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An edge labeling of graph G with labels in A is an injection from E(G) to A, where E(G) is the edge set of G, and A is a subset ofR.
A graph G is calledR-antimagic if for each subset A ofR with |A| � |E(G)|, there is an edge labeling with labels in A such that the
sums of the labels assigned to edges incident to distinct vertices are different. .e main result of this paper is that the Cartesian
products of complete graphs (except K1) and cycles are R-antimagic.

1. Introduction

All graphs considered in this paper are finite, simple, and
without isolated vertices. As usual, letR denote the set of real
numbers. For a graph G and a vertex v inG, V(G), E(G), and
EG(v) denote the vertex set ofG, the edge set ofG, and the set
of edges incident to v in G, respectively. In this paper, the
following terminologies and notations are used. Let G be
a graph. When A is a subset of R with |A| � |E(G)| and the
function f: E(G)⟶ A is injective, we say that f is an edge
labeling of G with labels in A; in this case, for any vertex v of
G, we use f+(v) to denote 􏽐e∈EG(v)f(e). If B is a subset of R
with |B|≥ |E(G)| such that for each subset A of B with
|A| � |E(G)|, there is an edge labeling of G with labels in A

such that f+(u) is not equal to f+(v) for any two distinct
vertices u, v of G, then we say that G is B-antimagic.

In the literature, a graph G is antimagic if G is
1, 2, . . . , |E(G)|{ }-antimagic. .e concept of antimagic
graphs was introduced by Hartsfield and Ringel [1] in 1990.
.ey conjectured that every connected graph with at least
two edges was antimagic. .is conjecture has not been
completely solved yet. Some partial results are listed below.
.e antimagicness for some special types of regular graphs is
verified by Cranston [2], Cranston et al. [3], and Liang and

Zhu [4]. .en, Chang et al. [5] proved that all regular graphs
with degree ≥2 are antimagic.

Some studies have addressed the antimagicness of
Cartesian products. In 2008,Wang and Hsiao [6] introduced
new classes of antimagic graphs constructed through Car-
tesian products, and Wang [7] proved that any Cartesian
product of two or more cycles is antimagic. .e anti-
magicness of the Cartesian products of two paths and the
Cartesian products of two or more regular graphs are proved
in [8, 9] by Cheng. Moreover, Zhang and Sun [10] proved
that if a regular graph G is antimagic, then for any connected
graph H, the Cartesian product G□H is antimagic.

Let R+ denote the set of real numbers. A graph G is
universal antimagic if G is R+-antimagic. Matamala and
Zamora [11] proved that paths, cycles, and graphs whose
connected components are cycles or paths of odd lengths are
universal antimagic in 2020. In this paper, we generalize
further and define R-antimagic graphs. .e methods of
labeling on Cartesian products of cycles used in this paper
are similar in [7, 8]. In Section 2, we show that wheels, cycles,
and complete graphs of order ≥3 areR-antimagic. In Section
3, we show that Cartesian products G1□G2□ · · ·□Gn(n≥ 2)

are R-antimagic, where each Gi is a complete graph of order
≥2 or a cycle.
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2.R-Antimagic Graphs and Uniformly
R-Antimagic Graphs

Let Pn be a path on n vertices. In [11], it is shown that
Pn(n≥ 3) is R+-antimagic, but P3, P4, P5 are not R-anti-
magic. Shang et al. [12] investigated the antimagicness of star
forests. We prove that stars are R+-antimagic, but not
R-antimagic.

Remark 1. Let Sn denote the star with n edges. .en,
Sn(n≥ 2) is R+-antimagic, but not R-antimagic.

Proof. Let Sn be the star with V(Sn) � v1, v2, . . . , vn􏼈 􏼉∪ v{ }

and E(Sn) � vvi|i � 1, 2, . . . , n􏼈 􏼉.
Let r1 < r2 < r3 < · · · < rn be the arbitrarily given positive

numbers. We define an edge labeling f of Sn with labels in
r1, r2, r3, . . . , rn􏼈 􏼉 by f(vvi) � ri for i � 1, 2, . . . , n. .en,

f
+

vi( 􏼁 � ri < ri+1 � f
+

vi+1( 􏼁, (1)

for i � 1, 2, . . . , n − 1, and

f
+

vn( 􏼁 � rn < r1 + r2 + · · · + rn � f
+
(v). (2)

We have

f
+

v1( 􏼁<f
+

v2( 􏼁< · · · <f
+

vn( 􏼁<f
+
(v). (3)

Hence, Sn is R+-antimagic.
Let r1 < r2 < r3 < · · · < rn be real numbers with

r1 + r2 + · · · + rn−1 � 0. Let f be an arbitrary edge labeling of
Sn with labels in r1, r2, r3, . . . , rn􏼈 􏼉. Without loss of gener-
ality, f is defined by f(vvi) � ri for i � 1, 2, . . . , n. We see
that f+(vn) � rn � r1 + r2 + · · · + rn−1 + rn � f+(v). Ac-
cordingly, Sn is not r1, r2, r3, . . . , rn􏼈 􏼉-antimagic, which re-
sults in Sn not R-antimagic.

