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*is paper studies the location-routing problem of emergency facilities with time window under demand uncertainty.We propose
a robust mathematical model in which uncertain requirements are represented by two forms: the support set defined by cardinal
constraint set. When the demand value of rescue point changes in a given definition set, the model can ensure the feasibility of
each line. We propose a branch and price cutting algorithm, whose pricing problem is a robust resource-constrained shortest path
problem. In addition, we take the Wenchuan Earthquake as an example to verify the practicability of the method. *e robust
model is simulated under different uncertainty levels and distributions and compared with the scheme obtained by the de-
terministic problem. *e results show that the robust model can run successfully and maintain its robustness, and the robust
model provides better protection against demand uncertainty. In addition, we find that cost is more sensitive to uncertainty level
than protection level, and our proposed model also allows controlling the robustness level of the solution by adjusting the
protection level. In all experiments, the cost of robustness is that the routing cost increases by an average of 13.87%.

1. Introduction

With the deterioration of the environment, natural disasters
such as fire, earthquake, and tsunami are also endangering
people’s survival and development. Because of their sudden
and powerful destructive power, they often lead to house
collapse, road damage, and casualties, resulting in a large
number of life and medical material losses in the short term.
*e timely delivery of postdisaster relief materials is a major
guarantee to increase the survival rate. Quickly and effec-
tively transporting emergency relief materials from emer-
gency rescue facilities to the disaster area and meeting the
needs of the affected people is the most important task.
Especially in earthquake-prone China, Japan, and coastal
countries with common tsunamis, the establishment of
emergency rescue facilities and the transportation of relief
materials are very important. For example, the Wenchuan
Earthquake, a major earthquake in China in 2008, caused an
big number of casualties due to the lack of timely rescue and
the failure of timely delivery of relief materials. *e total
affected population reached 46.256 million, resulting in a

direct economic loss of 845.14 billion yuan. Nowadays,
COVID-19 is also continuing to intensify, and emergency
drug delivery is also crucial. *erefore, in the face of natural
disasters, it is an important issue for us to establish emer-
gency rescue facilities and reasonably plan emergency rescue
routes.

However, the unpredictability of natural disasters and
the urgency of rescue work often make it difficult for
emergency departments to accurately obtain the material
needs of the disaster scene. *erefore, under the constraints
of limited time and resources, in order to reduce the time
and cost of logistics distribution and improve the robustness
of facility location, it is of great significance to study the
location of uncertain emergency rescue facilities and the
arrangement of rescue material distribution routes.

In fact, many decision-makers usually focus on the
transportation of relief materials. On the contrary, if the
robustness of emergency facilities is not improved, the
transportation of relief materials cannot be realized effi-
ciently. *e location of supply station is related to the op-
erational efficiency of the whole system and also has a great
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impact on the subsequent material distribution path plan-
ning. *e planning of material distribution path directly
determines the timeliness of rescue.*erefore, it is necessary
to integrate emergency resource location and path planning
for disaster preparedness. In recent years, scholars at home
and abroad have done a lot of research on emergency re-
source scheduling and have achieved some results.

Research on emergency facilities can be traced back to
the problem of P center of gravity and P center proposed by
Hakimi [1]. Overstreet et al. [2] expounded the complexity of
emergency logistics planning and the next research direction
after combing a large number of emergency logistics liter-
atures; Galindo and Batta [3] sorted out a large number of
literatures on emergency logistics modeling from 2005 to
2012, found that the most widely used method of emergency
logistics planning is still mathematical planning, and focused
on the practicability of the assumption part of the model;
Oezdamar et al. [4] discussed the emergency logistics and
emergency material allocation after natural disasters, and
Horner Downs [5] studied the distribution of emergency
relief materials combined with GIS; Kar and Hodgson [6]
constructed a linear combination model for the location of
emergency shelters; Widener and Horner [7] discussed the
hierarchical location model of emergency relief materials.
Furthermore, many scholars combined facility location with
robust optimization methods. Robust optimization makes
the optimization model robust to the uncertainty of input
data by defining the uncertainty set of random parameters.

