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Abstract 

 
This article introduces a new family of Generalized Exponentiated Exponential distribution. Using the T-

R{Y} framework, a new family of T-Exponentiated Exponential{Y} distributions named T-Exponentiated 

Exponential{Frechet} family of distributions is proposed. Some general properties of the family such as 

hazard rate function, quantile function, non-central moment, mode, mean absolute deviations and Shannon’s 

entropy are discussed. A new continuous univariate probability distribution which is a member of the T-

Exponentiated Exponential{Frechet} family of distributions is introduced. From the general properties of the 

family, expressions are derived for some specific properties of the new distribution. To show the usefulness 

of the T-Exponentiated Exponential{Frechet} family of distributions, the new distribution is fitted to two real 

life data sets and the results are compared with the results of some other existing distributions.  
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1 Introduction 
 

The quest for more flexible probability distributions has provoked among researchers an active interest to 

develop new probability distributions that promise more satisfactory fit to the growing number of complex data 

[1]. There are well recognized standard theoretical distributions in the literature such as the Normal distribution, 

Chi-square distribution, Student-t distribution, Exponential distribution, Uniform distribution, Gamma 

distribution, Beta distribution, Rayleigh distribution, Pareto distribution, Weibull distribution, Gumbel 

distribution, Lomax distribution, Frechet distribution, Burr system of distributions, Gompertz distribution, 

Dagum distribution, Cauchy distribution, Lindley distribution, Kumaraswamy distribution, Binomial 

distribution, Geometric distribution and Poisson distribution. These distributions have played and continue to 

play important roles in the development of statistical theory and applications. Very notable among them is the 

Gaussian or Normal distribution whose usage is dominant in most practical statistical works. Also popular is the 

exponential distribution, widely used to model waiting times and lifetime data. However, these distributions 

have been strongly challenged in application by newer distributions generated using recently developed 

methodologies for generating families of continuous univariate probability distributions [2]. 

 

Lately, the development of new methods for generating more flexible families of continuous univariate 

probability distributions has witnessed an active interest among researchers. These methods are significant in the 

advancement of distribution theory and involve the modification and generalization of existing standard 

theoretical distributions. They induce more skewness either by adding new parameter(s) to an existing 

distribution or by combining two or more existing distributions thereby making the resulting distribution more 

flexible and robust. 

 

2 Literature Review 
 

There are many well-established generalized families (G families) of continuous univariate probability 

distributions widely accepted in literature. Among these G families are Azzalini’s skewed family [3], Marshall-

Olkin Extended (MOE) family [4], Exponentiated family [5], Beta-generated family [6,7], Transmuted family 

[8], Kumaraswamy generalized (Kw G) family [9], Transformed-Transformer (T-X) family [10], Weibull G 

family [11] and the T-R{Y} family [12]. 

 

These methods of generalization have been used to generalize many of the well-recognized standard theoretical 

distributions. Some of the generalized distributions include: Exponentiated Generalized Normal distribution and 

Exponentiated Exponential distribution by [13], Exponentiated Generalised Inverse Weibull distribution [14], 

Transmuted Weibull distribution [15], Transmuted Lomax distribution [16], Transmuted Pranav distribution 

[17], Beta Normal distribution [6], Beta Gumbel distribution [18], Beta Weibull distribution [19], Weibull-

Uniform distribution and Weibull-Weibull distribution by [11], Weibull Rayleigh distribution [20], 

Kumaraswamy Normal distribution [9], Kumaraswamy Generalised Pareto distribution [21], Exponentiated 

Kumaraswamy-Dagum distribution [22], Marshall Olkin Geometric distribution [23], Marshall-Olkin 

Exponential Pareto distribution [24] and Marshall-Olkin Extended Weibull-Exponential distribution [25]. The 

comparative performance of these generalized distributions is promising and encourages the use of these 

generalization methods to enhance the capabilities of existing distributions and to obtain more flexible families 

of distributions.  

 

3 Methodology 
 

This article studies the generalization of the Exponentiated Exponential distribution using the T-R{Y} 

framework of [12]. Whereas other methods [26] have been used to generalize the Exponentiated exponential 

distribution, to the best of our knowledge, the distribution has not been generalized using the T-R{Y} framework 

as considered in this article. Suffice it to say that each method of generalization adds a uniqueness to the 

resulting new distribution. 
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According to [27], given the random variables T, R and Y with cumulative distribution functions 

   TF x P T x  ,    RF x P R x   and    YF x P Y x   respectively and the corresponding 

quantile functions  TQ u ,  RQ u  and  YQ u  where       inf : , 0,1k kQ u k F k u u    with their 

respective probability density functions  Tf x ,  Rf x  and  Yf x  (where they exist), then the T-R{Y} 

framework is defined as  

 

   
  Y RQ F x

X T
a

F x f t dt  =    T Y RF Q F x         (1) 

 

where  XF x  is the C.D.F. of the new distribution resulting from the T-R{Y} framework and  , ,T Y a b  

for a b   . Consequently, the P.D.F. associated with (1) is given as 

 

   
   
   

T Y R

X R

Y Y R

f Q F x
f x f x

f Q F x
  .                       (2) 

 

According to the authors, different families of generalized R-distributions result from different choices of the T 

and Y random variables. 

