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Overcrowding of emergency departments (EDs) is a problem that affected many hospitals especially during the response to
emergency situations such as pandemics or disasters. Transferring nonemergency patients is one approach that can be utilized to
address ED overcrowding. We propose a novel mixed-integer nonlinear programming (MINLP) model that explicitly considers
queueing effects to address overcrowding in a network of EDs, via a combination of two decisions: modifying service capacity to
EDs and transferring patients between EDs. Computational testing is performed using a Design of Experiments to determine the
sensitivity of the MINLP solutions to changes in the various input parameters. Additional computational testing examines the
effect of ED size on the number of transfers occurring in the system, identifying an efficient frontier for the tradeoff between
system cost (measured as a function of the service capacity and the number of patient transfers) and the systemwide average
expected waiting time. Taken together, these results suggest that our optimization model can identify a range of efficient al-

ternatives for healthcare systems designing a network of EDs across multiple hospitals.

1. Introduction

Overcrowding in hospital emergency departments (EDs) is
recognized as a serious problem in many countries around
the world [1] and affected many hospitals especially during
the response to emergency situations such as pandemics or
disasters [2]. Overcrowding occurs when the arrival rate of
patients exceeds the ED’s available capacity [3]. One con-
tributing factor to overcrowding in the USA is a reduced
supply of EDs; from 1995 to 2016, although the number of
ED visits increased by 51 percent, the number of EDs de-
creased by 12 percent [4]. Other key factors which cause
overcrowding in the USA are the aging population, limited
access to medical care from other providers, the safety net,
seasonal illness, surgical scheduling, and high utilization of
ED for nonemergency care [5,6]. Overcrowding has some
negative outcomes for both patients and service providers
[7]. Patients may face prolonged pain and long waiting times

which leave them unsatisfied [1, 8, 9]. According to the
National Hospital Ambulatory Medical Care Survey in 2017
in the United States, the average waiting time at emergency
departments for a patient to visit a physician, physician
assistant, or nurse is about 40 minutes and around 17
percent of patients waited more than an hour [10]. In fact, up
to 10% of patients can become frustrated from long waiting
times and may leave the ED without treatment [11], which
increases such patients’ risk of death or hospital readmission
within the next seven days [12]. ED staft frustration is
recognized as one of the negative effects of overcrowding on
healthcare providers [13].

One potential solution to overcome the overcrowding
problem and have quick and high-quality services in EDs is
adding more resources to EDs [14]. However, such an ap-
proach is limited not only by operating budget constraints
but also by limitations on available personnel and the size of
the ED facility [14].
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Introducing an incentive policy to accident and emer-
gency departments by the UK government in 2000 was
another attempt to reduce patient waiting time in such
departments [15]. This policy requires 98% of patients to be
discharged, transferred, or admitted to inpatient care within
4 hours of their arrival [15]. Large penalties were imposed for
failing to meet the 98% target and some hospital managers
even lost their jobs for this reason [16]. Gruber et al. showed
that this policy reduced patient waiting time by 19 minutes
and it also decreased mortality by 14% [17].

Transferring patients has also been discussed in some
studies as an option to help address overcrowding [3, 18, 19]
and was utilized in some areas facing large numbers of
patients due to emergency situations, such as New York City
[2]. Nezamoddini and Khasawneh [3] proposed a mathe-
matical model to quantify the effect of transferring patients
between hospitals on patients’ waiting time in a multihos-
pital system.

In this study, we propose a novel mathematical model to
capture the effects of transferring patients between hospitals
on patients’ waiting time. Similar to Nezamoddini and
Khasawneh [3], the objective of our model is to determine
the number of servers in each ED and the rates of patient
transfer between EDs, in such a way that the cost of the
system is minimized. However, unlike [3], who did not
explicitly account for queueing effects, our model includes
concepts from queueing theory (QT) to account for delays in
patients’ receiving service due to overcrowding.

The remainder of the paper is organized as follows.
Section 2 presents a literature review on research examining
ED overcrowding. Section 3 provides our mathematical
modeling approach. Section 4 presents the results of nu-
merical testing and sensitivity analysis. Section 5 provides a
conclusion and suggestions for future work.

2. Literature Review

Overcrowding in EDs has been recognized as a problem for
many years. Various solutions and methods have been
applied to improve patient flow in EDs. In many operations
research studies examining the overcrowding problem in
EDs, the main question was how many resources should be
allocated to each queue in an ED or to each hospital in a
multihospital system, to reduce the patients’ waiting times.
Some researchers have found that an optimized manpower
allocation can reduce the patients” waiting time in ED by up
to 20% [3, 20]. Daldoul et al. [5] proposed a stochastic
mixed-integer linear programming (MILP) model to opti-
mize the number of staff and beds in each queue (six queues
for six main activities) in an ED to minimize patients’
waiting time. El-Rifai et al. [21] also proposed a stochastic
MIP model to find the optimal number of personnel for each
shift to minimize patients’ waiting time. Izady and Wor-
thington [15] proposed a heuristic algorithm that combined
queueing and simulation models to determine the required
number of each type of medical staft during each “staffing
interval” to meet a 4-hour sojourn time target (98% of
patients must be discharged, transferred, or admitted to
inpatient care within 4 hours of arrival), where a “staffing
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interval” is the time interval utilized for analysis, during
which the number of staff is constant (a representative time
might be one or two hours in an ED) [15]. Izady and
Worthington [15] applied their method in a generic ED and
showed that significant improvement with respect to this
target can be made even without an increase in total staff
hours. Sinreich et al. [22] introduced two iterative heuristic
algorithms, which combined simulation and optimization
models for scheduling the work shifts of the ED medical
staff. These authors’ algorithm shifted the resource capacity
from low-demand hours to peak demand hours, and as a
result, there was a significant reduction in patient waiting
time as well as the peak utilization values of the ED medical
staff.