Some scholars have considered the location path
problem of emergency facilities under certain information
with the goal of minimizing the total cost [8, 9]. Some
scholars have likewise studied the location path problem of
emergency facilities under uncertain information. Consid-
ering the research of uncertain demand, Caunhye et al. [10]
established a two-stage LRP stochastic programming model
with the goal of minimizing facility construction cost and
minimizing rescue time on the worst path. Bodaghi et al. [11]
studied the problem of providing multiresource scheduling
and routing during disasters. Considering the study of time
uncertainty, Ahmadi et al. [12] constructed a model with the
goal of minimizing the sum of total rescue time, penalty cost
of unmet demand, and fixed cost of opening facilities LRP
optimization model of scenario based mixed nonlinear
programming. Zarandi et al. [13] expressed the uncertainty
of time with fuzzy numbers and established a fuzzy chance-
constrained programming model with the goal of mini-
mizing the total cost. Vahdani et al. [14] considered the
uncertainty of distribution center capacity and warehouse
capacity and established a multicycle and multimaterial
three-level relief chain location path model with the goal of
minimizing emergency rescue time and maximizing path
reliability. Moreno et al. [15] assumed that the demand,
supply, and road capacity were uncertain and established a
scenario based two-stage stochastic programming model
with the goal of minimizing the cost of emergency logistics
and the cost of unmet demand loss of victims at the disaster
site. From these literatures, we can conclude that there are
various uncertainties in practical problems, and it is nec-
essary to consider robust optimization methods to solve

these problems. In the literature, their main methods are
described by random programming, opportunity con-
straints, and other methods, or when using robust opti-
mization, only one parameter is simply considered for an
uncertain factor, and the use of two parameters to describe
the demand uncertainty from different angles is not in-
volved. *erefore, this paper considers the variation of two
parameters, that is, a cardinality constraint support to de-
scribe its demand uncertainty.

In this paper, we consider the interval uncertainty of
demand; that is, the demand of each rescue point changes in
a given interval. Rescue points with uncertain needs are also
limited by uncertain budgets. Under these two constraints,
the demand of rescue point defines uncertain support set,
which is called cardinality constraint support. Uncertainty
shall be applied to each rescue route to prevent the worst
case. In addition, like the deterministic emergency facility
location path, it is impossible to solve the robust problem
with linear optimization. *erefore, we use a column gen-
eration method to decompose the robust constraints into
subproblems. We develop a branch-price and cut algorithm,
in which the subproblem is a robust basic shortest path
problem with resource constraints. In this paper, we propose
a new decomposition strategy for the robust case. *e
method is applied to a practical case (Wenchuan Earth-
quake) to verify the solution in the robust case.

1.1. Contributions of �is Paper

(1) Two uncertain support sets are used to define de-
mand uncertainty

(2) A branch-price and cut algorithm is proposed to
solve the proposed model

(3) A real case (Wenchuan Earthquake) is used to verify
the effectiveness and applicability of the algorithm

*e rest of the paper is organized as follows: Section 2
defines the robust emergency facility location-routing
problem with uncertain demand, in which the uncertainty
support is based on the cardinal constraint set. In Section 3,
the column generation framework and the solution to the
subproblem are described in detail, and the branch-price
and cut algorithm is given. In Section 4, we test our model
and solution and give the comparison of robustness with the
solution of deterministic model.

2. Robust Model

In this paper, based on the work of *omas et al. [16], a new
robust routing formula for disaster relief facilities (R-LRP-DR)
is proposed, considering the uncertainty of the demand for
rescue materials and the limitation of delivery time window.

2.1. Robust Formulation for R-LRP-DR. We can define
R-LRP-DR as a directed graph G � (V, A), and
V � DA ∪CF{ } is the set of nodes and A is the set of arcs
consisting of all feasible links, respectively. S � 1, 2, . . . , n{ }

represents sets of n suppliers, and R � n + 1, n + 2, . . . , 2n{ }
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represents sets of n retailers. *e set DA � 1, 2, . . . , M{ }

represents the alternative location to build some CDs, and
the appropriate CDs need to be built throughout the pickup
and delivery process based on the cooperating vendor. At the
same time, the same types of vehicles are used in pickup and
delivering to ensure its consistency, and the set is defined as
K. *e capacity of each vehicle is T. In the process of de-
livery, each customer i ∈ C has its corresponding time
window [ai, bi] and service time si. Every customer i ∈ C has
a demand qi. Here we consider that qi is uncertain. *is
uncertain demand parameter qi is randomly selected from
the interval [qi , qi +hi], where qi ≥ 0 denotes the nominal
demand of customer i, and hi ≥ 0 denotes the maximum
deviation between actual demand and nominal demand.
Without losing generality, let us assume that
h1 ≥ h2 ≥ . . . ≥ hn. *erefore, we define an uncertain support
set Q � qi � qi +hiwi, q ∈ R|C|, ∀i ∈ C􏽮 􏽯 as customer de-
mands, where wi ∈ [0, 1], and 􏽐

n
i�1 wi ≤ Γ. And, Γ describes

the magnitude of the deviation change. *erefore, at this
time, the demand uncertainty can be characterized by hi and
Γ; that is, the uncertainty can be realized by adjusting the
interval range of hi or value of Γ. Whether in the process of
pickup or delivery, the vehicle has a cost cij on arc ij. Among
them, the cost in the pickup and delivery process is recorded
as cij. In the process of pickup and delivery, vehicles must
start from it and return to it at every stage.

