15 To start, recall that a cultural region is a group of adjacent, culturally identical agents bordered by agents pos-
sessing a somewhat di�erent (but still overlapping) trait profile, whereas a cultural zone is a special case of a
cultural region in which the agents immediately outside the region’s border have no traits in common with the
agents inside the region. Accordingly, the agents inside a zone cannot directly interact with agents just outside
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the border. Hence zone borders, though they can change over time, tend to be more structurally stable than
regional borders. And it remains true that, by the dominant-regions e�ect, large zones, if they remain intact,
tend to absorb smaller regions over time.

3.16 Now consider the initial cultural matrix shown on the le� in Figure 5. It is composed of a dominant region (in
black), two smaller regions (orange and green), and a zone (in red).

Figure 5: Le�: A starting cultural matrix. The agents in black (with cultural trait profile [1 4 3 4 0]) form a large,
dominant region. The agents in orange ([0 4 6 5 4]) and green ([9 6 3 8 5]) form two smaller regions, and the
agents in red ([0 2 6 3 2]) constitute a zone. Right: Themost typical final configuration (i.e., absorbing state) that
results provided the red zone survives.

3.17 Focus on the behavior of the red zone. Although agents in the red zone are initially completely dissimilar to
the agents that border them and hence cannot directly interact with them, it is still possible for the red zone to
change over time and potentially be absorbed by the dominant region. To see how this can come about, note
that while the red region has no traits in commonwith the bordering black and green regions, it does share two
traits in common with the faraway orange region. And note moreover that the orange and green regions each
have a trait in common with the black region and hence can exchange traits with it. Therefore, it is possible
for an orange-region trait (for example, the middle “6” in [04654]) to partially infiltrate into the black region
and subsequently begin interacting with agents in the red zone, which previously was not possible. Likewise,
trait propagation is also possible via orange→ black→ green→ red. In this manner the initial red zone need
not always remain intact and in fact could ultimately be absorbed. In 10,000 simulations of the Axelrod model
(with initial cultural matrix shown in Figure 5, le�), the model produced a mono-culture in 68% of the runs;
19% of runs resulted in the dominant (black) region maintaining its original profile, meaning that it did not
pick up any traits from the orange [04654] region or green [96385] region when they were assimilated. The
original red zone ultimately disappeared via interactions with outside agents in about 70% of the Axelrod runs
(via the intermediary action of the black agents assimilating the traits from the orange region, i.e., through the
middle “6”). In contrast, in the Social Interaction Model, the red zone proved much more robust, and a mono-
culture was produced in only 38% of the runs. In 59% of the runs the dominant (black) region maintained
its original cultural profile (i.e., did not assimilate traits from the orange region it consumed). The red zone
remained unchanged in 62% of the runs, which also suggests a lack of trait assimilation.

3.18 These observations help explain why the Axelrod model results in declining numbers of frozen zones with in-
creasing grid size, while in the Social Influence Model the number of zones steadily increases (Figure 3). In
both models both the multiplicity e�ect (favoring heterogeneity as lattice size is increased) and the dominant-
regions e�ect (favoring homogeneity as larger cultural regions absorb smaller cultural regions) are atwork. And
indeed the the dominant-regions e�ect is actuallymore pronounced in the Social InfluenceModel. However, in
the Social Influence Model agents within neighboring regions are far less able to spread around cultural traits
in order to break zones (even though larger regions still have a tendency to absorb smaller regions). This resis-
tance results in stronger zones, which, in combinationwith themultiplicity e�ect, ultimately leads to an overall
increase in the number of frozen zones with lattice size in the Social Influence Model. Further elaboration and
additional related data is provided in the next two subsections. That said, despite this evidence we caution
that it would be premature to definitively conclude that this trend (Figure 3) is truly asymptotic, since for suf-
ficiently large lattice sizes (beyond those numerically explored here), the curve for the Social Influence Model
could ultimately turn back down owing to unanticipated nonlinear e�ects.

Zone size distribution

3.19 We next examine the distribution of the sizes of frozen cultural zones. Figure 6 shows the results a 30× 30 grid
with F = 5 andQ = 10 averaged over 100 runs. In both the Axelrod Model and the Social Influence Model, the
majority of frozen zoneswere either very small - i.e., consisting of just one or two agents - or very large, covering
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most of the lattice. But therewere some important di�erences. The Social influencemodel, for instance, exhib-
ited on average 3.8 single-agent zones per run, compared to just 0.2 single-agent zones for the Axelrod Model.
This can be understood as follows. Due to the exceedingly large number of possible feature/trait combinations
for an agent (FQ), during the initial randomsetup of the individual agents’ cultural profiles, the probability that
a given agent will have no traits in common with any of its nearest neighbors (and hence constitute a single-
agent zone) is (1 − 1/Q)4 ≈ 0.66. As described above, zone boundaries tend to be more robust in the Social
Influence Model and less likely to be subsumed by large surrounding regions, so we would expect more single-
agent zones to have survived once the system settles into an absorbing state compared to the Axelrod Model.

Figure 6: Frozen zone sizes versus number of occurrences for theSocial InfluenceModel (le�) andAxelrodModel
(right). Data is averaged over 100 runs on a 30 × 30 grid with 5 features and 10 traits per feature. In the Social
InfluenceModel histogram, the peak on the le� is associatedwith the appearance of small frozen zones, e.g., in
a typical run there are approximately 3.8± 0.2 single-agent zones on average.

