
Research Article
Weather Radar Image Superresolution Using a Nonlocal
Residual Network

Haoxuan Yuan ,1,2 Qiangyu Zeng ,1,2 and Jianxin He1,2

1College of Electronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
2CMA Key Laboratory of Atmospheric Sounding, Chengdu 610225, China

Correspondence should be addressed to Qiangyu Zeng; zqy@cuit.edu.cn

Received 26 October 2021; Revised 30 November 2021; Accepted 3 December 2021; Published 30 December 2021

Academic Editor: Naeem Jan

Copyright © 2021Haoxuan Yuan et al.-is is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Accurate and high-resolution weather radar images reflecting detailed structure information of radar echo are vital for analysis
and forecast of extreme weather. Typically, this is performed by using interpolation schemes, which only use several neighboring
data values for computational approximation to get the estimated value regardless of the large-scale context feature of weather
radar images. Inspired by the striking performance of the convolutional neural network (CNN) applied in feature extraction and
nonlocal self-similarity of weather radar images, we proposed a nonlocal residual network (NLRN) on the basis of CNN. -e
proposed network mainly consists of several nonlocal residual blocks (NLRB), which combine short skip connection (SSC) and
nonlocal operation to train the deep network and capture large-scale context information. In addition, long skip connection (LSC)
added in the network avoids learning low-frequency information, making the network focus on high-level features. Extensive
experiments of ×2 and ×4 super-resolution reconstruction demonstrate that NLRN achieves superior performance in terms of
both quantitative evaluation metrics and visual quality, especially for the reconstruction of the edge and detailed information of
the weather radar echo.

1. Introduction

Doppler weather radar with high temporal and spatial
resolution e.g., China Next Generation Weather Radar
(CINRAD) provides measurements with high temporal
(approx. 6 minutes) and spatial (approx. 1× 1 km) resolution
and have been widely applied in operational research and
forecasts onmedium-scale and intense precipitation weather
phenomena.

However, single weather radar is susceptible to beam
blocking, ground clutter, and reduced resolution at long
distances due to beam broadening and averaging. As shown
in Figure 1, the beam width increases with the detection
distance which leads to a loss of information on sudden
changes in radar echoes such as velocity changes in tor-
nadoes andmesocyclones, as well as information on extreme
precipitation intensity and gradients when detection target
occurs at a distance from the observing radar [1, 2]. It is,
therefore, worthwhile to improve the resolution of weather

radar data by upgrading the observation equipment and by
postprocessing the observation data such as interpolation or
superresolution reconstruction. Due to the long cycle and
high cost of the first scheme, many scholars have conducted
a lot of research on the second scheme.

In terms of interpolation methods, Ruzanski and
Chandrasekar [3] proposed a kernel-based Fourier inter-
polation method, which effectively improves the spatial and
temporal resolution of weather radar by adding windows to
screen the effective input data to be interpolated. Sharifi et al.
[4] proposed a downscaling method based on spline in-
terpolation to address the problem of too coarse spatial-
temporal resolution when satellite precipitation estimates
are applied to small areas, which effectively improves the
resolution of precipitation data products while accurately
capturing detailed precipitation patterns and information.
Considering the non-Gaussian and locally coherent struc-
ture of weather radar reflectivity data in the wavelet domain,
Kou et al. [5] proposed an interpolation method to improve
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the resolution of radar reflectivity data, which effectively use
the hidden Markov tree (HMT) model as priority infor-
mation to well capture the multiscale statistical character-
istics of radar reflectivity data in small-scale intense
precipitation condition.

Inspired by the sparsity of weather radar precipitation
images in the wavelet domain, dictionary-based sparse regu-
larization methods have been applied to statistical down
scaling, converting coarse observation data into more refined
[6, 7]. Based on sparse regularization, Zhang et al. [8] further
proposed a nonlocal self-similar sparse representation (NSSR)
model, which effectively uses the nonlocal self-similarity of
weather radar echo during the reconstruction process. Simi-
larly, in the research article, Yuan et al. [9] proposed adaptive
regularized sparse representation for weather radar echo super-
resolution reconstruction. Based on dictionary learning, Xu
et al. [10] proposed a downscalemethod to obtainmore refined
short-duration precipitation data.