Robust LRP-DR (R-LRP-DR) aims to select a set of
cross-docking systems and the vehicle routes associated with
these cross-docking systems to minimize the total cost,
including the fixed cost of establishing cross-docking sys-
tems and the cost of serving retailers. In PDPDC system,
when the retailers’ demand order is received, a series of
homogeneous vehicles K are taken from supplier S and
delivered to retailer R through cross-docking system. It
should be noted that cargoes must pass through CDs and
must not be allowed to be transferred directly between
vehicles.

In order to clearly describe the demand uncertainty of
retailers, we propose an R-LRP-PDPDC formula as follows:

min 􏽘
j∈CD

fjXj + 􏽘
k∈K

􏽘
(ij)∈A

cijyijk,
(1)

s.t. 􏽘
(i,j)∈A

yi,j,k ≤Xj , (2)

􏽘
(i,j)∈A

yi,j,k � 1, ∀i ∈ V, k ∈ K,
(3)

􏽘
(i,j)∈A

yi,j,k � 􏽘
(i,j)∈A

yj,i,k, ∀j ∈ V, k ∈ K,
(4)

􏽘
(i,j)∈A

diyi,j,k ≤T, ∀d ∈ D, k ∈ K,
(5)

ti,k + si + ti,j − tj,k ≤M 1 − yi,j,k􏼐 􏼑, ∀(i, j) ∈ A, k ∈ K,

(6)

ai ≤ ti,k ≤ bi, ∀i ∈ V, (7)

Xi ∈ 0, 1{ }, ∀i ∈ VD, (8)

yi,j,k ∈ 0, 1{ }, ∀i, j ∈ VS ∪V0, (9)

where objective function (1) is to minimize the cost of the
whole process, including the opening cost of emergency
facilities and the transportation cost of products; constraint
condition (2) is the constraint on the number of open
emergency facilities; in constraint (3), there is only one path
through each facility; constraint (4) means that vehicles must
enter and leave the supplier once in the process of picking up
and delivery, which ensures the balance of traffic flow;
constraint (5) means that the customer’s demand should not
exceed the vehicle capacity in the whole process; constraint
(6) means that the service is started within the time window,
whether it is pickup or delivery. By Desrochers and Laporte
[17], we can define M � maxi,j∈V bi − ai + ti􏼈 􏼉. Constraint (7)
ensures that delivery must be within the time window.
Constraints (8) and (9) are decision variables. If vehicle K

goes from node i to node j in pickup process, yi,j,k
′ equals 1,

and, otherwise, yi,j,k
′ equals 0. Alike, if vehicle K goes from

node i to node j in delivery process, y′
′
i,j,k equals 1, and,

otherwise, y′
′
i,j,k equals 0. We note that since demand q is

uncertain, which belongs to the support set Q, we can further
write constraint (10) as

􏽘
(i,j)∈A2

qi yi,j,k + β yk, Γ( 􏼁≤T, ∀q ∈ Q, k ∈ K,
(10)

where yk ∈ 0, 1{ }|A2| refers to the vector set of decision
variables y′

′
i,j,k and β(yk, Γ) � max VC|VC∈VC,|VC|≤ Γ{ }􏽐i∈VC

w

i􏽐j∈A2
y′
′
i,j,k, where VC is a subset of customers which does

not exceed Γ, so that customers in VC can be accessed by k

vehicles, and customers demand deviations are accumulated
and maximized. Such β(yk, Γ) ensures that the load of ve-
hicle k can cover any demand realization and does not
exceed the maximum demand of the customer.

3. Set Partitioning Formulation

We note that, during transportation, each vehicle meets
constraint (10), even if the customer’s requirements are
uncertain. Here, we use a modified version of the LRSP set
partition formula proposed by Akc [18]. It is considered that
Ω is a feasible routing set. *ese paths are related to
emergency facilities. *ey are transported from the supplier
to the emergency facilities and then from the emergency
facilities to the customers; and pj(pj ∈ Ω) is the set of routes
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assigned by vehicles to emergency facilities j. *en, the
following parameters and decision variables are given:

Parameters:

cp � all cost of routep ∈ Ω, including transport cost and operate cost,

αip �
1, if customer i ∈ R is assigned to routep ∈ Ω, text and,

0, otherwise.
􏼨

(11)