3.20 In addition, observe from Figure 6 that the Social Influence Model had much greater variety in terms of sizes
of frozen zones. For this model, small zones of size 1 and 2 were common, with about 3.8 occurrences per run
and 0.9 occurrences per run respectively, along with a single large zone of size in the high 800’s. Notably, there
wereno zonesof size 900 in anyof the 100 runsof theSocial InfluenceModel, i.e., nomono-cultures. Amoderate
sprinkling of intermediate size zones is also seen. In contrast, in the Axelrod Model, mono-cultures appeared
in about 74% of runs, and intermediate-size zones containing between 13-885 agents were altogether absent.
As discussed previously, in the Axelrod Model, the dominant-regions e�ect results in larger regions tending
to consume smaller regions. As a result, almost none of intermediate-size regions survive once the system
settles. On theother hand, themore resilient borders betweencultural regions and zones in theSocial Influence
Model makes it more likely that smaller and intermediate sized regions will survive even in the presence of the
dominant-regions e�ect, resulting in amodest number intermediate-size zones in theabsorbing state. Wepoint
out that while our numerical data and analysis demonstrate that incorporating a social influence component
into the Axelrod Model does, rather intriguingly, produce greater cultural diversity, nonetheless we also note
that this diversity does not overwhelm and/or completely fragment the system in the parameter regimes we
are studying. For instance, while the Social Influence curve in Figure3 may superficially give the appearance
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of runaway growth in cultural diversity, this is not the case. Indeed, one sees from the data that for a 30 × 30
lattice with 900 agents, there are only about 8 distinct zones, and for a lattice with 14,400 agents there are only
about 22 zones, and moreover, in these cases there is typically just one very large cultural zone and the rest
tend to be relatively small. Likewise, Figure 6, while clearly illustrating the notable increase in diversity arising
from social influence, also shows that the number of single-agent zones remains rather modest (i.e., about 4
culturally isolated single-agent zones out of 900 agents). These observations are also reflected in the data in
Figure2.

Figure 7: Frozen zone size versus number of occurrences for the Social InfluenceModel (le�) and AxelrodModel
(right), computed for 1000 runs on an 8× 8 grid with F = 5 andQ = 10. This chosen grid size corresponds to
the turning point in Figure 3 in which the multiplicity e�ect and dominant-regions e�ect in the Axelrod model
balance.

3.21 It is also interesting to briefly consider frozen-zone size distributions using a small 8×8 lattice, which, as seen in
Figure 3, corresponds to the lattice size atwhich the averagenumberof frozen zones inboth theSocial Influence
Model and Axelrod Model are nearly equal. The zone size distributions are shown in Figure 7. Notably, we find
that these distributions are highly similar, suggesting that the di�erences in the dominant-region e�ects in the
twomodels first becomemanifest for grid sizes larger than 8× 8.

3.22 Lastly, we briefly comment here on the e�ects of neighborhood size on the heterogeneity of the absorbing state.
All of the preceding simulations were done assuming each agent (in the interior of the lattice) has 4 nearest
neighbors, i.e., that lie one unit away in the taxicab metric. One could instead imagine enlarging the neighbor-
hood size to 12, corresponding to neighbors which are two units away or less in the taxicabmetric. As wemight
anticipate based on prior work on the Axelrod Model, in the Social Influence Model we observe that increasing
the neighborhood size tends to decrease the average number of frozen zones. We also observe that while the
number of frozen zones decreases, the sizes of the smaller frozen zones tends to increase. Details on the e�ects
of increasing neighborhood size are described in Appendix D; see in particular Figures 18 and 19.
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Approach to the absorbing state

3.23 We next examine the dynamical progression of the system during its journey towards the final absorbing state.
Referencing Table 1, we first note that the Social InfluenceModel requires almost three times asmany events to
reachanabsorbing state, butwithapproximately five times fewer total interactions. For instance, for the chosen
simulation parameters, it takes the Social Influence about 23.5 million events and nearly 380,000 interactions
to reach an absorbing state while the Axelrod Model requires 7.4 million events and 1.8 million interactions.
These trends can be understood as follows: Recall that in the Axelrod Model the agents’ cultural profiles can
change more easily, and thus cultural regions and zones tend to be relatively fluid. Accordingly, the number
of interactions required for the system to finally settle into an absorbing state will be higher than in the corre-
sponding Social Interaction Model where agents and cultural boundaries tend to be more rigid. On the other
hand, each interaction in the Social InteractionModel will requiremore attempts (i.e., events) before it actually
occurs, since the probability that an event produces an interaction is lower (since Qfi,j < 1) than in the Axel-
rod Model, resulting in a larger number of events for the Social Interaction Model. But we can garner a deeper
understanding of the system’s behavior by examining the evolving cultural states as they progress towards the
final absorbing state. By recording the cultural profile of the system at di�erent stages of its evolution2, one
can visualize how agents form, destroy, and re-form borders over a period of time as illustrated in Figures 8
and 9. The Social Influence Model (Figure 8) tends to result in more isolated one-agent and two-agent zones
that form early on in the simulation and which remain isolated and intact all the way through to the absorbing
state. For instance, the two-agent zone in the upper-right corner of Figures 8 that appears sometimewithin the
first 260,000 events is able to survive, unchanged, for the nearly 10 million events that follow. Meanwhile, in
the AxelrodModel (Figure 9) one commonly sees dissolution of small zones (e.g., consider the two single-agent
zones in the upper-le� corner at 340,000 events), aswell as the dominant-regions e�ect inwhich larger cultural
regions tend to absorb smaller ones.

Figure 8: Social Influence Model: An example evolution from an initial state to the final absorbing state for a
30 × 30 lattice with F = 5, Q = 10. Black border lines indicate the agents on opposite sides have no traits in
common. Blue border lines of various shades represent between 2-4 shared traits (dark blue=4, light blue=2).
Absence of a border line between agents indicates the agents share identical cultural profiles.
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Figure 9: AxelrodModel: An example evolution froman initial state to the final absorbing state (for same system
parameters as in preceding figure).