With the rapid progress of deep learning, the atmospheric
research community has already taken advantage of the
convolutional neural network (CNN)’s ability [11], such as
the application of super resolution is related to the statistical
downscaling of climate data. Vandal et al. [12] first applied
CNN to climate data downscalling and improved the accu-
racy of precipitation data from 1° (100 km) to 1/8° (12.5 km)
by stacking CNN-based super-resolutionmodels. Cheng et al.
[13] innovatively integrated the residual dense block (RDB)
[14] with the Laplacian pyramid super-resolution network
(LapSRN) [15] to exploit hierarchical features from all con-
volutional layers and generate a more refined climate image
than Vandal’s method. Geiss and Hardin [16] combined the
classic “up-net” [17] with the “dense network” [18] and
proposed a new deep convolutional neural network to learn
large-scale precipitation features in weather radar images.-e
reconstructed weather radar image is superior to the tradi-
tional interpolation method in terms of both objective
evaluation metrics and visual quality. Stengel et al. [19] also

used adversarial learning to significantly enhance the reso-
lution of wind and solar data, which shows the notable
performance of the generative adversarial network (GAN) in
downscaling climate data.

However, there is an issue existing in most CNN-based
super-resolution models. -ese networks use local con-
volutional operations to extract features, which result in a
relatively small receptive field size of the network and the
inability to capture the large-scale context information of
weather radar image, such as the recurrence features of
small-scale organized precipitation within and across dif-
ferent storm environments.

To address this issue, we proposed a nonlocal residual
network (NLRN) on the basis of CNN, which increases the
depth of the network and the efficiency in exploiting the
large-scale context information of the weather radar image
by applying residual learning and nonlocal operation.

-e main contributions of this work are as follows:

(i) According to the nonlocal self-similarity of weather
radar images, this research endowed the network’s
ability that allows them to fuse nonlocal informa-
tion by stacking the nonlocal residual block (NLRB).
In order to achieve a nonlocal operation, it embeds
the nonlocal block (NLB).

(ii) -e outstanding performance of residual learning
has inspired us to introduce the long and short skip
connections in the overall structure of the network
and NLRB, respectively. It trains a deeper network,
which effectively facilitates the flow of information
and solves the gradient vanishing problems.

(iii) -is study conducted loads of experiments on
reflectivity data under different weather conditions.
-ey justified that weather radar images reconstructed
by NLRN achieved better quantitative results and
visual quality by the proposed method than other SR
methods mentioned in the experimental section.

Radar “A” Radar “B” 

Radar “A”is farther away from the
storm, so it has a widen beam when

detecting the 60 dBZ core Radar “B”is closer to the storm,
so it has a narrow beam when

detecting the 60 dBZ core, which
completely fills the beam...

Storm: Actual 60 dBZ
core 

“B” = 60dBZ

“A” <60dBZ

Figure 1: -e effect of beam broadening.
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-e remaining part of the article proceeds as follows:
Section 2 gives a brief introduction to the background that is
related to the article. -e framework and details of the
proposed NLRN are described in Section 3. Section 4
presents the implementation details of NLRN. Several ex-
perimental results and discussions are presented to validate
the effectiveness of the proposed NLRN in Section 5. Section
6 concludes the article.

2. Background

First, this section gives a concise overview of the SR methods
that are related to the article. Second, we discuss the
characteristic of a weather radar image. Finally, to facilitate
the understanding of subsequent experimental parts by
readers without a background in meteorology, we give a
brief introduction to the hook echo.

2.1. Image Super-Resolution Methods. According to the
means of implementation, the image super-resolution
methods can be divided into three types: interpolation-
based, reconstruction-based, and learning-based image su-
per-resolution methods.

2.1.1. Methods Based on Interpolation. -e basic idea of
classical interpolation methods such as nearest interpola-
tion, bilinear interpolation, and bicubic interpolation [20] is
to approximate the lost image information by using the basis
function or interpolation kernel, which only exploits the
neighboring information. -ese methods often result in
blurred edges and loss of high-frequency detail while re-
ducing computational complexity.