Let Kn denote the complete graph of order n, and Cn the
cycle of order n. A wheel Wn(n≥ 3) is the graph obtained by
connecting a single vertex to every vertex of the cycle Cn. In
this section, we prove that wheels, cycles, and complete
graphs of order ≥3 are R-antimagic. □

Theorem 1. Every wheel is R-antimagic.

Proof. Let Wn be the wheel with V(Wn) � v1, v2, . . . , vn􏼈 􏼉

∪ v{ } and E(Wn) � v1v2􏼈 􏼉∪ vivi+2|i � 1, 2, . . . , n − 2􏼈 􏼉∪ vn􏼈

−1vn}∪ vvi|i � 1, 2, . . . , n􏼈 􏼉. To prove the theorem, let
r1 < r2 < r3 < · · · < r2n be the arbitrarily given real numbers.
We distinguish two cases: Case 1, rn−1 + rn < rn+1 + rn+2 + · · ·

+r2n−1, and Case 2, rn+1 + rn+2 + · · · + r2n−1 ≤ rn−1 + rn. □

Case 1. rn−1 + rn < rn+1 + rn+2 + · · · + r2n−1.
We define an edge labeling f of Wn with labels in

r1, r2, r3, . . . , r2n􏼈 􏼉 by f(v1v2) � r1, f(vivi+2) � ri+1 for
i � 1,2, . . . ,n −2, f(vn−1vn) � rn, and f(vvi) � rn+i for i � 1,2,

. . . ,n (see Figure 1). .en, f+(v1) � r1 + r2 + rn+1, f+(vi) �

ri−1 + ri+1 + rn+i for i � 2, . . . ,n −1, andf+(vn) � rn−1 + rn + r2n.
Note that

f
+

v1( 􏼁 � r1 + r2 + rn+1 < r1 + r3 + rn+2 � f
+

v2( 􏼁,

f
+

vi( 􏼁 � ri−1 + ri+1 + rn+i < ri + ri+2 + rn+i+1 � f
+

vi+1( 􏼁,

(4)

for i � 2, . . . , n − 2,

f
+

vn−1( 􏼁 � rn−2 + rn + r2n−1 < rn−1 + rn + r2n � f
+

vn( 􏼁,

f
+

vn( 􏼁 � rn−1 + rn( 􏼁 + r2n < rn+1 + rn+2 + · · · + r2n−1( 􏼁

+ r2n � f
+
(v).

(5)

Hence,

f
+

v1( 􏼁<f
+

v2( 􏼁< · · · <f
+

vn( 􏼁<f
+
(v). (6)

Case 2. rn+1 + rn+2 + · · · + r2n−1 ≤ rn−1 + rn.
We define an edge labeling f of Wn with labels in

r1, r2, r3, . . . , r2n􏼈 􏼉 by f(v1v2) � rn+1, f(vivi+2) � rn+i+1 for
i � 1, 2, . . . , n − 2, f(vn−1vn) � r2n, and f(vvi) � ri for i � 1,

2, . . . , n (see Figure 2). .en, f+(v1) � rn+1 + rn+2 + r1,
f+(vi) � rn+i−1 + rn+i+1 + ri for i � 2, . . . , n − 1, and
f+(vn) � r2n−1 + r2n + rn. Note that

f
+

v1( 􏼁 � rn+1 + rn+2 + r1 < rn+1 + rn+3 + r2 � f
+

v2( 􏼁,

f
+

vi( 􏼁 � rn+i−1 + rn+i+1 + ri < rn+i + rn+i+2 + ri+1 � f
+

vi+1( 􏼁,

(7)

for i � 2, . . . , n − 2,

f
+

vn−1( 􏼁 � r2n−2 + r2n + rn−1 < r2n−1 + r2n + rn � f
+

vn( 􏼁,

f
+
(v) � r1 + r2 + r3 + · · · + rn−1 + rn( 􏼁

< r1 + rn+1 + rn+2 + · · · + r2n−2 + r2n−1( 􏼁≤ r1

+ rn−1 + rn( 􏼁 � f
+

v1( 􏼁.

(8)

Hence,

f
+
(v)<f

+
v1( 􏼁<f

+
v2( 􏼁< · · · <f

+
vn( 􏼁. (9)

.is completes the proof.
To prove the results in Section 3, we need the concept

of uniformly R-antimagic graphs, which is defined below.
Let G be a graph. Suppose that all the vertices of G can be
listed as u1, u2, . . . , um such that for every A⊆R with
|A| � |E(G)|, there is an edge labeling f of G with labels in
A such that f+(u1)<f+(u2)< · · · <f+(um). .en, we say
that G is uniformly R-antimagic and that the sequence of
vertices u1, u2, . . . , um has the uniformly R-antimagic
property. Note that in this definition, the ordering of the
vertices u1, u2, . . . , um satisfying the property f+(u1)

<f+(u2)< · · · <f+(um) is independent of the choice of
the subset A of R. Obviously, every uniformly R-anti-
magic graph is R-antimagic.

Before proving our main result, we first describe uni-
formly R-antimagic property with cycles and complete
graphs.
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Theorem 2. Every cycle is uniformly R-antimagic.