3.24 Wenext track the number of cultural states in eachmodel over the course of their evolution to a final absorbing
state. Figure 10 shows representative examplesof theseevolutions. Observe that thenumberof cultural regions
in the Social Influence andAxelrodModel both initially decline sharply. However, the decline in Social Influence
Model tends tobe steep (e.g., it declines to 200 cultural regions a�er approximately 300,000eventswhereas the
Axelrod Model requires over 3,000,000 events to attain this same diminution) and then curve notably flattens
for a long period. In contrast, in the Axelrod Model, a�er the initial rapid descent, the decline continues in a
more moderate, relatively steady manner.
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Figure 10: Number of cultural regions vs. number of events for the Social Influence (orange) and Axelrod (blue)
models. Both represent typical runs on a 30× 30 grid with 5 features and 10 traits per feature.

Figure 11: Number of cultural regions vs. number of interactions for the Social Influence (orange) and Axelrod
(blue) models. Both represent typical runs on a 30× 30 grid with 5 features and 10 traits per feature.

3.25 As can be seen in Figures 8 and 9, regions of identical agents tend to rapidly form relatively early in both the
Social Influence and Axelrodmodels. This is because, due to the random assignment of initial traits, in the very
early stages of the simulation an agent is unlikely to be surrounded by a culturally similar neighbors, so the
social influence factor does not play a big role and thus the two models behave similarly (namely, the num-
ber of cultural regions declines rapidly as smaller regions are quickly assimilated by larger regions due to the
dominant-regions e�ect). However, in the Social Influence Model, a�er this rapid reduction in the number of
regions and zones, the subsequent rate of change slows dramatically since the social-influence e�ect is now
heightened in these remaining regions and zones as the agents harden against further change. Thus, a�er
the rapid drop in cultural regions, we see a slow decline in the number of regions until the absorbing state is
reached. In contrast, the Axelrod Model exhibits a steadier, more consistent decline in cultural regions because
the absence of the social-influence factor helps the boundaries between cultural regions and zones remain
malleable and less likely to freeze in place.

3.26 Lastly, wemention that as analternative to looking at themodel’s temporal evolution as a functionof events (as
in Figure 10), one could instead examine it as a function of events (see Figure 11). Both events and interactions
can serve as reasonable proxies for “time," and thus Figures 10 and 11 are qualitatively similar. The quantitative
di�erence in horizontal timescales in the two graphs is consistent with the numerical results of Table 1.
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Cultural Heterogeneity Metrics

4.1 Wenextwish toquantitatively characterize thenatureof theheterogeneity in the system, bothduring thecourse
of its dynamical evolution and a�er it settles into a final absorbing state. Inmost previousworks, as in Axelrod’s
original analysis, heterogeneity has been primarily characterized by simply counting up the total number of
distinct cultural regions and/or zones. While this serves as a very useful, basic tool, it throws away a great deal
of potentially important information about the regions and zones. For example, a latticewith three zones could
have twovery small zonesandonevery large zone that subsumesnearly theentiretyof the lattice, or instead the
lattice might have three zones all of approximately equal size. Simply counting the total number of zones will
not distinguish between these di�erent scenarios. Likewise, a simple count of zones provides no information
about the overall geometrical qualities of the frozen zones making up the heterogeneous absorbing state, and
in particular does not di�erentiate between heterogeneous states made primarily of geometrically compact
(e.g., square-shaped) frozen zones versus heterogeneous states whose frozen zones are highly filamentary in
shape and/or have very course boundaries. Such considerationsmotivate our desire to construct novelmetrics
to quantify di�erent aspects of heterogeneity in cultural dissemination models. We developed the following
three measures, each capturing a unique facet of the system’s heterogeneity (aka ‘disorder’).

• HeterogeneityMetric 1 describes the relative dissimilarity of each agent on the grid to its neighbors based
on di�erences in trait values.

• Heterogeneity Metric 2 is an entropic-basedmeasure taking into account both the number of regions and
their sizes.

• Heterogeneity Metric 3 measures the degree to which the frozen zones of a heterogeneous absorbing
state are geometrically elongated in shape and/or have very rough boundaries (versus being compact
and smooth).

Heterogeneity metric 1

4.2 Inspired by direct comparison in adjacent agents’ profiles, Vazquez et al. (2010) developed ametric for disorder
in a binary system, where each agent either spoke language X or language Y or both X and Y:

ρ =
1

2Nl

∑
〈i,j〉

1− SiSj
2

(11)

where Nl is the number of links in the network and Si and Sj represent the state of agent i and neighbor j,
respectively. Drawing from spin models, Vazquez et al. made Si and Sj either 1 or -1 depending on the state
of the agent (language X or language Y). Extending this basic idea, we developed an analogous metric for more
complex, non-binary systems such as ours, as follows:

ρ1 =
1

4N(N − 1)

N2∑
i=1

∑
j∈N ′

i

(
1− li,j

F

)
(12)

where N is the width of the square lattice, which implies 2N(N − 1) is the number of edges in the network
(assuming nearest neighbor connections), N2 is the total number of agents, li,j represents the trait overlap
between agent i and its neighbor j as defined previously in Equation 3, N

′

i denotes the agents in agent i’s
neighborhood (excluding agent i itself), and F is the number of features. Here, we are treating the square
lattice as a network, where each agent is connected by an edge to its closest neighbors (i.e., precisely those
agents with whom it can directly interact).