Decision variables:

θp �
1, if routep is selected in the solution, and,

0, otherwise,
􏼨

Xj �
1, if emergency facilities j is selected and used, and,

0, otherwise.
􏼨

(12)

*e robust LRP-PDP formulation is as follows:

[P]min 􏽘
j∈C D

fjXj + 􏽘
p∈Ω

cpθp,
(13)

s.t. 􏽘
p∈Ω

αipθp � 1, ∀i ∈ VC,
(14)

Xj − 􏽘
p∈Ω

θp ≥ 0, ∀j ∈ C D, p ∈ Ω,
(15)

Xj � 0, 1{ }, ∀j ∈ C D, (16)

θp � 0, 1{ }, ∀p ∈ Ω. (17)

Objective function (13) seeks to minimize the total cost,
including the opening cost and transportation cost of
emergency facilities. Constraint (14) ensures that each re-
tailer location is served by only one route. Limiting con-
dition (15) ensures the number of emergency facilities.
Constraints (16) and (17) are standard binary constraints on
variables.

*e linear relaxation of the [P] problem is the Dantzig-
Wolfe (DW) master problem, and we define a set Ω ∈ Ω so
that we get the constrained DWmaster problem. [P] and DW
main problems have a large number of variables, and the
number of possible paths is usually so large that it is im-
practical to explicitly enumerate all the corresponding col-
umns. *erefore, in this process, we can use the column
generation (CG) method [19], which considers all possible
routes through implicit expressions M(Ω). Otherwise, we
solve a subproblem to find one or more routes with negative
reduced costs. Let πi and μi be the dual variables associated
with constraints (15) and (16). *e subproblem is an R-LRP-
PDP as follows:

min 􏽘
j∈C D

fjXj + 􏽘
(ij)∈A

cijyijk − 􏽘
i∈V

􏽘
(ij)∈A

αijk πi − μij􏼐 􏼑yijk, (18)

s.t. 􏽘
(i,j)∈A

yi,j,k ≤Xj, (19)

􏽘
(i,j)∈A

yi,j,k � 􏽘
(i,j)∈A

yj,i,k, ∀j ∈ V, k ∈ K,
(20)

􏽘
(i,j)∈A2

qi yi,j,k + β yk, Γ( 􏼁≤T, ∀q ∈ Q,
(21)

ti,k + si + ti,j − tj,k ≤M 1 − yi,j,k􏼐 􏼑, ∀(i, j) ∈ A, k ∈ K,

(22)

ai ≤ ti,k ≤ bi, ∀i ∈ V, (23)

Xi ∈ 0, 1{ }, ∀i ∈ VD, (24)

yi,j,k ∈ 0, 1{ }, ∀i, j ∈ VS ∪V0. (25)

*e solution of R-ESPPRC is elementary path with
minimum reduced cost. When we release the base con-
straint, αip expresses the number of times path p visits
customer i. *e restricted DWmain problem will produce a
weak lower bound; R-ESPPRC differs from the deterministic
ESPPRC in that constraint (18) includes internal
maximization.

*e shortest path problem with resource constraints is
usually solved by a label-setting algorithm. Given the ro-
bustness, Lu and Gzara [20] proposed an improved label
definition algorithm based on new dominance rules. Alves
Pessoa [21] proposed a different label definition algorithm.
*e algorithm provides a virtual solution for each initial
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solution; each virtual solution changes within a certain range
and uses dominance rules to constantly adjust the simulated
solution. Another option is to examine a series of deter-
ministic auxiliary problems. Bertsimas and Sim [22] first
proposed this solution strategy for robust combinatorial
problems with uncertain objective coefficients. Alvarez
Miranda et al. [23] and Goetzmann et al. [24] extended this
strategy to combinatorial optimization problems with un-
certain constraints. In this article, we use the strategy
promoted by Alvarez Miranda et al. [23] and Goetzmann
et al. [24] to convert R-ESPPRC to a series of deterministic
ESPPRC and use the classical label definition algorithm to
solve each.

For simplicity, we first omit the vehicle index K and set Y

as the feasible set satisfying constraints (17) and (19)–(22).
Let 􏽥C be the vector of 􏽥cij � cij − 􏽐i∈Vαij(πi − μi) and let Y be
the vector of Yij. Define yi � 􏽐i:(i,j)∈A,j≠0yij for j ∈ V and
hn+1 � 0. y and q are vectors of xi and di, respectively. With
wi ∈ [0, 1], ∀i ∈ V, R-ESPPRC is rewritten as

P′􏼂 􏼃minFx + cy

s.t.

x ∈ X

y ∈ Y

y≤x

q
T
y + max

0≤wi,∀i∈V,wi ≤Γ
􏽘
i∈V

hixiwi ≤T.