Some studies examined the effects of transferring pa-
tients between hospitals in a multihospital setting [3, 18].
Nezamoddini and Khasawneh [3] found that transferring
patients between hospitals can be an effective way to reduce
patients’ waiting time. They used the concept of a capacitated
network to model a multihospital system and allowed the
nonemergency patients to be transferred between hospitals
subject to capacity constraints on the maximum number of
transfers allowed per unit time. Soni [18] developed rule-
based patient transfer protocols and tested the protocols in a
multihospital patient flow simulation model and found that
effective patient transfer protocols can optimize the patient
flow in a hospital system.

Regarding the solution techniques utilized, some re-
searchers have used simulation models to capture the
complexity and dynamic nature of processes in EDs. Cabrera
et al. [14] used an agent-based simulation to model EDs.
They concluded that although their simulation experiments
helped to generate a better understanding of the problem,
they were time-consuming even for a small problem. Hung
and Kissoon [19] used discrete-event simulation (DES) to
evaluate the effect of using an Observation Unit (OU) and
patient transfer to other inpatient units on overcrowding in a
pediatric emergency department (PED). They considered
four scenarios representing combinations of regular PED
operations with and without a five-bed OU and transfer
mandate. They concluded that a combination of an OU and
patient transfer mandate improved the waiting time com-
pared to PED with neither an OU nor a transfer mandate.
Moreover, their results showed that the simulated OU
without transfer mandate had an occupancy rate of 73.1%;
this rate dropped to 48.1% by applying the transfer policy,
indicating a significant improvement in the occupancy rate
of OU. Gul et al. [23] also used DES to analyze the effect of
the patient surge in EDs after an earthquake. They first used
Artificial Neural Networks (ANNs) to estimate earthquake
causalities and generate inputs for the DES model. Then, the
DES model used the ANN outputs to simulate a network of
EDs and generate performance outputs for the corre-
sponding EDs. After constructing the simulation model, a
Design of Experiments (DOE) was conducted to assess the
effects of different factors on the LoS in the ED and the
utilization of ED resources. To show their framework, Gul
et al. [23] used a network with five EDs located in one of the
regions with the highest estimated injury rate after an
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earthquake in Istanbul, Turkey. The results from their study
can be helpful for planning for the expected earthquake in
Istanbul.

Some researchers have combined QT concepts and
simulation to analyze patient flow [24, 25]. Alavi-Mog-
haddam et al. [26] showed that by using QT analysis (with
discrete-event simulation to model and validate patient flow
metrics), one can identify solutions that improve patients’
flow and reduce waiting times in EDs. Hu et al. [7] compared
the use of QT with discrete-event simulation in modeling
EDs. They reported that QT models had lesser data re-
quirements and computational cost, due to QT models’
tendency to simplify the problems, while simulation models
captured more details in systems but were more sensitive to
changes of parameters. Thus, they suggested that a combi-
nation of both was the ideal approach to model such
problems.

3. Modeling

Our model attempts to reduce the negative impacts of ED
overcrowding in a multihospital system by making optimal
allocation decisions in two areas: (1) the number of servers at
each hospital’s ED and (2) the rate of nonemergency patient
transfers between hospitals. To capture the nonlinear
queueing effects, we utilize an approach based on that of
[27], which allows for an MILP model to represent each ED
as an M/M/C queueing system. Our research extends the
model of [27] in that it allows for each queueing system (ED)
to potentially transfer some patients to other EDs, which
requires that we utilize a mixed-integer nonlinear pro-
gramming (MINLP) model. Figure 1 presents such a no-
tional three-ED system, showing the arrivals of patients into
the system and transfers of patients between EDs.

The sets and indices, data parameters, and decision
variables used in the MINLP model are as follows:

Sets and indices

(i) I: set of EDs, indexed by i

(ii) M: set of values considered for a number of
servers, indexed by m

(iii) N: set of values considered for server utilization,
indexed by n

(iv) K: set of patient types, indexed by k, where k =1
denotes emergency, k = 2 denotes nonemergency

(v) T: set of time periods, indexed by ¢

Data parameters

(i) {,,; number of servers associated with the set
element m

(ii) x,: server utilization associated with the set ele-
ment n

(iii) e;: cost per unit service capacity at ED i

(iv) y;: cost per patient transferred ED i to ED i

(v) B;: waiting penalty cost, per unit time spent
waiting (time in queue plus time in transfer), for
patients treated at ED i

(vi) 6;: queueing penalty cost, per patient type k in a
queue, at ED i

FiGURE 1: Three-ED network.