4.3 The above metric ρ1, by design, compares each agent to each of its neighbors, and counts up the number of
features that it does not share the same trait values with. This is repeated for all agents in the lattice. The result
is then normalized, so that the resulting metric ρ1 is a number between 0 and 1 that quantifies the relative
dissimilarity of each agent on the lattice to its neighbors, with 1 representing complete disorder (i.e., no agent
shares any of the same trait values with any of its neighbors) and 0 representing complete order (i.e., every
agent has the same trait value for each feature).
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Heterogeneity metric 2

4.4 A second method of characterizing disorder is borrowed from statistical physics and is based on the idea of
configurational entropy (see, e.g., Jaynes 1978). In the present context of cultural dissemination models, given
the observed number and sizes of the cultural regions, we first estimate the number of possible geometrical
rearrangementsof these regionson the lattice. This numberof rearrangements, called themultiplicityΩ, will be
relatively small for lattices containing just a few, fairly large regions, andwill be very high for lattices containing
many small regions. We thendefine the entropy of the system to be ln(Ω), and use this as a newdisordermetric
for such systems.

4.5 Due to the complexity of calculatingall possible lattice configurations for a given set ofM regionsof sizesSi, i =
1 . . .M , several assumptions are used to simplify the computation of Ω. First, the regions are all assumed to
be relatively square in shape 3, as seen in the upper and lower le� images of Figure 12. This greatly simplifies
the problem, as re-arranging squares on a lattice is much simpler than reorienting mismatched “Tetris" pieces
(see, e.g., the upper right image of Figure 12).

Figure 12: The two lattices on the le� and the one on the upper right depict absorbing states for di�erent runs.
The lower right image indicates howwe approximate the shape of a region.

4.6 Second, to account for the space in the lattice being taken up by the regions of di�erent sizes, we start with an
empty lattice and imagine sequentially filling it, beginning with the smallest region andmoving on to progres-
sively larger regions. At each step in this iterative process, we look at the remaining space available in the lattice
and treat this remaining space as though it were a smaller, square lattice, and then compute howmany config-
urations are available to the current region as we insert it into this reduced lattice. We continue in this manner
until the largest region has been inserted, at which point the full lattice is filled. Themotivation for sequencing
from small to large is based on the observation that small regions are e�ectively unconstrained in where they
can appear within the lattice - e.g., a small region can easily appear as an island within a larger region. In other
words, large regions are not e�ective at blocking small regions (see, for instance, the lower le� graph of Figure
12).

4.7 Given these considerations, the metric itself is constructed as follows. Assuming that all regions of size Si are
squareswith sides of length

√
Si (whereSi+1 ≥ Si for i = 1...M ), that the original lattice has sizeN2with sides
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of lengthN , and thatN2
i denotes the amount of lattice space remaining immediately prior to the insertion of

region i (where N1 = N ), then, as seen in the lower right image of Figure 12, region i can be positioned in
(Ni−

√
Si + 1)2 distinct ways. Note that as regions are sequentially inserted, the remaining space at each step

is (N2
i+1 = N2 −

∑j=i
j=1 Sj). Hence the total number of possible configurations forM regions of sizes Si with

i = 1, . . .M under the given assumptions is:

Ω =

M∏
i=1

(Ni −
√
Si + 1)2, (13)

and since entropy is ln(Ω), we therefore have:

ln(Ω) = 2

M∑
i=1

(Ni −
√
Si + 1) (14)

For convenience, we normalize this (so that its maximum possible value is 1) by dividing by the maximum pos-
sible entropy value, ln(N2!), which occurs when every agent is dissimilar from its neighbors. We thus define
our entropic heterogeneity metric to be:

ρ2 =

2
M∑
i=1

ln(Ni −
√
Si + 1)

ln(N2!)
(15)

whereN2
i+1 = N2 −

∑j=i
j=1 Sj and S1 ≤ S2 ≤ . . . ≤ SM .

4.8 We note that metric ρ2 is particularly sensitive to the number of small regions present in the system, since
each of these can significantly increase themultiplicityΩ. This sensitivity is somewhat obscured by the natural
logarithm that appears in the entropy, and further still by the normalization factor (sincemost absorbing states
are nowhere near being maximally heterogeneous). Nonetheless, as a heterogeneity metric the relative size of
ρ2 is strongly influenced by the number of small regions in the system.

Heterogeneity metric 3

4.9 While the previous two metrics ρ1, ρ2 are useful for quantifying the average degree of dissimilarity between
agents and the configurational entropy associated with the number and sizes of cultural regions on the lattice,
neither provides direct information regarding the geometrical shapes of the di�erent regions. For instance, re-
gions or zones could potentially be elongated and filamentary in appearancewith rough boundaries, or instead
perhaps relatively compact with smooth boundaries. We thus introduce a newmetric to characterize this geo-
metric aspect of heterogeneity. The construction is fairly straightforward, and utilizes the fact that filamentary
regions and/or regions with su�iciently coarse boundaries will tend to have a high fraction of agents on their
border (relative to interior agents), whereas for compact regions with smooth boundaries this fraction will be
much smaller. We define Bi to be the number of border agents for region i; it is computed by summing up
(over all agents in region i) the total number of external agents with whom an agent in region i shares a border.
Note that in this counting process some external agentswill be countedmore than once if they happen to share
borders with multiple agents in region i. If region i with size Si were perfectly square in shape with smooth
boundaries and thus maximally compact, it would have 4

√
Si bordering agents. Thus the ratio Bi/4

√
Si is a

measure that reflects both the degree of elongation and the roughness of the boundaries of a region compared
to amaximally compact region of the same size. We then average this ratio over allM regions in the lattice, and
then subtract one from this average in order to measure the deviation of the regions’ geometry from perfectly
smooth, compact squares. This yields the metric

ρ3 =

(
1

M

M∑
i=1

Bi

4
√
Si

)
− 1, (16)

where Bi is the number of border agents, Si is the size of the region andM is the total number of regions.
Note that ρ3 = 0 if all regions are square, and becomes larger the rougher and/ormore filamentary the regions
become. Note also that in the averaging process used to define ρ3 we do not weight the regions by size, but
instead employ equal weighting of all regions; were this not done a single very large (and relatively compact)
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regionwould dominate the sumand thereby obscure significant geometric information about the shapes of the
potentially large numbers of small regions in the lattice.