2.1.2. Methods Based on Reconstruction.
Reconstruction-base methods apply prior knowledge of
image as constraint terms to the process of super-resolution
reconstruction, which effectively solves the ill-posed prob-
lem of super-resolution reconstruction. Classical recon-
struction-based methods are iterative back projection (IBP)
[21], maximum a posterior estimation (MAP) [22], etc.

2.1.3. Methods Based on Shallow Learning. Before the deep
learning is applied to image super resolution, the most
learning-based methods are proposed on the basis of sparse
representation such as nonlocally centralized sparse repre-
sentation (NCSR) [23] and structure-modulated sparse
representation (SMSR) [24], which mainly includes dictio-
nary learning and sparse coding.

2.1.4. Methods Based on Deep Learning. In recent years, with
the rapid progress of deep learning, learning methods
represented by convolutional neural networks (CNNs)
quickly dominate the computer vision field and have been
widely applied in the fields of image recognition and seg-
mentation [25–29]. Deep learning methods based on CNN
have been popularly applied to the image super-resolution
(SR) field since Dong et al. first proposed to combine CNN

and super-resolution reconstruction (SRCNN) [30]. Dong
et al. [31] replaced the large convolution kernel with more
and smaller convolutional layers on the basis of SRCNN and
introduced a deconvolution layer at the end of the network
to greatly improve the training speed of the model.
Benefiting from the increasing depth and complexity of
networks, super-resolution networks possess increasingly
better performance. -e structure of the residual network
(ResNet) [32] has been widely applied to effectively solve the
gradient vanishing and gradient exploding problems faced
by deep networks. -e network proposed by Kim et al.
(VDSR) [33] increases the convolutional layers to 20 layers,
which apply global skip connection as well as adjustable
gradient cropping strategy to solve the problem of difficult
convergence of deep networks and achieve striking recon-
struction results. An enhanced deep super-resolution net-
work (EDSR) [34] further improves the results by removing
the unnecessary batch normalization modules. Haris et al.
proposed a deep back-projection network (DBPN) [35]
exploiting iterative up-and-down sampling layers, which
effectively use the interdependence of LR and HR images.

2.2.WeatherRadar ImageCharacteristic. Statistics show that
the weather radar image contains much redundant infor-
mation. As shown in Figure 2, the red box in the left PPI
(Plane Position Indicator) and the black box in the right PPI
indicate the given patch and the patches that are nonlocally
similar to it, respectively. Many similar and redundant
structures can be observed between two patches (the ex-
ample data are the reflectivity data of the first layer elevation
angle of CINRAD-SA radar (Yancheng, Jiangsu, China, 11:
48, June 23, 2016). -ese data have 360 radials, and each
radial has 460 range bins. -is nonlocal redundant infor-
mation has the effect of improving the quality of weather
radar image reconstructed. As discussed above, limited by
the size of the local receptive field, the convolution operation
has deficiencies in the fusion of nonlocal information,
resulting in the failure to effectively capture the long-range
dependencies.-erefore, the network that can better fuse the
nonlocal information of weather radar images has better
super-resolution reconstruction performance.

2.3. Hook Echo. -e Hook Echo is a well-researched radar
reflectivity signature that must involve descending precip-
itation curtains as hydrometeors fall relative to the ambient
air. As shown on the left part of Figure 3, the falling pre-
cipitation occurs on the back side of the updraft, which can
be regarded as the low-level “extension of the bounded weak
echo region (BWER)” [36]. It is commonly believed that the
falling precipitation interacts with the mesocyclone of the
storm, so it descends along an arc [37]. -e right part of
Figure 3 shows the radar reflectivity signatures of the hook
echo. A common belief is that the hook echo is the area
where tornadoes may occur in supercell thunderstorms
[38, 39]. -erefore, capturing as much detailed information
as possible about the hook echo can help in tornado de-
tection and early warning forecasting.
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3. Network Structure

-e architecture of NLRN is illustrated in Figure 4(a), which
consists of four parts: shallow feature extraction, deep
feature extraction, upsampling, and reconstruction layer. ILR
and ISR denote the input and output of NLRN. -e first part
extracts the shallow features F0 from the input LR image ILR.