(v) p;: service rate at ED i
(vi) Ay arrival rate, from outside of the system, of
patient type k at ED i
(vii) 8;: travel time required to transfer a patient from
EDito ED i
(viil) 77;: maximum number of patients allowed to be
transferred from ED i
(ix) #;: total budget available for servers at ED i
(x) ¢,,,,: expected waiting time in queue for an ED
having (,,, servers operating at a utilization rate ,,

Decision variables

(i) v;: expected number of patients in a queue
awaiting service at ED i
(ii) r;: expected number of patient type k in a queue
awaiting service at ED i
(iif) w;: expected time in queue per patient treated at
ED i
(iv) z;: expected waiting time in system (time in queue
plus time in transfer) per patient treated at ED i
(v) p;: maximum utilization allowed at ED i
(vi) s;: number of servers at ED i
(vil) y;: effective arrival rate of patients into ED i
(viii) fz rate at which nonemergency patients are
transferred from EDi to EDi; note f; =0 by
assumption

. _ J 1 if EDioperates with {,, servers at utilization rate «,,
(iX) X = ‘
4 0 otherwise

Note that this model makes the following assumptions:

(i) The patient interarrival times follow an exponential
distribution

(ii) All patients who enter the system from the outside
must be treated at some ED

(iii) Due to the potential risks of transferring emergency
patients such as heart rate changes, increased in-
tracranial pressure, and respiratory rate changes
[28], it is assumed that they are admitted imme-
diately after arrival to the ED. However, non-
emergency patients can be transferred between EDs

(iv) The service time per patient follows an expo-
nential distribution, and to simplify the model, it
is not differentiated by patient type. However, it
can be differentiated by patient type for future
research



(v) Each patient departs the system following service.

Objective function

Min ) ais;+ ) Y vifa+ ) Bzt ) D Suri (1)
i i i ik

Objective function (1) minimizes the total system cost,
defined as the sum of each ED’s service capacity cost,
the cost of transferring patients between EDs, along
with penalty costs associated with the average waiting
time per patient at each ED, and the average number of
patients waiting in a queue at each ED.

Constraints

; ; Xonni = 1, Vi, (2)
; ; (mxmm' =S vi, (3)

; ; KnXmni = pi’ Vi. (4)

Constraints (2)-(4) assign a unique number of servers
and utilization levels to each ED.

w; = Z Z (/)rrmxmni’ Vi (5)

Constraint (5) calculates the expected waiting time in
queue for patients at ED i, based on the M/M/C
queueing system with (,,, servers and utilization level of
x,,. Note that this can be computed a priori for all pairs
({,» x,,) utilizing the standard M/M/C formulae.

[Z Z mKn'xmni}iui 2 yi’ Vi. (6)

Constraint (6) ensures that the utilization level at ED i
does not exceed p;.

yizzflikJFfoi_Zfﬁ’ vi. (7)
k i i

Constraint (7) computes the effective arrival rate into
EDi, comprised of both patients arriving into ED i from
outside of the system, and the net patients transferred
into ED i.

Vi = YW, Vi (8)
A
rg =L xv, Vi 9)
Vi
Y
Ty = i~ v, Vi (10)
Vi

Constraints (8)-(10) compute the total number of
patients in the queue and then disaggregate this into the
number of emergency patients and nonemergency
patients in the queue, respectively.
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Zfﬁg)‘izs vi. (11)

Constraint (11) allows only nonemergency patients to
be transferred between EDs.

F<m, ViVi (12)

Constraint (12) permits at most 7; patients to be
transferred from ED i to ED i'.

a;s; <1, Vi (13)
Constraint (13) limits the total cost for servers at ED i to
not exceed 7#;.
__([afal6 + w) |+ [(Zhae - Xifwi])
l Vi ’ .

(14)

Constraint (14) computes the expected waiting time in
the system (time in queue plus time in transfer) per
patient treated at ED i.

Vf’ rik, wi, Zi’ pi’ Si’ yi’ fﬁ > 0, Vl, VZ, Vk,

. (15)
Xpmi € {O> 1}> Vm, Vn, Vi.

4. Experimental Results

4.1. Example Problem. Consider the following example
problem, similar in many respects to that presented in [3]. It
is assumed that there are three emergency departments in
the system, each having identical arrival rates of 5 and 5.5
emergency and nonemergency patients per hour, respec-
tively. Each unit of service capacity costs $30 per hour.
Transferring one patient between any pair of EDs costs $10
and takes 0.25 hours. The service rate at each ED is 0.5
patients per hour. A penalty cost of $2 per hour is assumed
for patient waiting time in the system (time in queue plus
time in transfer). Penalty costs are also incurred based on the
average number of patients waiting in a queue at each ED, at
a cost of $5 and $2 per emergency and nonemergency pa-
tient, respectively. Table 1 presents the sets of utilization
values and the number of servers considered for each ED.
The available budget for servers at each ED is assumed to be
$1700, which is greater than the expense incurred if the
maximum number of servers (56, from Table 1) was selected.