4.10 Lastly, we remark on some of the scaling properties of this geometrical heterogeneitymetric. Consider a lattice
of sizeN ×N containingM regions of various sizes and shapes. Now imagine simply enlarging the size of the
lattice along with all the regions therein (while keeping the number and the shapes of the individual regions
the same). Under this enlargement observe that ρ3 will remain unchanged, as expected, given that the overall
shapes of the regions have been maintained. However, consider instead the case in which a particular region
becomes progressively narrower (relatively speaking) as the lattice grows. For instance, consider a long rectan-
gular strand of width one that runs the length of the lattice (i.e., sizeN × 1), and suppose that asN increases
the width of this region remains one. Such a region thus becomes more and more filamentary in form as the
lattice grows. In this case, the extreme geometry of this filament will dominate the metric ρ3, and it is easy
to show that the metric will scale as ρ3 ∼

√
N . While we do not expect such filamentary strands which span

the entire lattice to actually arise inmodels of the type considered here, nonetheless this argument shows that
progressively roughening the boundary of a region will lead to a larger ρ3.

Disorder/heterogeneity analysis

4.11 We next use the above three heterogeneity metrics to gain deeper insights into the behaviors of the Social In-
fluence and the Axelrod models, and in particular to better understand and quantify the emergence of hetero-
geneity.

Figure 13: Heterogeneity metric values ρ1, ρ2 versus rescaled time (where ‘time’, which runs from 0 to 1, is ex-
pressed as the fraction of events occurring before the absorbing state is reached) for the Social InfluenceModel
(le�) and Axelrod Model (right). Each curve was constructed by averaging over 100 runs on an 30× 30 grid.

4.12 In Figure 13, we can see a clear distinction between the Social Influence and Axelrod models for the first two
disorder metrics. In the Axelrod Model (right), both disorder metrics asymptote (at time=1) very close to zero,
indicating the preponderance of a single ordered (homogeneous) absorbing state in a large fraction of the runs.
The asymptotic values of ρ1, ρ2 for the Social InfluenceModel are also very close to zero, though they do remain
higher those for the Axelrodmodel (this small di�erence is somewhat obscured in the figure owing to the scale
of the graph, and the normalization used for the metrics).

4.13 More interestingly, if instead we focus on the temporal evolution of these metrics rather than their asymptotic
values, we see another revealing di�erence between the twomodels. Both models show a sharp initial drop in
disorder followedby longplateaus, butobserve that thisdrop-o� ismore rapid in theSocial InfluenceModel. We
canunderstand this finding as follows: In the Social InfluenceModel, owing toneighborhood interactions zones
tend to form relatively quickly, andonce formed tend to bedynamically robust, so that subsequent changes are
slow and relatively minimal, which explains the long plateaus seen in the le� image of Figure 13. In contrast, in
the Axelrod model many more regions form initially which are more susceptible to subsequent changes com-
pared to zones, and hence the temporal evolution continues for a longer period of time, resulting in a more
gradual, steadier tapering o� of disorder compared to the extended plateaus in the Social Influence Model.
This e�ect is accentuated in the behavior of disorder metric ρ2.
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Figure 14: The metric ρ3 versus time (where time is expressed as a fraction of events occurring before the ab-
sorbing state is reached). Results are shown for the Social Influence Model and Axelrod Model, each averaged
over 100 runs on a 30× 30 grid.

4.14 A di�erent aspect of the system behavior is revealed by the geometrical metric ρ3, shown in Figure 14. For both
models, the initial rapid rise of ρ3 from nearly zero is readily understood: When the system is initialized at the
start of the simulation, all agents are assigned random trait values, meaning that there will be a large number
of single-agent regions and zones (which are all perfectly square-shaped and smooth), and hence ρ3 starts o�
near zero. But as these regions and zones begin to interact, evolve, and merge, their shapes increasingly devi-
ate from that of a square (via some combination of either coarsening of their boundaries and/or elongation),
resulting in a growing value of ρ3. Following the initial rapid rise in ρ3, observe that the Social Influence Model
plateaus whereas the Axelrod Model continues to steadily increase. This is consistent with the relatively rapid
formation of robust zones in the former, compared to predominance of susceptible-to-change regions in the
latter. An interesting new phenomena is revealed by metric ρ3 at the very end the simulations just before the
systems freeze into an absorbing state. In both models one sees a rapid drop in the value of the metric, indi-
cating that rough or filamentary regions and zones are being eliminated. However, this e�ect is strikingly more
pronounced in the Axelrod Model (Figure 14). We can attribute this to the dominant-regions e�ect, in which
small, non-compact regions are being quickly eaten by a large, dominant region; in the Social Influence Model
this occurs to a much lesser extent owing to the higher prevalence of zones (compared to regions). A comple-
mentary insight 4 is that the Axelrod model can be viewed as F coupledQ-state voter models without surface
tension, whereas the interactionwith the local field (all neighbors) in the Social InfluenceModel introduces sur-
face tension. This would be expected to produce rougher boundaries in the Axelrod case and smoother ones
in the Social Influence Model, which is consistent with the former’s higher peak value in Figure 14 prior to the
collapse.