Proof. Let Cn be the cycle with vertex set v1, v2, . . . , vn􏼈 􏼉 and
edge set v1v2􏼈 􏼉∪ vivi+2|i � 1, 2, . . . , n − 2􏼈 􏼉∪ vn−1vn􏼈 􏼉. Let
r1 < r2 < r3 < · · · < rn be the arbitrarily given n real numbers.
We define an edge labeling f of Cn with labels in
r1, r2, . . . , rn􏼈 􏼉 by f(v1v2) � r1, f(vivi+2) � ri+1 for

i � 1, 2, . . . , n − 2, and f(vn−1vn) � rn (see Figure 3).
.en, f+(v1) � r1 + r2, f+(vi) � ri−1 + ri+1 for i � 2, . . . ,

n − 1, and f+(vn) � rn−1 + rn. Since r1 + r2 < r1 + r3 < r2
+r4 < r3 + r5 < r4 + r6 < · · · < rn−3+ rn−1 < rn−2 + rn < rn−1+

rn, we have f+(v1)<f+(v2)< · · · <f+(vn). We see that the
listing of vertices v1, v2, . . . , vn with the property f+(v1)<
f+(v2)< · · · <f+(vn) is independent of the arbitrarily given
r1 < r2 < r3 < · · · < rn. .us, Cn is uniformlyR-antimagic. □

Theorem 3. &e complete graph Kn(n≥ 3) is uniformly
R-antimagic.

Proof. Let Kn be the complete graph with vertex set V(Kn)

� v1, v2, . . . , vn􏼈 􏼉 and edge set E(Kn) � vivj|1≤ i≤ j≤ n􏽮 􏽯.
Let r1 < r2 < r3 < · · · < r n

2􏼒 􏼓
be the arbitrarily given real

numbers.

Let f be an edge labeling of Kn with labels in

r1, r2, r3, . . . , r n
2􏼒 􏼓

􏼚 􏼛 such that for i � 1, 2, . . . , n − 2,
f(vivi+1)<f(vivi+2) <f(vivi+3)< · · · <f (vivn)<f (vi+1
vi+2). Hence, f(v1v2) <f(v1v3)< · · · <f(v1vn)<f(v2 v3)

<f(v2v4) < · · · <f(v2vn)<f(v3v4)< · · · <f(vn−1vn).
For 1≤ i≤ n − 1, we have

f
+

vi( 􏼁 � 􏽘
1≤k<i

f vkvi( 􏼁 + f vivi+1( 􏼁 + 􏽘
i+1<k≤n

f vivk( 􏼁

< 􏽘
1≤k<i

f vkvi+1( 􏼁 + f vivi+1( 􏼁

+ 􏽘
i+1<k≤n

f vi+1vk( 􏼁 � f
+

vi+1( 􏼁.

(10)

Hence, f+(v1)<f+(v2)< · · · <f+(vn). We see that the
listing of vertices v1, v2, . . . , vn with the property
f+(v1)<f+(v2)< · · · <f+(vn) is independent of the arbi-
trarily given r1 < r2 < r3 < · · · < r n

2􏼒 􏼓
. .us, Kn is uniformly

R-antimagic. □

n is odd
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Figure 2: Edge labeling of Wn if rn+1 + rn+2 + · · · + r2n−1 ≤ rn−1 + rn.
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Figure 1: Edge labeling of Wn if rn−1 + rn < rn+1 + rn+2 + · · · + r2n−1.
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3. Main Results

Let G be a graph and A be a subset ofR with |A| � |E(G)|. If
g is an edge labeling of G with labels in A and K, L are
nonempty subsets of E(G) such that g(x)<g(y) for all
x ∈ K, y ∈ L, then we write K ≺ L under g. It is easy to see
that the relation ≺ is transitive (i.e., if K, L, M are nonempty
subsets of E(G), and K≺L, L≺M, then K≺M). .e fol-
lowing trivial lemmawill be used in the proofs of.eorems 4
and 5.

Lemma 1. Let G be an arbitrary graph and A be a subset ofR
with |A| � |E(G)|. Let g be an edge labeling of G with labels in
A. Suppose that A1, A2, B1, B2 are pairwise disjoint nonempty
subsets of the edge set E(G) with |A1| � |B1|, |A2| � |B2| � 1
such that A1 ≺B1 ∪B2 and A2 ≺B1 under g. &en,

􏽘
e∈A1∪A2

g(e)< 􏽘
e∈B1∪B2

g(e).
(11)

Proof. Let A2 � a{ } and b be an arbitrary edge in B1. Since
A2 ≺B1 under g, we have g(a)<g(b). Since A1 ≺B1 ∪B2
under g and |A1| � |B2 ∪ (B1 − b{ })|, we have

􏽘
e∈A1

g(e)< 􏽘

e∈B2∪ B1− b{ }( )

g(e).
(12)

Note that

􏽘
e∈A1∪A2

g(e) � g(a) + 􏽘
e∈A1

g(e),
(13)

and

􏽘
e∈B1∪B2

g(e) � g(b) + 􏽘

e∈B2∪ B1− b{ }( )

g(e).
(14)

Combining (12)–(14) and g(a)<g(b), we have

􏽘
e∈A1∪A2

g(e)< 􏽘
e∈B1∪B2

g(e). (15)

We need the following notations. Let G be a graph, andA

be a subset of R with |A| � |E(G)|. If f is an edge labeling of
G with labels in A and D being a nontrivial connected
subgraph of G which contains no isolated vertices, then we
use fE(D) to denote the restriction of f to E(D) with range
f(E(D)). Obviously, fE(D) is an edge labeling of D with
labels in f(E(D)). Moreover, for a vertex v ∈ V(D), we use
f+