(26)

Let U(y) � max0≤wi,∀i∈V,wi ≤ Γ􏽐i∈Vhiyiwi ≤T, let σ0 be the
dual variable of constraint 􏽐i∈Vwi ≤Γ, and let σi be the dual
variable of constraint 0≤wi ≤ 1,∀i ∈ V. *erefore, we can
write U as follows:

U(y) � min Γσ0 + 􏽘
i∈VC

σi, (27)

s.t.σ0 + σi ≥ hiyi, ∀i ∈ VC, (28)

σ0, σi ≥ 0, ∀i ∈ VC. (29)

*en, formula (26) [P’] can be rewritten as follows:

p″􏼂 􏼃minFx + cy, (30)

s.t.x ∈ X, (31)

y ∈ Y, (32)

y≤ x, (33)

q
T
y + Γσ0 + 􏽘

i∈VC

σi ≤T, (34)

σ0 + σi ≥ hiyi, ∀i ∈ VC, (35)

σ0, σi ≥ 0, ∀i ∈ VC. (36)

Since (27) is used instead of maximizing the internal
objective function U, we get constraint (34). At this time,
constraints (35) and (36) are the above constraints (28) and
(29). Now we can directly use the MIP solver to solve this
problem. However, in order to speed up the column gen-
eration process, we consider turning the uncertainty into
certainty and then choose to use dynamic programming to
solve it, while generating multiple cost reduced columns.

First of all, we extend the theorem in the work of
Bertsimas and Sim [22] to the case of uncertain constraint
coefficients, and then, according to Alvarez Miranda et al.
[23] and Goetzmann et al. [24], provide an alternative se-
quential approach to solve this series of N + 1 problems. By
constraint (28), we can get the following:
σi � max hi − σ0, 0􏼈 􏼉yi, ∀i ∈ Vc. *is is because of the fact
that σi ≥ hiyi − σ0, yi is binary and σi ≥ 0. *en, we can re-
write formula (27) as

U(y) � min Γσ0 + 􏽘
i∈VC

max hi − σ0, 0􏼈 􏼉yi, (37)

s.t. σ0 ≥ 0. (38)

Now we need to discuss it in different situations. Since it
has been assumed that h1 ≥ h2 ≥ · · · ≥ hn ≥ hn+1 � 0, if
σ0 ∈ [h1, +∞), max hi − σ0, 0􏼈 􏼉yi � 0, i � 1, . . . , n + 1; and if
σ0 ∈ [hi, hi − 1], for i � 2, . . . , n + 1, max hj − σ0, 0􏽮 􏽯yj �

hj − σ0􏽮 􏽯yj, j � 1, . . . , i − 1. *erefore, we can get the fol-
lowing results by sorting out:

􏽘

n

i�1
max hi − σ0, 0􏼈 􏼉xi �

􏽘

i−1

j�1
hj − σ0􏼐 􏼑yj, if σ0 ∈ hi, hi − 1􏼂 􏼃, i � 2, . . . , n + 1,

0, if σ0 ∈ h1, +∞􏼂 􏼁.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(39)

As a result, U(y) can be decomposed into n + 1
subproblems:
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U1(y) � min Γσ0, (40)

s.t.σ0 ∈ h1, +∞􏼂 􏼁. (41)

We have that 􏽐
n+1
i�1 max hi − σ0, 0􏼈 􏼉yi � 0, and, in this case,

when σ0 � h1, we can get the optimal solution of U(y).
When i � 2, 3, . . . n + 1,

Ui(y) � min Γσ0 + 􏽘
i−1

j�1
hj − σ0􏼐 􏼑yj, (42)

s.t.σ0 ∈ hi, hi−1􏼂 􏼃. (43)

Equation (42) can be written as follows:

Ui(y) � min Γ − 􏽘
i−1

j�1
yj

⎛⎝ ⎞⎠σ0 + 􏽘
i−1

j�1
hjyj, (44)

s.t.σ0 ∈ hi, hi−1􏼂 􏼃. (45)

It can be seen that, for σ0, (44) is a first-order linear
function, and σ0 is in the interval [hi, hi−1]; then optimal
solution for Ui(y) is obtained when σ0 � hi or σ0 � hi−1. So,

Ui(y) � min Γhi−1 + 􏽘
i−1

j�1
hj − hi−1􏼐 􏼑yj, Γhi + 􏽘

i

j�1
hj − hi􏼐 􏼑yj

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (46)