Conclusions

5.1 In conclusion, ourmodelhasallowedus toanalyze the implicationsof local social influence in thedissemination
of culture across a society, and has unveiled some interesting features. Most notable is the overall amplification
of heterogeneity seen in the final absorbing state. In other words, the more one allows individual agents to be
influenced by other agents in their local environment, the less homogeneous the resulting society becomes.
The detailed, underlying mechanisms elucidated in this paper responsible for this counter-intuitive result can
be qualitatively understood, at least in part, as follows: While caring about your neighbor’s opinions will ini-
tially make you more likely to assimilate your views to theirs, once you do so your opinions will be less likely
to switch in the future since there is now a consensus belief in your local environment. In this manner, social
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influence produces a hardening of opinions within local zones that are relatively robust to external influences.
However, as our simulations and analysis have revealed, the underlying dynamical mechanism responsible for
this amplification of heterogeneity is both rich and nuanced. As shown, it involves a competition between the
di�usion-based “dominant-regions” e�ect that promoteshomogeneity through theabsorptionof small regions
by larger ones, and a local social-influence e�ect that makes cultural zones (even small ones) more robust to
infiltration by bordering regions. We remark that a related observation of enhancement of heterogeneity via
social influence was previously noted in an interestingmodel developed by Flache &Macy (2011). Although the
overall focus and implementation of neighborhood-based social influence in themodel of Flache &Macy (2011)
di�ers from themodel studied here in multiple respects (e.g., the former incorporates selection error, “modal”
traits, cultural perturbations, and a di�erent social interaction scheme) – thereby making direct comparisons
somewhat di�icult – nonetheless there are strong parallels in the underlying mechanisms responsible for am-
plification of heterogeneity, suggesting that these social-influence-driven mechanisms must be fairly robust
and likely do not depend too strongly on the details of the model.

5.2 Our analysis also sheds somemodest new light on the inner dynamics of the original Axelrod Model, which in-
corporated the e�ects of homophily and assimilation but not the e�ects of collective local opinion as described
here. In particular, while Axelrod pointed out that a zone could eventually be penetrated by a far-away region
(through intermediary agents), and that there is a dominant-regions e�ect whereby big regions “eat” neigh-
boring small regions, we have shown how the interplay between these two e�ects plays a critical dynamical
role in the behavior of each model. In particular, in Axelrod’s model this interplay frequently leads to a conver-
gence to a purely homogeneous state, whereas this interplay is significantly weakened by the introduction of
a social influence factor into our model, making it di�icult for distant regions to break large zones, leading to
greater heterogeneity. Additionally, in our analysis we have numerically explored a two-dimensional version of
Axelrod’s qualitative, one-dimensional di�usion argument as the basis of the dominant-regions e�ect. Lastly,
our findings relating to lattice size and boundary e�ects (presented in greater detail in the Appendices below)
expand our understanding of Axelrod’s original work in this regard. In particular, Axelrod noted how boundary
e�ects became progressively less important as lattice size increases. However, this proves not always to be the
case. In Figure 3, for instance, we noted how, in the Social Influence Model, the number of frozen zones ap-
pears to increase with lattice size (as opposed to the Axelrod model in which it saturates and then decreases).
However, if we were to remove the boundary walls of the lattice by imposing doubly periodic boundary con-
ditions (e�ectively wrapping the grid into a torus), we observe that the number of frozen zones in the Social
Influence Model drops o� significantly compared to the case with boundary walls (see Figure 16). This shows
how boundary e�ects can still play an important role even in large systems.

5.3 Finally, in this work we also developed three novel heterogeneity metrics which, in addition to providing di-
rect insights into the cultural dissemination process in our Social InfluenceModel and Axelrod’s originalmodel,
also have potential utility across a broad spectrum of cultural dissemination models in general. The first of
thesemetrics examines the level of di�erence between neighboring agents; the second is an entropic measure
that takes account of the numbers and sizes of the distinct regions and computes the level of configurational
disorder in the system; the third provides direct information about the geometric qualities of the di�erent re-
gion/zone shapes and quantifies how filamentary and/or rough they are (vs. being geometrically compact and
smooth). This last metric, for example, revealed a previously unrecognized dynamical attribute of Axelrod’s
original model - the rapid dissolution, compactification, and/or smoothening of small zones in the final stages
of the cultural evolution - and also revealed how this e�ect is mitigated by the action of local social influence.

Model Documentation

The model was built in Python. The code is available at this link: https://www.comses.net/codebases/
dda2d2ac-0cf9-46f6-a213-e0a9a30378ed/releases/1.0.0/.

Appendix A: A remark on the e�ect of the non-overlapping neighbors

Recall that in our model the social influence of an agent’s neighbors took the form of a switching probability
Qfi,j as described in Equation 7. In this construction, we note that neighbors whose trait values di�ered from
that of both the selected agent and the selected neighbored did not factor into the calculation of the switching
probability. The motivation for ignoring these “non-overlapping” neighbors was that they assumed the role of
third-party candidates whose own trait values were irrelevant when directly deciding between the trait values
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σfi and σ
f
j of the selected agent and neighbor. However, it is reasonable to consider the ramifications of includ-

ing the non-overlapping neighbors, since their presence indicates a greater diversity of views within that local
neighborhood, which in turn could conceivably enhance agent i’s willingness to switch its own trait values, at
least to a certain extent. We canmodel this by introducing a modified switching probabilityQ′f

i,j as follows:

Q′f
i,j =

Oi(σ
f
j ) + 1

2

[
|Ni| −Oi(σfj )−Oi(σfi )

]
Oi(σ

f
i ) +Oi(σ

f
j ) + 1

2

[
|Ni| −Oi(σfj )−Oi(σfi )

] , (17)

where |Ni| is the total number of neighbors of agent i (including agent i itself), |Ni| − Oi(σfj ) − Oi(σfi ) rep-
resents the number of non-overlapping neighbors, and 1

2 is a weighting factor. Comparing this with Equation
7, we see that this modified expression is similar in spirit to the original switching probability, except now the
non-overlapping neighbors (i.e., the bracketed terms in Equation 17) also exert a certain (albeit more limited)
degree of influence. Note in particular that if the weighting factor 1

2 were instead chosen to be 0, we would
recover the original switching probabilityQfi,j described by Equation 7.