E(D)(v) to denote (fE(D))
+(v). Recall that ED(v) is the set

of all edges incident to v in D. .us, f+
E(D)(v)

� 􏽐e∈ED(v)f(e).
Let G and H be two graphs with V(G) � u1, u2, . . . , um􏼈 􏼉

and V(H) � v1, v2, . . . , vn􏼈 􏼉, respectively. .e Cartesian
product of G and H, denoted by G□H, is the graph with
vertex set V(G) × V(H) such that (ui, vj) is adjacent to
(uk, vl) if either ui � uk and vjvl ∈ E(H) or vj � vl and
uiuk ∈ E(G). For the convenience of the following discus-
sions, we will use the following notations in the proofs of
.eorems 4 and 5. In the graph G□H, the vertex
(ui, vj) ∈ V(G) × V(H) is represented by wi,j. For
j � 1, 2, . . . , n, we use Gj to denote the subgraph of G□H
induced by the vertices wi,j (i � 1, 2, . . . , m). □

Note 1. .e graphs G, G1,G2, . . ., Gn are isomorphic, and for
each i (i � 1, 2, . . . , m), the vertices ui ∈ V(G), wi,1 ∈ V(G1),
wi,2 ∈ V(G2), . . ., wi,n ∈ V(Gn) are the corresponding ver-
tices under these isomorphisms.

Also, we use Ej to denote E(Gj); i.e., Ej is the set of all
edges in Gj. For 1≤ j< l≤ n and vjvl ∈ E(H), we use Ej,l to
denote the set wi,jwi,l|i � 1, 2, . . . , m􏽮 􏽯, i.e., Ej,l is the set of
all edges joining the vertices in Gj and the vertices in Gl. We
see that E(G□H) is the disjoint union of Ej (j � 1, 2, . . . , n)
and Ej,l (1≤ j< l≤ n, vjvl ∈ E(H)).

.e notations for the vertices wi,j, the subgraphs Gj, and
the edge sets Ej, Ej,l of G□H will be used in the proofs of
.eorems 4 and 5.

Theorem 4. Let G be a regular and uniformly R-antimagic
graph. &en, G□Kn(n≥ 2) is also regular and uniformly
R-antimagic.

n is odd

r5
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r4

r6

rn−1 rn

rn−2

v6
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v1

v3

v5

v7
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vn
vn−1

vn−3

n is even

r7

r5

r3
r1

r2

r4

r6

rn−2 rn

rn−1

v6

v4

v2v1

v3

v5

v7

vn−3

vn−1 vn

vn−2

v8

Figure 3: Edge labeling of Cn.
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Proof. Since both G and Kn are regular, it is trivial that
G□Kn is regular. Since G is uniformly R-antimagic, we
assume that u1, u2, . . . , um (m≥ 3) is the sequence of vertices
of G with the uniformly R-antimagic property. We see that
the edge set E(G□Kn) is the union of Ej (j � 1, 2, . . . , n) and
Ej,l (1≤ j< l≤ n).

Now, we prove that G□Kn(n≥ 2) is uniformly R-anti-
magic. Let A⊆R with |A| � |E(G□Kn)| be arbitrarily given.
Define g to be an edge labeling of G□Kn with labels in A by
the following three rules:

Rule 1. For j � 1, 2, . . . , n − 1, Ej ≺Ej,j+1 ≺Ej,j

+ 2≺ · · · ≺Ej,n ≺Ej+1.
Rule 2. For 1≤ j< l≤ n, and for i � 1, 2, . . . , m − 1,
g(wi,jwi,l)<g(wi+1,jwi+1,l) (i.e., g(w1,jw1,l)<g

(w2,jw2,l) <g(w3,jw3,l) < · · · <g(wm,jwm,l)).
Rule 3. For j � 1, 2, . . . , n, and for i � 1, 2, . . . , m − 1,
g+

Ej
(wi,j)<g+

Ej
(wi+1,j) (i.e., g+

Ej
(w1,j)<g+

Ej
(w2,j) <g+

Ej

(w3,j)< · · · <g+
Ej

(wm,j)).

.e edge labeling g with labels in A can have Rule 3
derived from the fact that the sequence of vertices
u1, u2, . . . , um has the uniformly R-antimagic property in G

and the fact stated in Note 1. □

Claim 1. For j � 1, 2, . . . , n, g+(w1,j)<g+(w2,j) <g+(w3,j)

< · · · <g+(wm,j).
Check of Claim 1.We need to show g+(wi,j)<g+(wi+1,j)

for i � 1, 2, . . . , m − 1.
Let J � 1, 2, . . . , n{ }. Note that

g
+

wi,j􏼐 􏼑 � g
+
Ej

wi,j􏼐 􏼑 + 􏽘

l∈J− j{ }

g wi,jwi,l􏼐 􏼑,

g
+

wi+1,j􏼐 􏼑 � g
+
Ej

wi+1,j􏼐 􏼑 + 􏽘

l∈J− j{ }

g wi+1,jwi+1,l􏼐 􏼑.
(16)

By Rule 3, g+
Ej

(wi,j)<g+
Ej

(wi+1,j).
By Rule 2, for 1≤ j< l≤ n, g(wi,jwi,l)<g(wi+1,jwi+1,l), it

implies

􏽘

l∈J− j{ }

g wi,jwi,l􏼐 􏼑< 􏽘

l∈J− j{ }

g wi+1,jwi+1,l􏼐 􏼑.
(17)

.us, g+(wi,j)<g+(wi+1,j), which completes the Check
of Claim 1.