F0 � HSF ILR( 􏼁, (1)

where HSF denotes the two convolution operation, each
followed by an activation function. To effectively solve the
vanishing gradients and dying ReLU problem, we choose
leaky rectified linear unit (LReLU) as the activation function.
-e shallow features F0 are then used as input to the
nonlinear mapping network part that consists of G nonlocal
residual blocks (NLRBs) to learn mapping relations with
sufficient representational ability.-e structure of NLRBwill
be given in detail later. We formulate the deep feature-ex-
traction process as follows:

Fg � HRNAB,g Fg−1􏼐 􏼑, g � 1, . . . , G, (2)

where HRNAB,g(·) represents the operation of gth NLRB,
Fg−1 and Fg denote the input and output of gth NLRB,
respectively. To make the network more focused on high-
frequency information, we avoid learning low-frequency

information by adding long skip connection (LSC), which
also effectively fuses shallow and deep features. -e process
is expressed as follows:

FG+1 � H FG( 􏼁 + F0, (3)

where H represents a convolution operation and FG+1 as the
input to the upscale module. As the previous work [34], we
apply ESPCNN [40] to upscale the deep features and then
use one final convolution layer with three filters to provide
the final reconstructed images. -e output of NLRN can be
obtained by

ISR � HR HUP FG+1( 􏼁( 􏼁 � HNLAN ILR( 􏼁, (4)

where HUP and HR denote the upsampling and the con-
volution operation, respectively. HNLAN denotes the func-
tion of our NLRN.

3.1. Nonlocal Residual Block. Restricted by the local receptive
field size,most CNN-based SRmethods have deficiencies in the
fusion of nonlocal information, which result in low-efficiency
utilization of self-similarity properties in images. Inspired by
the classical nonlocal means [41], Wang et al. [42] proposed a
nonlocal block (NLB) to fuse the nonlocal information of the
image by using the self similarity of the nonlocal patches of the
image, which obtain promising results in image recognition.
Returning to the task of super-resolution reconstruction, in
order to fully exploit the input information through the net-
work, we propose a nonlocal residual block (NLRB). As shown
in Figure 4(b), the first part of the NLRB is three convolutions
with a size of 3× 3, each of them is followed by LReLU. -e
input of NLRB and output of NLB are combined by residual
learning through a short skip connection (SSC), which also
effectively solves the vanishing gradient problems faced by the
deep network and facilitates the flow of information.

3.2. Nonlocal Block. Now, we present details about NLB.
Nonlocal operations can transform the response of the current
position into the weighted sum of all position features in the

200

200

150

150

100

100

50

50

0

0
X (km)

Reflectivity

-50

-50

Y 
(k

m
)

-100

-100

-150

-150
-200

-200

65
60
55
50
45
40
35
30
25
20
15
10
5
0
–5
None

200

200

150

150

100

100

50

50

0

0
X (km)

Reflectivity

-50

-50

Y 
(k

m
)

-100

-100

-150

-150
-200

-200

65
60
55
50
45
40
35
30
25
20
15
10
5
0
–5
None

Figure 2: Example of nonlocally similar weather radar image patches.
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input feature map, so the nonlocal mean can fuse the nonlocal
information of the image by using the self similarity of the local
patch of the image. -e generalization formula of the nonlocal
operation in neural networks is defined as

yi �
􏽐∀jf xi, xj􏼐 􏼑g xj􏼐 􏼑

􏽐∀jf xi, xj􏼐 􏼑
, (5)

where i is the location index of the target output y, j is the
index of all possible positions in this operation. x is the input
feature mapping; y is the output feature mapping, and x and
y have the same size. f(xi, xj) represents the scalar rela-
tionship between the positions i and j. -e unary function
g(xj) represents the eigenvalues of the feature mapping x at
the position index j. Inspired by nonlocal means and bi-
lateral filters, we use embedded Gaussian functions to
compute similarity.