4.2. Computational Results. The mathematical model pre-
sented in Section 3 was coded in the GAMS 27.2.0 modeling
environment and solved using the MINLP solver SCIP
27.2.0. The optimal solution has an objective function value
of $2,195. No patients are transferred between EDs in this
optimal solution. Table 2 presents the optimal values for the
decision variables p;,s;, w;, z;, and r;. at each ED; note that
these values are identical at each ED in this solution.
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TaBLE 1: Sets of utilization values and number of servers considered TaBLE 3: DOE design factors and their levels.
for each ED.
Levels

¢ © Factors Units

mn n -1 +1
20 0.60 a $/server hour 0 60
24 0.64 Vi $/patient 0 20
28 068 B, $/hour 0 4
32 0.72 dp $/patient 0 10
36 0.76 81 $/patient 0 4
40 0.80 78 Patient(s)/hour 0.36 0.65
44 0.84 Ay Patient(s)/hour 1 9
48 0.88 M Patient(s)/hour 1 10
52 0.92 0,; Hour 0 0.5
56 096 7, $/hour 1920 3360

TaBLE 2: Optimal variable values for each ED.

ED i pi S w; Z; i i

1 0.88 24 0.307 0.307 1.535 1.689
2 0.88 24 0.307 0.307 1.535 1.689
3 0.88 24 0.307 0.307 1.535 1.689

4.3. Sensitivity Analyses. To determine the effects of the
various input parameters on the optimal solutions obtained
by our MINLP, a Design of Experiments (DOE) was con-
ducted; all statistical analyses were performed utilizing
Minitab 17. In this DOE, input parameters were varied at
only one emergency department (denoted ED1), and all
parameters at the other two EDs remained unchanged from
their previously tested baseline values, with one exception:
values 7, and #; were set equal to $1400, such that at the
assumed value of a, = a; = $30/ server hour, up to 44
servers would be feasible at each of ED2 and ED3. In total,
ten input parameters were examined in this DOE, with a
resolution V fractional factorial design (2{°~*) utilized for
screening, using a single replicate for each point and zero
center points. Table 3 presents the high and low levels tested
for each input parameter in this DOE for ED1 (the values for
the other two EDs correspond to the center point of the
values in Table 3). For each of these 128 experiments, the
MINLP model was solved using GAMS/SCIP to obtain the
optimal values for all decision variables. Appendices A and B
present the designs and responses, respectively, for these 128
experiments.

The following responses were tracked with respect to
EDI: s,,7y,7 15 W;,2,, Py, and the number of patients
transferred from and to ED1 (f, + f3 and f,, + f3;, re-
spectively). The regression model specification considered all
potential first and two factor interaction terms. The regression
model selection was performed using a stepwise procedure,
with the p value threshold to enter and depart the model set
equal to 0.05, with the necessary first-order terms retained to
produce a hierarchical model. Appendices A, B, and C (see
Supplementary Materials) present the fractional factorial
designs, table of coded coeflicients, and significant main
effects and interaction terms for all responses. Appendix D

presents a table of significant factors for each response
containing the level of significance and the direction of effects,
along with plots of significant two-way interactions (see
Supplementary Materials, Figures D.1-D.8).

The remainder of this section presents a detailed ex-
amination of two responses of particular importance to ED
overcrowding: z; (expected waiting time in queue plus time
in a transfer per patient treated at EDI) and f,, + f5;
(number of patients transferred to ED1).

4.3.1. Sensitivity Analysis for z,. Consider the response z,
the expected waiting time in queue plus time in a transfer per
patient treated at ED1. The stepwise regression procedure
described above returned the regression model (in uncoded
units) presented in equation (17); this regression model had
an adjusted R-squared value of 71%. Table 4 presents sta-
tistics on this (coded) regression model’s coeflicients.
According to this analysis, there are seven main effects and
nine interaction terms significant at the p =0.05 level
(factors y,; and A,,, while not significant individually, are
included to retain a hierarchical model, since they appear in
statistically significant interaction terms). Three of these
main effects, «;, 0;, and 4, are significant at the p = 0.001
level, indicating that the expected waiting time plus time in
the transfer is impacted considerably by changes to the cost
per unit service capacity and the travel time between EDs
(with time in system increasing as each of these parameters
increases) and to the service rate (with time in system de-
creasing as this parameter increases). Figure D.5 in the
Supplementary Materials presents interaction plots for the
nine significant interaction terms. Observe that three in-
teraction terms are significant at the p = 0.001 level, namely,
oy * py, 0;% Ay, and 0; % A1,. The latter two of these in-
teraction terms somewhat mediate the effects of the travel
time on the expected time in the system; on average, the
reduced level of the arrival rate of patients from outside of
the system accelerates the increase of the expected time in
the system when the travel time increases. This would only
be reasonable if this increased arrival rate of patients from
outside of the system is impacting the likelihood of patient
transfers between EDs, which will be examined next.
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TaBLE 4: Coded regression model coefficients.