Claim 2. For j � 1, 2, . . . , n − 1, g+(wm,j)<g+(w1,j+1).
Check of Claim 2. Let J � 1, 2, . . . , n{ }. Note that

g
+

wm,j􏼐 􏼑 � g
+
Ej

wm,j􏼐 􏼑 + 􏽘

k∈J− j{ }

g wm,jwm,k􏼐 􏼑

� g
+
Ej

wm,j􏼐 􏼑 + g wm,jwm,j+1􏼐 􏼑 + 􏽘

k∈J− j,j+1{ }

g wm,kwm,j􏼐 􏼑,

g
+

w1,j+1􏼐 􏼑 � g
+
Ej+1

w1,j+1􏼐 􏼑 + 􏽘

k∈J− j+1{ }

g w1,j+1w1,k􏼐 􏼑

� g
+
Ej+1

w1,j+1􏼐 􏼑 + g w1,jw1,j+1􏼐 􏼑 + 􏽘

k∈J− j,j+1{ }

g w1,kw1,j+1􏼐 􏼑.

(18)

Let A1 � EGj
(wm,j)⊆Ej, A2 � wm,jwm,j+1􏽮 􏽯⊆Ej,j+1,

B1 � EGj+1
(w1,j+1)⊆Ej+1, B2 � w1,jw1,j+1􏽮 􏽯⊆Ej,j+1. .us,

􏽘
e∈A1∪A2

g(e) � g
+
Ej

wm,j􏼐 􏼑 + g wm,jwm,j+1􏼐 􏼑,

􏽘
e∈B1∪B2

g(e) � g
+
Ej+1

w1,j+1􏼐 􏼑 + g w1,jw1,j+1􏼐 􏼑.
(19)

By Rule 1, Ej ≺Ej,j+1 ≺Ej+1. Since A1 ⊆Ej, B1 ⊆Ej+1,
A2, B2 ⊆Ej,j+1, we have A1 ≺B1 ∪B2 and A2 ≺B1. Also, note
|A1| � |B1|, |A2| � |B2| � 1. .us, by Lemma 1,
􏽐e∈A1∪A2

g(e)<􏽐e∈B1∪B2
g(e). Hence,

g
+
Ej

wm,j􏼐 􏼑 + g wm,jwm,j+1􏼐 􏼑<g
+
Ej+1

w1,j+1􏼐 􏼑 + g w1,jw1,j+1􏼐 􏼑.

(20)

By Rule 1, Ek,j ≺Ek,j+1 if k< j, and Ej,k ≺Ej+1,k if
k> j + 1, and we see that wm,kwm,j ∈ Ek,j, w1,kw1,j+1 ∈ Ek,j+1.
.us, g(wm,kwm,j)<g(w1,kw1,j+1), which implies

􏽘

k∈J− j,j+1{ }

g wm,kwm,j􏼐 􏼑< 􏽘

k∈J− j,j+1{ }

g w1,kw1,j+1􏼐 􏼑.
(21)

Combining (20) and (21), we obtain g+(wm,j) <g+

(w1,j+1). .is completes the Check of Claim 2.
From Claims 1 and 2, we obtain

g
+

w1,1􏼐 􏼑<g
+

w2,1􏼐 􏼑< · · · <g
+

wm,1􏼐 􏼑

<g
+

w1,2􏼐 􏼑<g
+

w2,2􏼐 􏼑< · · · <g
+

wm,2􏼐 􏼑

<g
+

w1,3􏼐 􏼑<g
+

w2,3􏼐 􏼑< · · · <g
+

wm,3􏼐 􏼑

< · · · < · · · < · · ·

<g
+

w1,n􏼐 􏼑<g
+

w2,n􏼐 􏼑< · · · <g
+

wm,n􏼐 􏼑.

(22)

We also see that the order of the vertices w1,1, w2,1, w3,1,
. . ., wm,1, w1,2, w2,2, w3,2, . . ., wm,2, w1,3, w2,3, w3,3, . . ., wm,3,
w1,4, . . ., wm,n−1, w1,n, w2,n, w3,n, . . ., wm,n satisfying the
aforementioned strict inequalities is independent of the
chosen A⊆R with |A| � |G□Kn|. .us, G□Kn(n≥ 2) is
uniformly R-antimagic.
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It has been proved that Cartesian product of two or more
cycles is antimagic [7]. We further propose that G□Cn is
(uniformly)R-antimagic where G is a regular and uniformly
R-antimagic graph. In G□Cn, the labels we use are in each
subset A of real numbers with |A| � |E(G)| and the labels
used in [7, 8] are in 1, 2, . . . , |E(G)|{ }. Because of the dif-
ference in labels, we have to modify the order of labelings
that are different from those in [7, 8]. We use some strategies
in the construction of labelings.

Theorem 5. Let G be a regular and uniformly R-antimagic
graph. &en, G□Cn is also regular and uniformly
R-antimagic.