To sum up, we can obtain a piecewise function U as
follows:

Ui(y) �

Γh1, if i � 1,

Γhi + 􏽘
i

j�1

hj − hi􏼐 􏼑yj, if i � 2, . . . , n, 􏽘
n

j�1
hjyj, if i � n + 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(47)

*en, the objective function Z can be written as

Z � minFx + c, (48)

s.t.qT
y + Ui(y)≤T, i � 1, 2, . . . , n + 1, (49)

x ∈ X, (50)

y ∈ Y, (51)

y≤x. (52)

Since each subproblem is independent of the others, we
set up a secondary network for each warehouse x. Each
subproblem can be considered as a resource-constrained
shortest path problem, and here we present the label-setting
algorithm required to solve each subproblem. See Section 5
for details.

3.1. Preprocessing. In the previous literature, there are some
preprocessing schemes for subproblems. *is study con-
siders the rules corresponding to heuristic extension pro-
posed by Desrochers, Desrosiers, and Solomon [25].

First of all, we consider the time windows of partial paths
0⟶ i⟶ N + i and i⟶ N + i⟶ 2N + 1. Since the

constraint ti ∈ [ai, bi] of the time window must be satisfied
in the whole process, we will redefine the time window as
follows (see Dumas et al., 1991):

bN+i � min bN+i, b2N+i − ti,2N+i􏽮 􏽯,

bi � min bi, bN+i − ti,N+i􏽮 􏽯,

ai � max ai, a0 + t0,i􏽮 􏽯,

aN+i � max aN+i, ai + ti,N+i􏽮 􏽯.

(53)

Due to the time window and constraints, some arcs that
do not satisfy the feasible solution of the problem can be
deleted. According to Dumas et al. [26], the following arcs
are eliminated by using the constraints of the problem:

[Priority]: none of these arcs directly cross-docking are
feasible solutions, so they should be deleted: (0, N +

i); (N + i, i); (2N + 1, 0); (2N + 1, i); (i, 2N + i); and
(2N + 1, N + i) for i � 1, . . . , N.
[Time window]: the customer’s node must serve in its
own time window; that is, if ai + tij > bj, i, j ∈ 1, 2N{ },
then delete arc (i, j).
[Capacity]: the capacity of the vehicle can never be
exceeded; therefore, if qi + qj >T, i, j ∈ 1, N{ }, i≠ j,
then remove the following arcs:
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(i, j); (j, i); (i, N + j); (j, N + i); (N + i, N + j); (N+

j, N + i).
[Time window with priority]: in the pickup and de-
livery, the travel time needs to meet the triangle in-
equality. If the arc does not meet this criterion
(including both pickup and delivery of some cus-
tomers), the arc can be removed:

If path j⟶ i⟶ N + j⟶ N + i is not feasible for
tj � aj, then arc (i, N + j) is deleted
If path i⟶ N + i⟶ j⟶ N + j is not feasible for
ti � ai, then arc (N + i, j) is deleted
If path i⟶ j⟶ N + i⟶ N + j is not feasible for
ti � ai, then arc (i, j) is deleted
If path i⟶ j⟶ N + i⟶ N + j and
j⟶ i⟶ N + i⟶ N + i⟶ N + j⟶ N + j is
not feasible for ti � ai and tj � aj, remove arc
(N + i, N + j)

3.2. Branching Rule. At the end of the separation algorithm
or in the best solution, the variable may contain a noninteger
value, at which point the branch must be performed. Since
there are two different binary decision variables in the
formula, we adopt the following order in the branching
phase: First, the algorithm attempts to branch over the most
nearly 0.5 fractional Yk variable to generate two subprob-
lems, one of which is fixed Yk0, and the other is fixed Yk1. If
all Yk variables are integers, then the algorithm branches off
from the minimum number of Xij variables.

3.3. Label-Setting Algorithm. *e objective of the pricing
problem is to find a tourism tree with the greatest reduction
in negative costs. Considering that the tree picks up the
goods from a warehouse through the pickup point, then
delivers to the pickup point and ends up in the warehouse, it
is reasonable to look for it by considering each pickup
process. To solve this problem, we propose an improved
labeling algorithm, which was proposed by Frias and Singler
[27] for resource-constrained shortest path problem. A two-
way search is performed, where tags extend forward and
backward. In the front, the tag extends from the warehouse
to a pickup point as the first access node on the travel tree.
Similarly, in the reverse direction, the label extends from the
warehouse to the point of delivery and becomes the node for
the last visit. Forward and reverse tags merge to form a
complete travel tree. Both breadth-first and depth-first
search methods are used when extending labels.