 

4 Results 
 

4.1 The T-Exponentiated Exponential{Frechet} Family of Distributions (Proposed) 
 

We first derive the parent family: the T-Exponentiated Exponential{Y} (T-EE{Y}) Family of Distributions 

(Proposed). Supposing R is a random variable following the Exponentiated Exponential (EE) distribution with 

shape parameter,   and scale parameter 1. That is, R~EE( ,1 ). The probability density function (P.D.F.), the 

cumulative distribution function (C.D.F.) and the quantile function of the random variable R, are respectively 

given below: 

 
1( ) (1 )x x

Rf x e e                 (3) 

 

  (1 )x

RF x e               (4) 

 
1

( ) ln 1RQ p p
 

   
 

                         (5) 

 

for 0, 0x   . 

 

Let T and Y be two other random variables with P.D.F., C.D.F. and quantile functions respectively (as the case 

may be) as follows: 

 

( )Tf x , ( )TF x  and ( )TQ x  for the T random variable and  

 

( )Yf x , ( )YF x  and ( )YQ x  for the Y random variable. 

 

Then the C.D.F. and P.D.F. respectively of the T-EE{Y} family of distributions are 
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( ) { [(1 ) ]}x

X T YF x F Q e              (6) 

 
1(1 ) { [(1 ) ]}

( )
{ [(1 ) ]}

x x x

T Y
X x

Y Y

e e f Q e
f x

f Q e

 



    



 



                      (7) 

 

where X is the T-EE{Y} random variable, 0, 0x    and   is a shape parameter. 

 

Proof: Substituting (4) for  RF x  in (1) yields (6). Similarly, substituting (3) and (4) for  Rf x  and  RF x  

respectively in (2) yields (7). 

 

The support of the T-EE{Y} random variable X is the same with the support of the random variable R. However, 

T and Y random variables must have the same support. 

 

Remark 4.1: (The transformation of the T random variable to the T-R{Y} random variable X). For the random 

variable T, (1) suggests that      X T Y RF x F Q F x     .Y RQ F x t   

 

Therefore,      Y Y R YF Q F x F t     R YF x F t   and      R R R YQ F x Q F t  

 

  R Yx Q F t  .            (8) 

 

Remark 4.2: The quantile function of the T-R{Y} family of distributions is  

 

     X R Y TQ u Q F Q u .           (9) 

 

Considering (1) and setting    T Y RF Q F x u , where  0,1u , (9) can be obtained by applying 

successive inverse functions of  TF  ,  YQ   and  RF   to both sides of the equation. 

 

To establish a subfamily of T-Exponentiated Exponential{Y} family of distributions, the T-Exponentiated 

Exponential{Frechet} (T-EE{F}) family of distributions, we choose the Frechet distribution and let Y be a 

Frechet random variable. 

 

Supposing Y is a random variable from the Frechet distribution with P.D.F., C.D.F. and quantile function 

respectively as follows: 

 

1( ) x

Yf x x e


   ,  0, 0x                        (10) 

 

( ) x

YF x e
                         (11) 

 

and 
1

( ) [ ln( )]YQ x p 


  , (0,1)p .        (12) 

 

Then the CDF and PDF respectively of the T-EE{F} family of distributions are 
1

( ) {[ ln(1 ) ] }x

X TF x F e  


           (13) 

and  



 

 
 

 

Odom et al.; Asian J. Prob. Stat., vol. 23, no. 4, pp. 8-25, 2023; Article no.AJPAS.103998 
 

 

 
12 

 

 
1

1

1

(1 ) {[ ln(1 ) ] }
( )

[ ln(1 ) ]

x x x

T
X

x

e e f e
f x

e

 



 






   





  


 

      (14) 

 

for 0, , 0x    . 

 

Proof. Substituting (12) for ( )YQ   in (6) yields (13). Likewise, substituting (10) for ( )Yf   and (12) for ( )YQ   

in (7) and simplifying leads to (14).  

 

Some Properties of the T-Exponentiated Exponential{Frechet} family of Distributions 

 

We present some general properties of the T-EE{F} family of distributions in this section. For brevity, hints are 

given for the proof of some results.    