f xi, xj􏼐 􏼑 � exp u xi( 􏼁
T

v xj􏼐 􏼑􏼐 􏼑, (6)

where u(xi) � Wuxi, v(xj) � Wvxj, Wu and Wv denote the
weight matrices. -is can be seen from the fact that for a
given i, (1/􏽐∀?jf(xi, xj))f(xi, xj) becomes the SoftMax
computation along the dimension j. So, we have
yi � softmax(xT

i WT
u Wvxj)g(xj). For simplicity, we con-

sider a linear embedding for g(xj): g(xj) � Wgxj, and Wg

denotes the weight matrix. We further transform nonlocal
operations into a nonlocal block (NLB). -e definition of
NLB is as follows:

zi � Wzyi + xi, (7)

where yi has been given in equation (5), +xi represents a
residual connection, which allows us to embed a new NLB in
any pretraining model without changing its original

structure. -en, the output z at the position i of the (NLB) is
calculated as follows:

zi � Wzyi + xi � Wzsoftmax x
T
i W

T
θ Wϕxj􏼐 􏼑g xj􏼐 􏼑 + xi, (8)

where Wz denotes the weight matrix and is initialized as
zeros. -e structure of NLB is illustrated in Figure 5.

3.3. Loss Function. When training NLRN, the optimal set of
network parameters is obtained by minimizing the loss
between training samples. To show the effectiveness of our
NLRN, we choose l1 loss function for our network opti-
mization to provide better convergence [40]. Now, for a
batch of N training images i.e. Ii

SR, Ii
LR􏼈 􏼉

N

i�1, the aim is to
minimize the l1 loss function as

L(θ) �
1
N

􏽘

N

i�1
I

i
HR − I

i
SR

����
����1, (9)

where θ denotes the parameters to be learned by the net-
work. -e Adam algorithm is applied to optimize the loss
function.

4. Implementation Details

-e implementation details on datasets, degradation pro-
cess, training details, and evaluation metrics are presented in
this section.

4.1. Datasets. We use reflectivity data from China’s New
Generation Weather Radar (CINRAD-SA) as a dataset. For
the elevation of each layer, there are 360 radials, 460 range
bins reflectivity data for each radial, and the range resolution
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of 1 km. To enable NLRN to learn large-scale precipitation
features and small-scale extreme weather features, we use the
precipitation experimental data of South China in Guang-
dong on May-June, 2016, the tornado and hail data of
Yancheng in Jiangsu on May 27, 2008, the tornado data of
Yancheng in Jiangsu on June 23, 2016 and Nantong in
Jiangsu on July 06, 2016, and the typhoon data of Xuzhou in
Jiangsu in August 2018. -e total number of high resolution
(HR) datasets with a size of 512× 512 is 1800, of which 1600
images are used for training, 20 images for validation, and
180 images for testing.Wemainly study the super-resolution
reconstruction performance of NLRN under ×2 and ×4
conditions, so low resolution (LR) images with a size of
256× 256 and 128×128 are obtained as input of NLRN by
applying the degradation method to HR images.

4.2. Degradation Process. -e weather radar image degra-
dation process includes three processes: blurring, down-
sampling, and system noise. -e degradation process can be
formulated by the equation as follows:

y � Ax + n, (10)

where A represents the degradation operation (e.g., blurring
kernel and downsampling operation), and n represents the
weather radar receiver noise, which obeys the zero-mean
Gaussian distribution.

4.3. Parameter Settings. During the training, common data
enhancement methods are also used in training, such as
random horizontal rotations of 90°, 180°, and 270°. For every

training batch, 16 LR patches with the size of 20× 20 are
randomly extracted as inputs. -e convolutional kernels
present in the network are all 3× 3 in size and 64 in number
of filters. To explore the most appropriate number of G, we
have counted the average PSNR under different weather
conditions (e.g., the large weather system, small weather
system, and cloudless) with different parameter G. As shown
in Figure 6, when G≥ 4, the growth of PSNR becomes slow
or even decreases. For balancing performance and com-
putational complexity, we set the number of G as 4. -e
negative slope of leaky rectified linear units (LReLUs) is 0.1.
-e Adam algorithm with β1 � 0.9, β2 � 0.09, ε � 10− 8 is
adopted to optimize the network. -e initial learning rate is
10− 4 and decreases by half for every 200 epochs. Training a
NLRN on PyTorch (1.01) framework roughly takes two days
with two Tesla P40 GPUs for 500 epochs.