Term Effect Coef. SE coef. T-value p value VIF

Constant — 0.18861 0.00766 24.61 <0.001 —
Vi 0.02225 0.01113 0.00766 1.45 0.149 1.00
o 0.14602 0.07301 0.00766 9.53 <0.001 1.00
B —-0.03066 —0.01533 0.00766 -2.00 0.048 1.00
511 —0.04873 —0.02437 0.00766 -3.18 0.002 1.00
81y —0.04056 —0.02028 0.00766 -2.65 0.009 1.00
1 0.12642 0.06321 0.00766 8.25 <0.001 1.00
7N —0.09382 —0.04691 0.00766 —-6.12 <0.001 1.00
/111 —0.04142 -0.02071 0.00766 -2.70 0.008 1.00
/\12 0.00740 0.00370 0.00766 0.48 0.630 1.00
Y * 8p 0.03588 0.01794 0.00766 2.34 0.021 1.00
a * 91; —0.04605 —0.02303 0.00766 -3.01 0.003 1.00
o * Uy —0.05341 —0.02670 0.00766 -3.48 0.001 1.00
o * /111 -0.03084 —0.01542 0.00766 -2.01 0.047 1.00
a; ¥ A, 0.03736 0.01868 0.00766 2.44 0.016 1.00
B * 0, 0.03866 0.01933 0.00766 2.52 0.013 1.00
91; * /\11 —0.06884 —0.03442 0.00766 —4.49 <0.001 1.00
91; * Ay, —0.09034 —0.04517 0.00766 -5.89 <0.001 1.00
/\11 * AIZ 0.03320 0.01660 0.00766 217 0.032 1.00

z; = 0.1379 - 0.00068y,; + 0.00618«, — 0.01733f; — 0.008745,, — 0.019116,, + 0.73796; — 0.1394y,

+0.002214; + 0.00210,, + 0.000897y,; * §,, — 0.00307c; * 0; — 0.00614a; * p; —0.000128ax; * A, (16

16

+0.000138ax, * A,, + 0.001933f, * 8}, — 0.034426,; % A, — 0.040150,; A,

+0.0009221, * A5

4.3.2. Sensitivity Analysis for f, + f;. Consider the re-
sponse f,; + f3;, the number of patients transferred into
ED1. The stepwise regression procedure described above
returned the regression model presented in equation (17);
this regression model had an adjusted R-squared value of
78%. Table 5 presents statistics on this (coded) regression
model’s coefficients. According to this analysis, there are
four main effects and six interaction terms significant at the
p = 0.05level. Each main effect is significant at the p = 0.001
level, indicating that the number of patients transferred into
ED1 is impacted considerably by changes to the cost per unit
service capacity and the arrival rate of both emergency and
nonemergency patients from outside of the system (with the
number of transferred patients decreasing as each of these
parameters increases) and to the service rate (with the
number of transferred patients increasing as this parameter
increases). Figure D.8 in the Supplementary Materials
presents interaction plots for the six significant interaction

terms. Observe that the interaction terms «; *1;; and
a; * Ay, all magnify the main effects of these individual
terms, with even greater decreases in the number of patients
transferred into ED1 when either pair of these parameters
are jointly increased. In aggregate, an increase in the arrival
rate of emergency or nonemergency patients into ED1 from
outside the system is associated with a decreased number of
patients transferred into EDI, which partly explains the
interaction effect discussed in the previous section, in which
the reduced level of the arrival rate of patients from outside
of the system accelerates the increase of the expected time in
the system when the travel time increases. Recall that z,, the
expected waiting time in queue plus time in a transfer per
patient treated at ED1, does not account for the time in the
system spent by patients transferred from ED1 to other EDs;
the only transfer time that it accounts for is that of patients
transferred into ED1.

for + f31 = 5.367 — 0.0036; — 0.2244, — 0.40091,, — 0.3273), — 0.0427a, * i,
~0.001712a; % A;; — 0.00181 1, % Ay, + 0.422p; * Ay, + 0.3154, % Ay, +0.010324,; % A,,.

4.4. Sensitivity Analyses on ED Size. To assess the effect of ED
size on the number of transfers occurring in the system, a
sensitivity analysis was performed examining three EDs of

(17)

different sizes. The large ED has arrival rates of 10 and 11
emergency and nonemergency patients per time unit, re-
spectively. The medium ED has arrival rates of 5 and 5.5
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TaBLE 5: Coded regression model coefficients.

Term Effect Coef. SE coef. T-value p value VIF
Constant — 2.3642 0.0849 27.85 <0.001

o -2.6216 -1.3108 0.0849 -15.44 <0.001 1.00
/N 0.6784 0.3392 0.0849 4.00 <0.001 1.00
A -1.4609 -0.7305 0.0849 -8.60 <0.001 1.00
A -1.5391 —-0.7695 0.0849 -9.06 <0.001 1.00
oy * g -0.3716 —-0.1858 0.0849 -2.19 0.031 1.00
oy * A —-0.4109 -0.2055 0.0849 -2.42 0.017 1.00
a; ¥ A, —-0.4891 —0.2445 0.0849 -2.88 0.005 1.00
Py * Ay 0.4891 0.2445 0.0849 2.88 0.005 1.00
uy # Ay, 0.4109 0.2055 0.0849 2.42 0.017 1.00
Ay %A, 0.3716 01858 0.0849 219 0.031 1.00