Proof. Since bothG andCn are regular, it is trivial thatG□Cn

is regular. Now, we show that G□Cn is uniformly R-anti-
magic. By .eorem 4, G□K3 is uniformly R-antimagic.
.us, G□C3 is uniformly R-antimagic. Using .eorem 4
twice, we see that (G□K2)□K2 is uniformly R-antimagic.
.us, G□C4 is uniformly R-antimagic since (G□K2)□K2 is
isomorphic to G□C4. We assume that n≥ 5.

Assume that the cycle Cn has vertex set V(Cn) �

v1, v2, . . . , vn􏼈 􏼉 and the edge set E(Cn) � v1v2􏼈 􏼉 ∪ vi􏼈

vi+2| i � 1, 2, . . . , n − 2}∪ vn−1vn􏼈 􏼉. We use the notations for
the vertices, subgraphs, and edge sets of G□H which are
defined in.eorem 4, whereH is now taken to be Cn. We see
that the edge set E(G□Cn) is the union of Ej (j � 1, 2, . . . , n)
and E1,2, Ej,j+2 (j � 1, 2, . . . , n − 2), En−1,n.

Now, we prove that G□Cn is uniformly R-antimagic.
Since G is uniformly R-antimagic, we assume that
u1, u2, . . . , um (m≥ 3) is the sequence of vertices of G with
the uniformly R-antimagic property. Let A⊆R with |A| �

|E(G□Cn)| be arbitrarily given. Define g to be an edge la-
beling of G□Cn with labels in A by the following three rules:

Rule 4. Rules of ≺ on G□Cn.

(a) E1 ≺E1,2 ≺E2,
(b) for j � 2, 3, . . . , n − 2, Ej ≺Ej−1,j+1 ≺Ej+1,
(c) En−1 ≺En−2,n ≺En−1,n ≺En (hence E1 ≺E1,2
≺E2 ≺E1,3 ≺E3 ≺E2,4 ≺E4 ≺E3,5 ≺E5
≺ · · · ≺En−3 ≺En−4,n−2 ≺ En−2
≺En−3,n−1 ≺En−1 ≺En−2,n ≺En−1,n ≺En).

Rule 5. For vjvl ∈ E(Cn), g(w1,jw1,l) <g(w2,j

w2,l)<g(w3,jw3,l)< · · · <g(wm,jwm,l).
Rule 6. For j � 1, 2, . . . , n, we have g+

Ej
(w1,j)

<g+
Ej

(w2,j)<g+
Ej

(w3,j)< · · · <g+
Ej

(wm,j).

.e edge labeling g with labels in A can have Rule 6
derived from the fact that the sequence of vertices
u1, u2, . . . , um has the uniformly R-antimagic property in G

and the fact stated in Note 1. □

Claim 3. For j � 1, 2, . . . , n, g+(w1,j) <g+(w2,j) <g+(w3,j)

< · · · <g+(wm,j).
Check of Claim 3.
We need to show g+(wi,j)<g+(wi+1,j) for i � 1, 2,

. . . , m − 1. Note that

g
+

wi,j􏼐 􏼑 � g
+
Ej

wi,j􏼐 􏼑 + 􏽘

vjvl∈E Cn( )

g wi,jwi,l􏼐 􏼑,

g
+

wi+1,j􏼐 􏼑 � g
+
Ej

wi+1,j􏼐 􏼑 + 􏽘

vjvl∈E Cn( )

g wi+1,jwi+1,l􏼐 􏼑.
(23)

By Rule 6, g+
Ej

(wi,j)<g+
Ej

(wi+1,j).
From Rule 5, we obtain that for fixed i,

i � 1, 2, . . . , m − 1,

􏽘

vjvl∈E Cn( )

g wi,jwi,l􏼐 􏼑< 􏽘

vjvl∈E Cn( )

g wi+1,jwi+1,l􏼐 􏼑.
(24)

.us, g+(wi,j)<g+(wi+1,j). .is completes the Check of
Claim 3.

Claim 4. For j � 1, 2, . . . , n − 1, g+(wm,j)<g+(w1,j+1).
Check of Claim 4. We distinguish five cases: Case 3,

j � 1; Case 4, j � 2; Case 5, j � 3, 4, . . . , n − 3; Case 6,
j � n − 2; and Case 7, j � n − 1.

Case 3. j � 1.
We need to show that g+(wm,1)<g+(w1,2). Let A1 �

EG1
(wm,1) and A2 � wm,1wm,2􏽮 􏽯. .en,

g
+

wm,1􏼐 􏼑 � g wm,1wm,3􏼐 􏼑 + 􏽘
e∈A1∪A2

g(e).
(25)

Let B1 � EG2
(w1,2) and B2 � w1,1w1,2􏽮 􏽯. .en,

g
+

w1,2􏼐 􏼑 � g w1,2w1,4􏼐 􏼑 + 􏽘
e∈B1∪B2

g(e). (26)

From Rule 4, E1 ≺E1,2 ≺E2 ≺E1,3 ≺E2,4. Since E1,3 ≺E2,4,
we have

g wm,1wm,3􏼐 􏼑<g w1,2w1,4􏼐 􏼑. (27)

Since E1 ≺E1,2 ≺E2, A1 ⊆E1, A2, B2 ⊆E1,2, B1 ⊆E2, we
have A1 ≺B1 ∪B2, A2 ≺B1. Since G is regular, we have
|A1| � |B1|. Trivially, |A2| � |B2| � 1. .us, by Lemma 1,

􏽘
e∈A1∪A2

g(e)< 􏽘
e∈B1∪B2

g(e).
(28)

From the aforementioned, we obtain g+(wm,1)

<g+(w1,2).