To explore the implications of this, we conducted a series of numerical simulations on the Social Influence
Model using this modified switching probability Q′f

i,j . We found that the inclusion of these non-overlapping
neighbors into the model yielded no significant qualitative changes in the model’s overall behavior. The only
quantitative di�erencewas amodest reduction in number of frozen zones compared to our original Social Influ-
ence Model - a result which could be readily anticipated given thatQ′f

i,j ≥ Q
f
i,j , meaning that the modification

to the switching probability e�ectively reduces an agent’s resistance to change.

Figure 15: Number of frozen cultural zones versus lattice size (where lattice size = (width)2). 100 trials were
conducted for each latticewidth from2 to 22; 50 trials each for latticewidths from24 to 40; and 20 trials for each
width from 50 to 100. All trials were conducted withF = 5 features andQ = 10 trait values, until an absorbing
state was reached.

Appendix B: A remark on boundary conditions

In our standardmodel, agents’ neighbors only include those individuals directly adjacent to them. Most agents,
being located in the interior of the lattice, will therefore have four immediate neighbors. However, agents along
the boundaries of the square latticewill have fewer neighborswithwhom todirectly interact (i.e., corner agents
only have twoneighbors; agents on theboundary’s edgehave three). Sinceboundary e�ects are known to influ-
encedynamical evolution in cultural disseminationmodels (Axelrod 1997; LaBerge et al. 2020), it is important to
understand, and potentially minimize, their impact. There are two natural means of mitigating such boundary
e�ects. The first is to increase overall lattice size, which increases the proportion of interior agents to boundary
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agents. The second is to impose doubly periodic boundary conditions on the square lattice, thereby turning the
square into a torus. While this latter method has the drawback of being topologically unrealistic, it nonethe-
less has two key virtues: uniformity, in that all agents have precisely four neighbors with whom to interact, and
ease of numerical implementation, since it does not require using progressively larger lattice sizes. We examine
both cases - varying both lattice size andboundary type (periodic vs. non-periodic) for both the Social Influence
Model and Axelrod model. Results are illustrated in Figure 16.

Figure 16: Average number of frozen zones in the absorbing state versus lattice size (where lattice size =
(width)2). 100 simulations were performed for each width in the range 2 to 22, 50 simulations for widths from
24 to 40, and 20 simulations for a width of 50.0.

It is clear that in both the Social Influence Model and Axelrod Model the presence of fixed (square) boundaries
enhances the formation of frozen zones - when these boundaries are removed through the introduction of pe-
riodic boundary conditions the number of frozen zones drops in both cases. This is as expected, since previous
studieshaveelucidated themechanismbywhichboundaries can increaseheterogeneity (Axelrod 1997; LaBerge
et al. 2020). More interesting is the overall behavior of the Social Influence Model with fixed boundary condi-
tions versus periodic boundary conditions. Here we see that although the presence of periodic boundary con-
ditions significantly curtails the growth in the number of frozen zones, nonetheless the total number of frozen
zones in the periodic boundary case continues to slowly increase with lattice size (unlike the Axelrod model).
We can understand this as follows: As argued earlier (see Section “Heterogeneity and Lattice Size”), although
the dominant-regions e�ect for large lattice sizes is in operation in both the Social InfluenceModel and Axelrod
model, in the former model the agents in more distant regions are less able to propagate their cultural traits in
order to break zones. The resulting robustness of zones leads to a higher total number of frozen zones in the
absorbing state. Hence, for the Social Influence Model with fixed boundaries, the number of frozen zones will
increase with lattice size. With periodic boundaries, the same general phenomena is occurring, but now the
dominant-regions e�ect is enhanced by the lack of boundaries because large regions are now free to expand in
all directions, no longer being confined by rigid boundary walls. However, while this lowers the overall number
of frozen zones compared to the rigid boundary case, it is still not su�icient to prevent an overall increase in the
number of frozen zones with increasing with lattice size since distant regions still cannot propagate their traits
e�iciently enough to break zones.

Appendix C: Order-disorder phase transition

In Figure 3, we directly compared lattice-size e�ects in the Axelrod and Social Influence models for the same
parameter values (F = 5 and Q = 10) and noted qualitatively distinct behaviors. It is known from the work
of Castellano et al. (2000) and Klemm et al. (2003) that certain cultural dissemination models are capable of
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exhibiting order-disorder phase transitions. In particular, Castellano et al. (2000) showed that in the Axelrod
model there is a first-order, discontinuous phase transitionwheneverF > 2. Although somewhat peripheral to
ourmain study, we numerically reproduce here this phase transition (for the caseF = 5) for the AxelrodModel,
and then directly compare its behavior to that of the Social Influence Model taken at the same parameter value
F = 5. Our results are shown inFigure 17. As seen fromthe figure, for theAxelrodmodel there is adiscontinuous
transition in the limit of large system size, wherein for small numbers of traits Q the absorbing state is in an
“ordered” phase inwhich there is a single, dominant frozen zone that subsumesmost of the lattice, while in the
disordered phase (higherQ) no such dominant frozen zone exists. In contrast, for the Social Influence Model at
F = 5 there does not exist a corresponding discontinous (first-order) transition. Importantly, for purposes of
our investigation, we intentionally always make the direct comparison between the two models’ behaviors at
the same parameter values so as to isolate the e�ects of the social influence factor under the same conditions
(since our focus is on analyzing the dynamical processes leading to zonal formation in the two models when
their underlying structure (F,Q) is identical). And as noted previously, at (F,Q) = (5, 10)we see from Figure
3 an intrinsic di�erence between the two models in the growth in the overall numbers of frozen zones with
lattice size (associatedwith the presence/absence of a social influence factor), as explained by themechanisms
described in Section 3.7. Nonetheless, an ancillary yet highly interesting issue (albeit outside the scope of the
present work) remains – namely, whether or not the Social Influence Model can also display discontinuous
phase transitions at other parameter choices, andmoreover, whether itmight be possible to somehowmap the
Social Influence Model onto the Axelrod Model by appropriately rescaling the parameter values (which in turn
might perhaps even allow one to identify certain universal features common to both models, such as scaling
exponents). This is le� for future investigation.