emergency and nonemergency patients per time unit, re-
spectively. The small ED has arrival rates of 3.75 and 4.125
emergency and nonemergency patients per time unit, re-
spectively. The optimization model is modified slightly here,
to include only constraints (2)-(7), (11), and (14). The ob-
jective function is modified as represented in equation (18),
deleting the final two summation penalty terms from ob-
jective (1). Rather than associating a financial penalty with
delay times, we introduce a new constraint (19) which
imposes an upper bound, denoted by o, on the systemwide
average expected waiting time in queue plus time in transfer,
which can be computed as Y ;y;z,/Y ;Y Ay We varied this
upper bound ¢ across a range of values, from a minimum
value of 0.0284 to a maximum value of 1.3913 (the sys-
temwide average for the minimum cost solution if constraint
(19) is not considered). In total, 26 different solutions were
identified, constituting an efficient frontier for the tradeoff
between objective function (18) and the left-hand side of
constraint (19). All parameters were assumed to take the
baseline values from Section 4.1 with two exceptions: we
assume that the cost per unit service capacity at each ED is
equal to 10 times the cost per patient transferred between
EDs, say, $10 and $1, respectively. The potential numbers of
servers considered at each ED were also modified from the
values presented in Table 1; for this sensitivity analysis, (,,
was varied to include all integer values between 2 and 60.
Table 6 presents the sensitivity analysis’ objective values. As
it can be seen, the objective value decreases as the upper
bound value increases. In fact, it implies that as the average
expected waiting time in queue plus time in transfer in the
system becomes more flexible, a fewer number of servers and
fewer patient transfers are required in EDs. Therefore, the
associated costs (equation (18)) decrease. The following
figures present the sensitivity analysis” expected waiting time
in queue plus time in a transfer per patient treated (Figure 2),
number of servers (Figure 3), ED utilization (Figure 4), and
percent of nonemergency patients transferred (Figure 5).

Min Z o;s; + Z Z Vifio (18)

Z,-yizi _ Zz( [Zif%i(eii + wi)] + [(ZkAik - Zifﬁ)wi])
i Xk YiXihik

<o

(19)

TaBLE 6: Objective values.

Solution # Objective value
1 1020.24
2 970.10
3 960.00
4 940.00
5 921.87
6 920.00
7 910.00
8 900.00
9 890.68
10 881.53
11 880.00
12 873.87
13 871.15
14 870.00
15 863.91
16 860.05
17 854.91
18 852.97
19 851.16
20 845.39
21 842.60
22 840.05
23 837.79
24 833.03
25 830.05
26 830.00

These results demonstrate how the optimization model
utilizes a variety of strategies to achieve a constrained sys-
temwide average expected waiting time at minimum cost.
Consider, for example, solutions 22 and 23. They achieve
relatively similar performance, with respective objective
function values of 840.06 and 837.79 and respective sys-
temwide average expected waiting times of 0.7988 and
0.8733. The utilization at each ED is essentially unchanged
across solutions 22 and 23, with 96%, 92%, and 92% utili-
zation, respectively, at the large, medium, and small ED in
each solution. However, the underlying structure has
changed significantly, with solution 22 utilizing 44, 23, and
17 servers, respectively, at the large, medium, and small EDs,
and very little patient transfer (1% of the nonemergency
patients transferred from the small ED to each of the
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FIGURE 2: Expected waiting time in queue plus time in a transfer per patient treated.
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Ficure 3: Number of servers.

medium and large EDs). By contrast, solution 23 utilizes 60,
14, and 9 servers, respectively, at the large, medium, and
small EDs (one fewer server, in total, than does solution 22),
but extensive patient transfer (91% and 74% of the non-
emergency patients from the small and medium EDs, re-
spectively, are transferred to the large ED).

Across all 26 solutions identified, the optimization model
utilized patient transfer extensively for nonemergency patients
arriving at the small ED; on average, 25.3% and 4.4% of such
patients were transferred to the large and medium EDs, re-
spectively. The patient transfer was utilized less frequently for
nonemergency patients arriving at the medium ED; on average,
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6.5% and 0.1% of such patients were transferred to the large and
small EDs, respectively. There were no instances across all 26
solutions in which nonemergency patients were transferred
from the large ED to another ED.

5. Conclusions and Future Work

Overcrowding in hospital emergency departments (EDs) is a
problem that affected many hospitals especially during the
response to emergency situations such as pandemics or
disasters. In this study, we propose a novel optimization
model to address overcrowding in a network of EDs via a
combination of two decisions: modifying service capacity to
EDs and transferring patients between EDs. This model is
similar to that presented in [3]; however, whereas the au-
thors in [3] did not account for queueing effects, our model
includes queueing considerations in a MINLP, capitalizing
on the closed-nature form of M/M/C queueing effects,
similar to the approach utilized in [27].