4. Computational Experiments

4.1. Instances Description. *is section reports a set of cal-
culation results of the disaster related to the “5.12″ Wen-
chuan Earthquake. Under the existing demand, the
simulation generates the relevant time window.We compare
the difference between the robust solution and the deter-
ministic solution in terms of cost, the number of vehicles
used, the average percentage of infeasible scenarios, and the
average capacity utilization. All algorithms are coded in Java,

and the MIP and LP models are solved by CPLEX 12.5. *e
test is carried out on an ASUS computer with a processor of
1.8GHz and 8 GB ram. If the solution process does not
terminate within 3 hours, the program terminates.

Based on the disaster information of “5.12″ Wenchuan
Earthquake, 6 candidate emergency facilities, 12 disaster
sites (as shown in Figure 1), and 7 transport vehicles of the
same type are selected to provide food and tent distribution
services (assuming the same volume of the two types of
materials). *e fixed use cost of each vehicle is 1500 yuan,
the transportation cost per kilometer is 5 yuan, and the
vehicle capacity is 40 000. In Table 1, we give the location and
capacity of the six potential emergency facilities and the
different transportation cost after departure from each
emergency facility. We give the nominal demand of each
disaster site in Table 2, and, on the basis of the nominal
values, the demand fluctuation hi at the affected point
uniformly generates high uncertainty in [0, 0.5di] and low
uncertainty in [0, 0.3di]. At this time, we describe the impact
of the maximum deviation hi on the demand and only
change its value to describe the magnitude of the demand
deviation, resulting in demand uncertainty.

4.2. Numerical Experiment Results. *e following sections
introduce the results of a series of experiments we con-
ducted. *e purpose of the experiment is to evaluate how a
series of factors affect our proposed R-LRP-DR solution. By
analyzing the influence of these factors, whether a certain
factor in the uncertainty or the data change of a certain
factor can produce a higher-risk solution is judged. *e
factors studied include the uncertainty of demand, the size of
the customer’s size, and some key parameters of the relevant
uncertainty set.

4.2.1. Determining Model Results. Firstly, we solve the de-
terministic model and give its optimal solution, as shown in
Figure 2.

It can be seen from Figure 2 that when the material
demand is determined (nominally), the facility opening
points are A, D, E, and F, where facility A provides materials
to demand points 4, 5, 10, 11, and 12; facility D provides
materials to demand points 6 and 8; facility E provides
materials to demand point 3; and facility F provides ma-
terials to demand points 1, 2, 7, and 9. At this time, the total
cost� 72 737.5 yuan.

4.2.2. Robustness of Robust and Deterministic Solutions.
In order to understand the influence of uncertainty on the
optimal solution, we compare the optimal target values of
robust solution and deterministic solution. Firstly, we get the
deterministic optimal solution under the nominal demand
in this case (as shown in Figure 2). *en, by adjusting the
uncertain demand and uncertainty set, we get Figures 3 and
4. In Table 3, we give the difference of the uncertainty set and
the average growth of the target value of the robust solution
and the poor average optimality under the uncertainty level.
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Next, we observe the robustness of the system by con-
sidering the demand for low uncertainty and the uncertainty
concentration Γ � 3.

As can be seen from Figure 3, when considering the
demand with low uncertainty and the uncertainty set pa-
rameter Γ � 3, there are still four facility open points, but
they are changed to A, C, D, and F, in which facility A
provides materials for demand points 4, 5, 11, and 12; facility
C provides materials for demand points 3 and 7; facility D

provides materials for demand points 6 and 8; and facility F
provides materials for demand points 1, 2, 9, and 10. At this
time, the total cost� 73 931.5 yuan.

Figure 4 shows the opening of facilities when the demand
is with high uncertainty and the uncertainty set parameter
Γ � 3, and the cost� 75 046.3 yuan.

Table 3 shows the difference of uncertainty sets and the
average growth of the target value and average optimality of
the robust solution under the uncertainty level.

Figure 1: 6 emergency facilities and 12 disaster sites.

Table 1: Relevant data of candidate emergency facilities.

Candidate facilities Location coordinates Capacity Transportation cost
A (96.855 675, 33.507 342) 122 000 12.2
B (97.213 021, 32.711 051) 100 000 10.0
C (95.818 005, 32.604 522) 140 000 14.0
D (96.328 710, 34.087 447) 160 000 16.0
E (95.966188, 33.411 089) 185 000 18.5
F (96.548 062, 32.983 319) 100 000 10.0

Table 2: Nominal demand for materials in disaster areas.