 

Lemma. (Transformation of Random Variables). Let T be a random variable with C.D.F.  TF x . Then the 

random variable 
 1

ln 1
T

X e




 
   

 
 follows the T-EE{F} distribution. This result is straightforward from 

substituting (11) for ( )YF   and (5) for ( )RQ   in (8). 

 

Lemma. (Quantile function of the T-EE{F} family of distributions). The quantile function of the T-

Exponentiated Exponential{Frechet} family of distributions is  

 

 
1

( )

( ) ln 1
TQ

X

u
Q u e






   

    
   

        (15) 

 

By substituting (11) for ( )YF   and (5) for ( )RQ   in (9), the result in (15) can be obtained.  

 

Proposition. The 
thr  non-central moment of the T-EE{F} family of distributions is  

 

 
   

,

0 0

1
i j r ir i T

r

j i

i j

i r i
E X r q E e

i jr j






  

 
 

 

        
               
  .    (16) 

 

Proof. Generally, the 
thr  non-central moment is represented mathematically as  

 

   r r

x
E X x f x dx          

 (17) 

 

where  f x  is the probability density function of the random variable, X. Since (8) in Remark 2.1 indicates 

that  ( )
d

R Yx Q F T , the 
thr  non-central moment of the T-EE{F} family of distributions (where it exists) 

can be obtained using the relation 
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      
r

r

R YE X E Q F T          (18) 

 

where  E   is the Expectation of the T-EE{F} random variable X. The result in (16) can therefore be obtained 

by substituting (5) for ( )RQ   and (11) for ( )YF   in (18) and using the series expansion 

 

  
 

,

0 0

1
ln 1

i j
i

a

j i

i j

i a i a iz a q
i ja j

Z




 

           
   

       (19) 

 

where 0a   is real, 1Z   and ,j iq  is a constant which can be calculated recursively as 

 

   
, ,

1

11

1

m
i

j i j i m

m

jm i m
q q

i m




  



  ; for 1,2,3,...i   and ,0 1jq  . 

 

Proposition. The mode(s) of the T-Exponentiated Exponential{Frechet} family of distributions are the solutions 

to the equation  

 

   
        

1/1

1/ ( 1)/

1
( ) ln ( )

ln
ln ( )ln ( ) ln ( )

T R

R
T R R

f F x
x

F xf F x F x



  


  



 

  
   
    

  
  

     (20) 

 

Proof. With respect to (3), if we consider the fact that 
 

2
( ) 1)

( )
( )

x
R

R x

R

f x e
f x

F x e









 
   

 
, the derivative 

 Xf x  of (7) w.r.t. x can be reduced to 
 

    
 

21

( 1)/2

( )
( ) *

( ) ln ( )

R

X

R R

f x
f x A x

F x F x
 

 


 


, where 

 

  
  1/1 (( ln( ( ))) )x

T R

x

e f F x
A x

e





 



  
 


  

1 1/
1/

( 1)/

(( ln( ( ))) )
(( ln( ( ))) )

ln ( )

T R
T R

R

f F x
f F x

F x




 

  




 
  


 

 

 

1/1
(( ln( ( ))) )

ln ( )

T R

R

f F x

F x






 

  
  



. On setting   0Xf x   and solving the equation   0A x  ,  the result 

in (20) is obtained. 

 

Proposition. The mean absolute deviation from the mean and median (denoted by ( )MAD   and ( )MMAD ) of 

the T-EE{F} random variable are respectively 
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 
1

( ) , (1/ )( )
0 0

1 ( 1)
2 ( ) 2 ,0, 1

exp( )1

i ji

X j i v
i j

i i
MAD F P i

i jj
S

 
  






 

   
     

   
   (21) 

 

 
1

( ) , (1/ )( )
0 0

1 ( 1)
2 ,0, 1

exp( )1

i ji

M j i v
i j

i i
MAD P M i

i jj
S









 

   
     

   
    (22) 

 

where    
1/( log( ( )))

, , ( ) ( )
( )

RF q z

T
s

q s z v f v dv
v

S


 
  . 