Computational testing was performed, using a Design of
Experiments to determine the effects of changes to the various
input parameters for a single ED (denoted ED1) on the optimal
solutions obtained by our MINLP. Regarding the expected
waiting time in queue plus time in a transfer per patient treated,
the most significant main effects indicated that this response is
impacted considerably by changes to the cost per unit service
capacity and the travel time between EDs (with time in the
system increasing as each of these parameters increases) and to
the service rate (with time in system decreasing as this pa-
rameter increases), with interaction terms somewhat mediating
the effects of the travel time on the expected time in system; on
average, the reduced level of the arrival rate of patients from
outside of the system accelerates the increase of the expected
time in the system when the travel time increases. This would
only be reasonable if this increased arrival rate of patients from
outside of the system is impacting the likelihood of patient
transfers between EDs. Examining this further, we find that for
the number of patients transferred into EDI, the most signif-
icant main effects indicated that this response is affected sig-
nificantly by changes to the cost per unit service capacity and
the arrival rate of both emergency and nonemergency patients
from outside of the system (with the number of transferred
patients decreasing as each of these parameters increases) and
to the service rate (with the number of transferred patients
increasing as this parameter increases), with interaction terms
between the cost and each arrival rate magnifying the main
effects of each these individual terms. In aggregate, an increase
in the arrival rate of emergency or nonemergency patients into
EDI from outside the system is associated with a decreased
number of patients transferred into ED1, which partly explains
the aforementioned interaction effect, in which expected time
in the system is found to increase with increases in the travel
time between EDs only when the arrival rate of patients from
outside of the system into ED1 is at its reduced level.

Additional computational testing examined the effect of
ED size on the number of transfers occurring in the system,
considering three EDs of different sizes (denoted large,
medium, and small). The MINLP was modified slightly here;
rather than including a financial penalty for delay times in
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the objective, we introduce a new constraint imposing an
upper bound on the systemwide average expected waiting
time in queue plus time in the transfer. Computational
testing varied this upper bound across a range of values,
identifying an efficient frontier for the tradeoff between the
modified objective function and the systemwide average
expected waiting time. This optimization model utilizes a
variety of strategies to achieve a constrained systemwide
average expected waiting time at minimum cost, balancing
changes to the numbers of servers at each ED with patient
transfers across EDs. Across all points identified on the
efficient frontier, the MINLP utilizes patient transfer ex-
tensively for nonemergency patients arriving at the small
ED, somewhat infrequently for arrivals to the medium ED,
and in no instances for arrivals to the large ED. Taken to-
gether, these results suggest that our optimization model can
identify a range of efficient alternatives for healthcare sys-
tems designing a network of EDs across multiple hospitals.
Moreover, the model can be helpful to have more balanced
EDs with respect to the number of patients and patient
waiting time in a network of EDs in case of emergency
situations such as natural disasters.

Future work could extend this analysis by considering
queueing systems other than M/M/C to represent the sto-
chastic nature of patient arrivals and service times at EDs.
Further, while this analysis models steady-state perfor-
mance, which is useful for network design, an extension to
transient system performance in nonsteady-state would
allow for similar models to be used in a real-time dispatching
environment. Finally, a more nuanced differentiation be-
tween patient types, which are modeled as being either
emergency or nonemergency patients in this research, could
allow for such an MINLP approach to be used to allocate
special types of ED service (e.g., pandemic virus testing).

Data Availability

Supplementary materials, including data, will be posted at
the University of Missouri’s data repository https://hdl
handle.net/10355/86722.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Supplementary Materials

Appendix A: a table of fractional factorial designs. Appendix
B: a table of responses for fractional factorial designs. Ap-
pendix C: detailed statistical model outputs for responses.
Appendix D: detailed statistical model outputs for responses.
(Supplementary Materials)

References

[1] R.W. Derlet and J. R. Richards, “Overcrowding in the nation’s
emergency departments: complex causes and disturbing ef-
fects,” Annals of Emergency Medicine, vol. 35, no. 1, pp. 63-68,
2000.


https://hdl.handle.net/10355/86722
https://hdl.handle.net/10355/86722
https://downloads.hindawi.com/journals/aor/2021/7120291.f1.docx

Advances in Operations Research

(2]
(3]

[10

(11

(12

(13]

(14]

(15]

(16]

(17]

M. Rothfeld, “13 deaths in a day: an ‘apocalyptic’coronavirus
surge at an NYC hospital,” The New York Times, vol. 24, 2020.
N. Nezamoddini and M. T. Khasawneh, “Modeling and
optimization of resources in multi-emergency department
settings with patient transfer,” Operations Research for Health
Care, vol. 10, pp. 23-34, 2016.

American Hospital Association (AHA), Trendwatch Chart-
book 2018: Trends Affecting Hospitals and Health Systems,
American Hospital Association (AHA), Chicago,IL, USA,
2018.

D. Daldoul, I. Nouaouri, H. Bouchriha, and H. Allaoui, “A
stochastic model to minimize patient waiting time in an
emergency department,” Operations Research for Health Care,
vol. 18, pp. 16-25, 2018.

R. Salway, R. Valenzuela, J. Shoenberger, W. Mallon, and
A. Viccellio, “Emergency department (ED) overcrowding:
evidence-based answers to frequently asked questions,”
Revista Médica Clinica Las Condes, vol. 28, no. 2, pp. 213-219,
2017.