Figure 17: 50 trials were conducted for each lattice width of 30 by 30. All trials were conducted with F = 5
features, until an absorbing state was reached. The x-axis is the number of traits per feature while the y-axis is
the ratio of the size of the largest frozen region in the absorbing state to the total size of the grid (e.g., 900).

Appendix D: Increase in neighborhood size

In the AxelrodModel, it is known that an increase in neighborhood size tends to decrease the overall number of
frozen regions. The introduction of a social-influence factor into the model would not be expected to alter the
mechanism responsible for this behavior. As a test, we increased the neighborhood size from four to twelve in
themodels and reproduced Figure 3; see Figure 18. Although we see the expected decrease in overall numbers
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of frozen zones, the same qualitative trends prevailed.

Figure 19 shows the distribution of zone sizes for the original neighborhood size (4) and the expandedneighbor-
hood size (12). For the expanded neighborhood, observe that there are fewer frozen zones per run on average
compared to the smaller neighborhood. Moreover, an expanded neighborhood leads to a higher occurrence of
moderate-size zones (e.g., of sizes 20-200).

Figure 18: Average number of frozen zones in the absorbing state versus lattice size (where lattice size =
(width)2). 100 simulations were performed for each width in the range 2 to 22, 50 simulations for widths from
24 to 30.
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Figure 19: Neighborhood Size E�ects. Frozen zone sizes versus number of occurrences for the Social Influence
Model with neighborhood sizes of 4 (le�) and 12 (right). Data is for a 30×30 gridwith 5 features and 10 traits per
feature, and is averaged over 100 runs for neighborhood size 4, and over 50 runs for neighborhood size 12. The
average number of frozen zones is 8.0 for the smaller neighborhood size and 6.7 for the larger neighborhood
size. However, as neighborhood size increases and diversity decreases, the occurrences ofmoderate-size zones
(e.g., sizes 20-200) increases.

Appendix E: Amplification of heterogeneity in other models with Social
influence

In our Social Influence Model we observed (see Figures 3 and 6) a marked increase in diversity compared to
the original Axelrod model owing to the introduction of a neighborhood-based social-influence factor into our
model. It is interesting to test how sensitive this finding is to the details of the particular social-influence factor
weused. Towards this end, wenumerically examined the corresponding behavior in an earlier social-influence-
type model first studied by Flache & Macy (2011). In order to make this comparison, we first stripped down the
Flache & Macy (2011) model by removing a perturbative component in the model that allowed it to evolve in-
definitely. By removing this component, an absorbing state can be reached and the number of frozen zones
counted.Flache & Macy (2011) anticipated that there should be an increase in heterogeneity associated with
their social-influence factor. We confirmed this finding - see Figure 20 - but observed some features which war-
rant discussion. Most notably, a comparison of Figure 20 with Figure 3 shows that the while both models ex-
hibit similar qualitative amplification of heterogeneity with lattice size, the actual number of frozen zones in
the Flache & Macy (2011) model is manyfold larger. We believe this can be traced to an essential di�erence in
how social influence is incorporated into each model. In our Social Influence Model, the algorithm is such that
the systemwill always evolve into an absorbing state inwhich the agents in a given frozen zone never share any
trait values in commonwith agents in a neighboring frozen zone. However, in the Flache &Macy (2011) scheme,
the social-influence algorithm employed uses a type of minimum-threshold update rule. This in turn means
that once an absorbing state is reached, it is possible that the agents in one frozen zone may still have a trait
value for a given feature which is the same at that of an agent in an adjacent frozen zone. Owing to this possi-
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bility of ‘trait overlap’ between frozen zones, the resulting total number of frozen zones in this case is notably
larger than in the Social Influence Model. Despite these quantitative di�erences, however, we emphasize that
both social-influence schemes produce an increase in diversity with lattice size, suggesting that despite quan-
titative di�erences, the underlying qualitative mechanism promoting diversification operates similarly in both
systems.

Figure 20: Number of frozen cultural zones versus lattice size (where lattice size = (width)2) for a stripped-
down version of amodel introducedby Flache et al. (2011). 100 trialswere conducted for each latticewidth from
2 to 22; 50 trials each for lattice widths from 24 to 40; and 20 trials for lattice width 50. All trials were conducted
with F = 5 features andQ = 10 trait values, until an absorbing state was reached.

Appendix F: Lattice size e�ects for other parameter choices

As noted in Table 2, there is an overall amplification of diversity associated with social influence for a variety of
di�erent parameter (F,Q) choices in comparison to the Axelrod Model (save for parameter choices producing
a monocultural absorbing state). Figure 3 in the main paper, taken at (F,Q) = (5, 10), illustrates the interplay
between amplification and lattice size. Figure 21 illustrates analogous behavior at a di�erent parameter choice,
(F,Q) = (7, 15).
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Figure 21: Number of frozen cultural zones versus lattice size. 100 trials were conducted for each lattice width
from 2 to 22; 50 trials each for lattice widths from 24 to 40; and 20 trials for lattice width 50. Orange and blue
trials were conducted withF = 5 features andQ = 10 trait values while gray and yellow trials were conducted
with F = 7 features andQ = 15, until an absorbing state was reached.

Notes

1The definitions of cultural regions and zones used here are not the same as those used in Axelrod’s original
work (Axelrod 1997)

2Guided by the average number of events to reach the absorbing state.
3Fortunately, this kind of scenario occurs fairly frequently in our simulations, particularly once the system

settles into an absorbing state.
4We thank an anonymous referee for this insight.
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