Disaster area Location coordinates Nominal demand
Longbao (96.423140, 33.268 340) 23 950
Xialaxiu (96.610170, 32.663 040) 3560
Sahuteng (95.624 890, 33.043 210) 4200
Chengwen (97.095 760, 33.366 309) 2280
Qingshuihe (97.137 670, 33.803 491) 4800
Jiajibo (95.630 240, 33.844 551) 29 050
Xiangda (96.475 460, 32.203150) 3120
Yuegai (95.811 340, 34.131 201) 3880
Jiegu (96.978 617, 33.001 271) 4200
Xiewu (97.355 080, 33.130181) 8700
Zhaduo (96.743 690, 33.767 039) 10 600
Zhenqin (97.301 630, 33.407 661) 13 700
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Finally, we give the vehicle routing at high uncertainty
level and Γ � 5, as shown in Figure 5.

Table 3 reports average statistics for robust and deter-
ministic solutions. *e data represent the difference of
uncertainty set, the average growth of target value, and the
growth of average time. From the above chart, we can see
that, under the same uncertain level set parameters, when
the uncertain demand increases, the facility location will
change and the cost will increase. Under the same uncertain

demand, with the increase of uncertain level set parameter t,
the cost increases gradually, and the facility location may
change. As can be seen from Table 3, when the uncertainty
level is low, even if Γ � 5, the cost increase is also less than
the high uncertainty level when Γ � 3. *is indicates that
cost is more sensitive to the level of uncertainty than the level
of protection. In all experiments, the cost of robustness is
that the routing cost increases by an average of 13.87%. It is
worth noting that our proposed model allows the robustness

Figure 2: Facility location under nominal demand.

Figure 3: Facility location under low uncertainty and Γ � 3.
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Figure 4: Facility location under high uncertainty and Γ � 3.

Table 3: Comparison of results under uncertain demand and uncertain set.

Uncertainty
Cost Open facility number

Time∗ Gap∗
Γ � 3 Γ � 4 Γ � 5 Γ � 3 Γ � 4 Γ � 5

0 72 737.5 73 061.4 73 528.3 A, D, E, F A, D, E, F A, C, D, F 34.52 0.28
Low 73 931.5 74 325.6 74 984.3 A, C, D, F A, D, E, F A, D, E, F 38.07 0.34
High 75 046.3 76 316.4 78 297.5 A, B, D, E, F A, B, D, E, F A, B, D, E, F 45.63 0.53
∗Average results of 10 calculations.

Figure 5: Vehicle routing with high uncertainty level and Γ � 5.
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level of the solution to be controlled by adjusting the pro-
tection level.

5. Conclusion

*e occurrence of natural disasters will lead to serious
economic losses, so the study of emergency facility lo-
cation path problem is a hot spot at present. In this paper,
we propose a robust model for facility location-vehicle-
routing problem with uncertain demand. *e motivation
of this problem is the emergency material dispatching
route under natural disasters. When encountering natural
disasters, it is often affected by environmental factors, and
its demand is usually random, which is difficult to estimate
by probability distribution. *erefore, robust optimiza-
tion provides a more appropriate method and framework.
In this paper, through formulaic processing and de-
composition, we can use the column generation method to
solve it.

We use cardinal constraint set to define uncertainty
support and give a robust location path formula model.
*en, we propose a branch-price and cut algorithm,
which uses the label algorithm in the cutting process, in
order to generate multiple columns in each iteration of
column generation, rather than a single column. Finally,
we use the actual data (Wenchuan Earthquake) to verify
the practicability of the model. *e experimental results
show that, on the one hand, the robust model solves the
difficulty that the demand uncertainty problem in the
linear optimization model can not be solved; on the other
hand, the robust model makes up for the disadvantage
that stochastic programming depends on accurate
probability distribution; and the robust model still
maintains certain robustness. In addition, the branching
and price cutting algorithms successfully solve the op-
timal problem of the case in a reasonable time. We are
surprised to find that when the uncertainty level is low,
even Γ � 5. *e cost increase is also less than the high
uncertainty level with Γ � 3. *is indicates that cost is
more sensitive to the level of uncertainty than the level of
protection. In all experiments, the cost of robustness is
that the routing cost increases by an average of 13.87%.
Note that our proposed model allows the robustness level
of the solution to be controlled by adjusting the pro-
tection level.

*e location-routing problem of emergency facilities is a
hot spot in the current research. At the same time, this
research application also helps to lay a theoretical founda-
tion for emergency management and sustainable develop-
ment. Although this study considers the main factor of
demand uncertainty, there are still some deficiencies, for
example, the application of time and cost uncertainty and
facility interruption risk in emergency facility location
routing. Future research can start from these aspects.
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