Case 4. j � 2.
We need to show that g+(wm,2)<g+(w1,3). Note that

g
+

wm,2􏼐 􏼑 � g
+
E2

wm,2􏼐 􏼑 + g wm,1wm,2􏼐 􏼑 + g wm,2wm,4􏼐 􏼑,

g
+

w1,3􏼐 􏼑 � g
+
E3

w1,3􏼐 􏼑 + g w1,1w1,3􏼐 􏼑 + g w1,3w1,5􏼐 􏼑.

(29)

Since E2 ≺E3 and G2 and G3 are regular with the same
degree, we have

g
+
E2

wm,2􏼐 􏼑<g
+
E3

w1,3􏼐 􏼑. (30)

Since E1,2 ≺E1,3, we have
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g wm,1wm,2􏼐 􏼑<g w1,1w1,3􏼐 􏼑. (31)

Since E2,4 ≺E3,5, we have

g wm,2wm,4􏼐 􏼑<g w1,3w1,5􏼐 􏼑. (32)

.us, we obtain g+(wm,2)<g+(w1,3).

Case 5. j � 3, 4, . . . , n − 3.
We need to show that g+(wm,j)<g+(w1,j+1). For n � 5,

we do not need to consider this case. Assume that n≥ 6. Note
that

g
+

wm,j􏼐 􏼑 � g
+
Ej

wm,j􏼐 􏼑 + g wm,j−2wm,j􏼐 􏼑 + g wm,jwm,j+2􏼐 􏼑,

g
+

w1,j+1􏼐 􏼑 � g
+
Ej+1

w1,j+1􏼐 􏼑 + g w1,j−1w1,j+1􏼐 􏼑 + g w1,j+1w1,j+3􏼐 􏼑.

(33)

From Rule 4(b), we have Ej ≺Ej−1,j+1 ≺Ej+1 ≺Ej,j+2 for
2≤ j≤ n − 3. Since Ej ≺Ej+1 and Gj and Gj+1 are regular
with the same degree, we have

g
+
Ej

wm,j􏼐 􏼑<g
+
Ej+1

w1,j+1􏼐 􏼑. (34)

Since Ej−2,j ≺Ej−1,j+1, we have

g wm,j−2wm,j􏼐 􏼑<g w1,j−1w1,j+1􏼐 􏼑. (35)

Since Ej,j+2 ≺Ej+1,j+3, we have

g wm,jwm,j+2􏼐 􏼑<g w1,j+1w1,j+3􏼐 􏼑. (36)

Accordingly, we obtain g+(wm,j)<g+(w1,j+1).

Case 6. j � n − 2.
We need to show that g+(wm,n−2)<g+(w1,n−1). Note that

g
+

wm,n−2􏼐 􏼑 � g
+
En−2

wm,n−2􏼐 􏼑 + g wm,n−4wm,n−2􏼐 􏼑

+ g wm,n−2wm,n􏼐 􏼑,

g
+

w1,n−1􏼐 􏼑 � g
+
En−1

w1,n−1􏼐 􏼑 + g w1,n−3w1,n−1􏼐 􏼑

+ g w1,n−1w1,n􏼐 􏼑.

(37)

Also note that En−4,n−2 ≺En−2 ≺En−3,n−1 ≺En−1. Since
wm,n−4wm,n−2 ∈ En−4,n−2, w1,n−3w1,n−1 ∈ En−3,n−1, we have

g wm,n−4wm,n−2􏼐 􏼑<g w1,n−3w1,n−1􏼐 􏼑. (38)

Since EGn−2
(wm,n−2)⊆En−2, EGn−1

(w1,n−1)⊆En−1, we have

g
+
En−2

wm,n−2􏼐 􏼑<g
+
En−1

w1,n−1􏼐 􏼑. (39)

Furthermore, En−2,n ≺En−1,n, this implies

g wm,n−2wm,n􏼐 􏼑<g w1,n−1w1,n􏼐 􏼑. (40)

Hence, we obtain g+(wm,n−2)<g+(w1,n−1).

Case 7. j � n − 1.
We need to show that g+(wm,n−1)<g+(w1,n). Let A1 �

EGn−1
(wm,n−1) and A2 � wm,n−1wm,n􏽮 􏽯. .en,

g
+

wm,n−1􏼐 􏼑 � g wm,n−3wm,n−1􏼐 􏼑 + 􏽘
e∈A1∪A2

g(e). (41)

Let B1 � EGn
(w1,n) and B2 � w1,n−1w1,n􏽮 􏽯. .en,

g
+

w1,n􏼐 􏼑 � g w1,n−2w1,n􏼐 􏼑 + 􏽘
e∈B1∪B2

g(e). (42)

Note that En−3,n−1 ≺En−1 ≺En−2,n ≺En−1,n ≺En. From
En−3,n−1 ≺En−2,n and wm,n−3wm,n−1 ∈ En−3,n−1,
w1,n−2w1,n ∈ En−2,n, we have

g wm,n−3wm,n−1􏼐 􏼑<g w1,n−2w1,n􏼐 􏼑. (43)

From En−1 ≺En−1,n ≺En and A1 ⊆En−1, A2 ⊆En−1,n,
B1 ⊆En, B2 ⊆En−1,n, we have A1 ≺B1 ∪B2 and A2 ≺B1. Since
G is regular, we have |A1| � |B1|. Trivially, |A2| � |B2| � 1.
.us, by Lemma 1,

􏽘
e∈A1∪A2

g(e)< 􏽘
e∈B1∪B2

g(e). (44)

.erefore, we obtain g+(wm,n−1)<g+(w1,n).