X. Hu, S. Barnes, and B. Golden, “Applying queueing theory
to the study of emergency department operations: a survey
and a discussion of comparable simulation studies,” Inter-
national Transactions in Operational Research, vol. 25, no. 1,
pp. 7-49, 2018.

D. W. Spaite, F. Bartholomeaux, J. Guisto et al., “Rapid
process redesign in a university-based emergency department:
decreasing waiting time intervals and improving patient
satisfaction,” Annals of Emergency Medicine, vol. 39, no. 2,
pp. 168-177, 2002.

S. W. Rodi, M. V. Grau, and C. M. Orsini, “Evaluation of a fast
track unit,” Quality Management in Health Care, vol. 15, no. 3,
pp. 163-170, 2006.

Centers for Disease Control and Prevention, National Hos-
pital Ambulatory Medical Survey 2017 Emergency Department
Summary, Centers for Disease Control and Prevention,
Atlanta, GI, USA, 2017.

A. Guttmann, M. J. Schull, M. J. Vermeulen, and T. A. Stukel,
“Association between waiting times and short term mortality
and hospital admission after departure from emergency de-
partment: population based cohort study from Ontario,
Canada,” British Medical Journal, vol. 342, no. 1, Article ID
d2983, 2011.

R. Konrad, K. DeSotto, A. Grocela et al., “Modeling the impact
of changing patient flow processes in an emergency depart-
ment: insights from a computer simulation study,” Operations
Research for Health Care, vol. 2, no. 4, pp. 66-74, 2013.

J. S. Olshaker and N. K. Rathlev, “Emergency department
overcrowding and ambulance diversion: the impact and
potential solutions of extended boarding of admitted patients
in the emergency department,” The Journal of Emergency
Medicine, vol. 30, no. 3, pp. 351-356, 2006.

E. Cabrera, M. Taboada, M. L. Iglesias, F. Epelde, and
E. Luque, “Optimization of healthcare emergency depart-
ments by agent-based simulation,” Procedia Computer Sci-
ence, vol. 4, pp. 1880-1889, 2011.

N. Izady and D. Worthington, “Setting staffing requirements
for time dependent queueing networks: the case of accident
and emergency departments,” European Journal of Opera-
tional Research, vol. 219, no. 3, pp. 531-540, 2012.

A. Frakt, “Improve emergency care? pandemic helps point the
way,” The New York Times, vol. 43, 2020.

J. Gruber, T. P. Hoe, and G. Stoye, Saving Lives by Tying
Hands: The Unexpected Effects of Constraining Health Care

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

11

Providers, National Bureau of Economic Research, Cam-
bridge, MA, USA, 2018.

P. Soni, Evaluation of Rule-Based Patient Transfer Protocols in
a Multi-Hospital Setting Using Discrete-Event Simulation,
State University of New York at Binghamton, Binghamton,
NY, USA, 2014.

G. R. Hung and N. Kissoon, “Impact of an observation unit
and an emergency department-admitted patient transfer
mandate in decreasing overcrowding in a pediatric emergency
department,” Pediatric Emergency Care, vol. 25, no. 3,
pp. 160-163, 2009.

A. Komashie and A. Mousavi, “Modeling emergency de-
partments using discrete event simulation techniques,” 2005.
E.-R. Omar, “A stochastic optimization model for shift
scheduling in emergency departments,” Health Care Man-
agement Science, vol. 18, no. 3, pp. 289-302, 2015.

D. Sinreich, O. Jabali, and N. P. Dellaert, “Reducing emer-
gency department waiting times by adjusting work shifts
considering patient visits to multiple care providers,” Iie
Transactions, vol. 44, no. 3, pp. 163-180, 2012.

M. Gul, A. Fuat Guneri, and M. M. Gunal, “Emergency de-
partment network under disaster conditions: the case of
possible major Istanbul earthquake,” Journal of the Opera-
tional Research Society, vol. 71, no. 5, pp. 733-747, 2020.

H. Zhu, J. Gong, and J. Tang, “A queuing network analysis
model in emergency departments,” in Proceedings of the 2013
25th Chinese Control and Decision Conference (CCDC), IEEE,
Guiyang, China, May 2013.

S. Au-Yeung, P. Harrison, and W. Knottenbelt, “A queueing
network model of patient flow in an accident and emergency,”
in Proceedings of 2006 European Simulation and Modelling
Conference, Bonn, Germany, September 2006.

M. Alavi-Moghaddam, R. Forouzanfar, S. Alamdari et al.,
“Application of queuing analytic theory to decrease waiting
times in emergency department: does it make sense?” Archives
of Trauma Research, vol. 1, no. 3, pp. 101-7, 2012.

R. G. McGarvey, Supporting Air and Space Expeditionary
Forces: Analysis of CONUS Centralized Intermediate Repair
Facilities, Rand Corporation, Santa Monica, CL, USA, 2008.
C. Waydhas, “Intrahospital transport of critically ill patients,”
Critical Care, vol. 3, no. 5, pp. R83-R89, 1999.