4.4. Evaluation Metrics. In order to test the effectiveness of
the proposed NLRN, we compare NLRN with several SR
methods, including Bicubic, IBP, NCSR, VDSR, and EDSR.
Bicubic is a classic interpolation method. IBP is a classical
reconstructionmethod based on gradual iteration. NCSR is a
traditional learning method based on sparse dictionary
learning. VDSR and EDSR are CNN-based deep learning
methods. Peak-signal-to-noise ratio (PSNR) (dB) and
structural similarity (SSIM) [43] are used to quantitatively
evaluate the SR methods.

5. Experimental Results and Analysis

In this section, we compare NLRN with other SR methods in
terms of the training process, visual quality, and quantitative
results.

5.1. Training Comparison. To further compare the conver-
gence and accuracy when training VDSR, EDSR, and NLRN,
the training loss curves of three networks are plotted in
Figure 7(a). From Figure 7(a), it can be seen that after 100
epochs, the loss function loss decreases more slowly with
iterations increasing and finally stabilizes between 6.0 and
7.0, indicating that the network has converged on the
training dataset. It can be seen that NLRN has both faster
convergence and better accuracy than VDSR and EDSR
when training. Figure 7(b) represents the validation PSNR
values of several SR methods mentioned above during the
training. It can be seen that NLRN exhibited considerable
advantages over the conventional methods (Bicubic, IBP,
and NCSR) and CNN-based methods (EDSR and VDSR).

5.2. Visual Quality Comparison. In order to test the per-
formance of NLRN under the large-scale weather system, we
choose precipitation and typhoon reflectivity data as test
data. For weather radar reflectivity data, the intense pre-
cipitation convective cells are often embedded in a lower
intensity region, which shows high aggregation and sparse
correlation. Figure 8 shows some of the visual results of the
different SR methods under an intense precipitation
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Figure 5: -e framework of nonlocal block. Red solid line denotes
matrix reshaping. H × W × C means C features with height H and
width W, and ⊗ denotes the matrix multiplication. ⊕ denotes
element-wise addition.
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condition (Heyuan, Guangdong, China, 11:48, June 15,
2016). -e deep learning-based output is subjectively su-
perior to the conventional methods.-e approach is not able
to recover all of the very fine-scale precipitation structure
that is lost when the original weather radar image is de-
graded. However, the deep leaning methods preserve more
of the fine-scale structure and is notably better at preserving
sharp edges associated with the larger features. Compared
with VDSR and EDSR, NLRN effectively exploits the self
similarity of radar precipitation images through the nonlocal
operation, which is very useful for the identification and
monitoring of intense convective precipitation echo by
reconstructing high-frequency details that are prone to
variability in the map, making the echo structure more
refined and highlighting the location of intense echo. As

shown in Figure 9, NLRN also achieves the best subjective
output under the typhoon condition

(Xuzhou, Jiangsu, China, 09:30, August 18, 2018) by
reconstructing more intense echo information. To test the
performance of NLRN under the small-scale weather system,
we choose tornado data (Yancheng, Jiangsu, China, 14:08,
June 23, 2016) as test data. From Figure 10, it can be seen that
although both the conventional methods and the deep
learning methods can reconstruct most of the hook echo
detail information, the hook echo reconstructed by the
NLRN is closer to the original hook echo, which helps
forecasters to analyze small- and medium-scale extreme
weather and make timely forecast and warning condition
(Xuzhou, Jiangsu, China, 09:30, August 18, 2018) by
reconstructing more intense echo information.