.ese complete the Check of Claim 4.
From Claims 3 and 4, we obtain

g
+

w1,1􏼐 􏼑<g
+

w2,1􏼐 􏼑< · · · <g
+

wm,1􏼐 􏼑

<g
+

w1,2􏼐 􏼑<g
+

w2,2􏼐 􏼑< · · · <g
+

wm,2􏼐 􏼑

<g
+

w1,3􏼐 􏼑<g
+

w2,3􏼐 􏼑< · · · <g
+

wm,3􏼐 􏼑

< · · · < · · · < · · ·

<g
+

w1,n􏼐 􏼑<g
+

w2,n􏼐 􏼑< · · · <g
+

wm,n􏼐 􏼑.

(45)

We also see that the order of the vertices w1,1, w2,1, w3,1,
. . ., wm,1, w1,2, w2,2, w3,2, . . ., wm,2, w1,3, w2,3, w3,3, . . ., wm,3,
w1,4, . . ., wm,n−1, w1,n, w2,n, w3,n, . . ., wm,n satisfying the
aforementioned strict inequalities is independent of the
chosen A⊆R with |A| � |E(G□Cn)|. .us, G□Cn is uni-
formly R-antimagic. .is completes the proof of the
theorem.

.e following corollaries derive directly from .eorems
4 and 5.

Corollary 1. &e graph G1□G2□ · · ·□Gn (n≥ 2) is uniformly
R-antimagic, where G1 is regular and uniformly R-anti-
magic, and for i≥ 2, each Gi is a complete graph of order ≥2 or
a cycle.

Corollary 2. &e graph G1□G2□ · · ·□Gn (n≥ 2) is uniformly
R-antimagic, where each Gi is a complete graph of order ≥2 or
a cycle.

Proof. Each Gi is a complete graph of order ≥2 or
a cycle. □

Case 8. Some Gi ≠K2.
Without loss of generality, assume G1 ≠K2. .en, G1 is

a cycle or a complete graph of order ≥3. By .eorems 2 and
3, G1 is uniformly R-antimagic. .en, the corollary derives
from Corollary 1.
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Case 9. Gi � K2 for i � 1, 2, . . . , n.
Since K2□K2 � C4, by .eorem 2, G1□G2 is uniformly

R-antimagic. Again, the corollary derives from Corollary 1.
Note that the hypercube Qn is isomorphic to

G1□G2□ · · ·□Gn, where each Gi � K2 for i � 1, 2, . . . , n. .e
following corollary derives from Corollary 2.

Corollary 3. Hypercube Qn (n≥ 2) is uniformlyR-antimagic.

4. Conclusions

In this paper, we propose the notion of R-antimagic graph.
.is is a generalization of R+-antimagic graph. Every
R-antimagic graph is R+-antimagic, and every R+-antimagic
is antimagic. Not all R+-antimagic graphs (e.g., stars and
Pn, n � 3, 4, 5) are R-antimagic.

In Section 2, we show that wheels, cycles, and complete
graphs of order ≥3 are R-antimagic. Let G be a complete
graph (except K1) or a cycle with V(G) � u1, u2, . . . , un􏼈 􏼉.
We have found that all the vertices of G can be listed as
u1, u2, . . . , un such that for every A⊆R with |A| � |E(G)|,
there is an edge labeling f of G with labels in A such that
f+(u1)<f+(u2)< · · · <f+(un). .e property we call uni-
formlyR-antimagic property is independent of the choice of
the subset A of R. We have found some graphs with uni-
formly R-antimagic property.

We use labelings modified from those in [7, 8] and make
them more systematic in this paper. .e proofs in this paper
provide efficient algorithms for finding edge labelings of
Cartesian products of cycles and complete graphs. Our
contribution is to quickly find the edge labelings of Cartesian
products of cycles and complete graphs through the algo-
rithms we constructed. It has been proved the Cartesian
products G1□G2□ · · ·□Gn (n≥ 2) of G1, G2, . . ., Gn are
(uniformly) R-antimagic if each Gi is either a complete
graph (except K1) or a cycle in Section 3.

We construct some classes of uniformly R-antimagic
graphs through Cartesian products. Some join graphs which
are antimagic have been proved in [13, 14]. In [13], they use
the way of listing edges in [9] to show that a class of join
graphs are antimagic. It makes the method of labelings in
this paper more plausible.

We end this paper with the following observation: every
R+-antimagic graph is also R-antimagic if the graph is
regular. In further studies, we will propose R-antimagicness
of more regular graphs (e.g., Petersen graph). Also, we will
generalize the research results in this paper in the proposals
of Cartesian product of some other regular graphs.
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