22

20

18

Lo
ss

 v
al

ue

16

14

12

10

8

6

0 100 200

7.0

6.5

6.0

5.5
460 470 480 490 500

300
Epochs

VDSR
EDSR
NLRN

400 500

(a)

29

28

27

PS
N

R 
va

lu
e

26

25

24

23

0 100 200 300
Epochs

400 500

Bicubic
IBP
NCSR

VDSR
EDSR
NLRN

(b)

Figure 7: (a) Training l1 loss of VDSR, EDSR, and NLRN for scale ×4. (b) Validation PSNR values of Bicubic, IBP, NCSR, VDSR, EDSR, and
NLRN during training for scale ×2.

1 2 3 4 5 6 7
Number of NLRBs

25

25.2

25.4

25.6

25.8

26

×4
 P

SN
R 

va
lu

es
 (L

ar
ge

 an
d 

Sm
al

l W
ea

th
er

 S
ys

te
m

)

26

26.2

26.4

26.6

26.8

27

×4
 P

SN
R 

va
lu

es
 (C

lo
ud

le
ss

)

Cloudless
Large Weather System
Small Weather System

Figure 6: -e average PSNR performance of NLRN on validation set with different parameter G (the total numbers of NLRB).

Journal of Mathematics 7



200

200

150

150

100

100

50

50

0

0
X (km)

Reflectivity

-50

-50

Y 
(k

m
)

-100

-100

-150

-150
-200

-200

65
60
55
50
45
40
35
30
25
20
15
10
5
0
-5
None

HR LR Bicubic IBP

NCSR VDSR EDSR NLRN

Figure 9: Visual comparison of ×4 super-resolution reconstruction results of typhoon data. -e best results are in bold.

200

200

150

150

100

100

50

50

0

0
X (km)

Reflectivity

-50

-50

Y 
(k

m
)

-100

-100

-150

-150
-200

-200

65
60
55
50
45
40
35
30
25
20
15
10
5
0
-5
None

HR LR Bicubic IBP

NCSR VDSR EDSR NLRN

Figure 10: Visual comparison of ×4 super-resolution reconstruction results of tornado data. -e best results are in bold.
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Figure 8: Visual comparison of ×4 super-resolution reconstruction results of intense precipitation data. -e best results are in bold.
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5.3. Quantitative Result Comparison. Average PSNR (dB)
comparison of VDSR, EDSR, and NLRN is listed in Table 1.
It can be seen from the result that both EDSR and NLRN can
achieve PSNR more than 0.2 dB higher than VDSR, which
indicates that EDSR and NLRN with SSC have better per-
formance in feature fusion compared with VDSR only using
LSC. Furthermore, NLRN achieves better performance in
exploiting large-scale context information by adding the
nonlocal operation, which leads to the PSNR gain of NLRN
over EDSR up to 0.07 dB. To further validate the effec-
tiveness of NLRN, we compare the proposed NLRN with
various SR methods on degraded weather radar images
under different weather conditions (e.g., large- and small-
scale weather system, and cloudless). All the results on ×2
and ×4 reconstruction are shown in Table 2, from which we
can see that the NLRN proposed in this article can get the
highest PSNR and SSIM values compared with other SR
methods. Especially under the small-scale weather system,
the PSNR gain of NLRN over Bicubic is up to 2 dB under ×2
reconstruction.

6. Conclusion

In this article, we proposed a nonlocal residual network
(NLRN) for weather radar image super resolution, where the
nonlocal residual block (NLRB) allows NLRN to integrate
the nonlocal dependencies and structural information (e.g.,
the local and nonlocal correlations of intense precipitation
echo) by inserting nonlocal blocks (NLBs) in the network.
Extensive experiments on different weather conditions show
the effectiveness of our NLRN in terms of quantitative and

visual results. Although NLRN cannot reconstruct exactly
the same echo geometry, it can recover more accurate echo
edges and details than other SR methods listed in the ex-
perimental part and highlight the structure, location, and
development of intense echo, which contributes to fine
detection and prediction of small- andmedium-scale intense
convection processes. It is worth noting that the deep
learning-based super resolution of weather radar image
relies not only on an excellent model structure but also on
the completeness and diversity of the dataset, and that both
the NLRN and the training dataset need to be further op-
timized to meet the increased demand for monitoring and
forecasting of severe convective weather events.
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