 

Proof. If we let ( )MAD   and ( )MMAD  denote the mean absolute deviation of a continuous random variable X 

from its mean and median respectively such that [ , ]x a b , then by definition 

 

    ( )

b

a
MAD E x x f x dx       and upon further operations 

 

     2 2
a

MAD F xf x dx



    .       (23) 

 

Likewise,    ( )

b

M
a

MAD E x M x M f x dx     and upon further operations 

 

   2
M

M a
MAD xf x dx   .        (24) 

 

Let 
0

I ( )
q

q Xxf x dx  . Therefore, ( ) 2 ( ) 2 IMAD F     and ( ) 2IM MMAD   . Rewriting (14) 

for brevity as 
   

   

1

1

1

{[ ln( ] }
( )

[ ln( ) ]

R T R

X

R R

f x f F x
f x

F x F x





 













 gives  

 

   
  

1/1

( 1)/0

( ) ln ( )
I

( ) ln ( )

R T Rq

q

R R

x f x f F x
dx

F x F x



 






 
 

  
 

 

 .     (25) 

 

The substitution   
(1/ )

ln ( )Rv F x


   yields   (1/ )( )ln 1 vx e
     and ( ) v

RF x e
 . 

Furthermore, 
( 1)( ) ( )v v

R RF x e f x dx v e dv
 

        where 
dx

dv
 is the Jacobian of the 

transformation. Making these substitutions in (25) and simplifying results to  

 

  
  

(1/ )
ln ( )

(1/ )( )

0
I ln 1 ( )

RF q
v

q Te f v dv






   .     (26) 

 

Applying (19) in (26) yields  
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 
 

1

, (1/ )( )
0 0

1 1
I ,0, 1

exp( )1

i j
i

q j i v
i j

i i
P q i

i jj
S

 




 

    
    

   
                     (27) 

 

and the results in (21) and (22), where  

 

   
1/( log( ( )))

, , ( ) ( )
( )

RF q z

T
s

q s z v f v dv
v

S


 
  . 

 

Proposition. The Shannon’s entropy of a random variable X following the T-EE{F} distribution is defined as 

 

   1log( ) log( ) ( 1) E log( ) E
X T X T T                   (28) 

 

where 
T

  is the Shannon’s entropy of the random variable T with PDF ( )Tf x . 

 

Proof. Let X be a T-EE{F} random variable with C.D.F. as in (1). It is easy to see that ( ( ))
d

Y RT Q F x  and 

( ( ))
d

R Yx Q F T . Therefore we can rewrite (2) as  

 

( ) ( )
( )

( )

R T
X

Y

f x f t
f x

f t
          (29) 

 

Generally, the Shannon’s entropy of a random variable X with P.D.F. ( )Xf x  is defined as  

 

 E log( ( ))X Xf x   .        (30) 

 

Putting (29) in (30) and simplifying, we obtain  

 

   E log( ( )) E log( ( ))X T Y Rf t f x    .       (31) 

 

By substituting (3) for ( )Rf x  in (31) and simplifying, we obtain  

 

   E log( ( )) log( ) (1 ) E log(1 )x

X T Y Xf t e            .   (32) 

 

Since Y is a Frechet random variable with P.D.F. as in (10), we have that  

 

     E log( ( )) log( ) ( 1) E log( ) EYf T T T       .    (33) 

 

Also since ( ( ))
d

R Yx Q F T , then  (1/ )( )log 1 Tx e
    . With  (1/ )( )log 1 Tx e

     and further 

simplifying we have, 

 

  1E log(1 ) E( )xe T      .       (34) 

 

Therefore, by putting (33) and (34) in (32) and simplifying, the result in (28) is obtained.  
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A New Member of the T-EE{F} Family of Distributions 

 

In this section, we present a new member of the T-Exponentiated Exponential{Frechet} family of Distributions 

named Gumbel TypeII-Exponentiated Exponential{Frechet} Distribution - GumTII-EE{F} for short. We 

discuss some specific properties of the new distribution following the general structure of the properties of the 

T-EE{F} Family of Distributions presented in section 3. 

 

The Gumbel TypeII-Exponentiated Exponential{Frechet} Distribution 

 

Proposition. If  X~GumTII-EE{F}( , ,b  ), we say that the random variable X follows the Gumbel TypeII-

Exponentiated Exponential{Frechet} distribution with parameters  , b  and  such that the cumulative 

distribution function (C.D.F.) and the probability density function (P.D.F.) respectively of the random variable 

are as proposed below 

 

 ln(1 )

( )
xb

X

e
F x e




  

         (35) 

 

     ln(1 )1 1

( ) 1 ln(1 )
xb

x x x

X

e
f x be e e e







   

                        (36) 

 

for 0x   and , , 0b   . 

 

Proof. Let T be a Gumbel TypeII random variable with C.D.F. and P.D.F. respectively as  
 

( )
c

T

bxF x e
          (37) 

 

1( )
cc

T

bxf x bcx e
                          (38) 

 

for 0x   and , 0b c  . By putting (37) and (38) in (13) and (14) respectively, simplifying and setting 
c






, the results in (35) and (36) can be respectively obtained. The Graphs of the P.D.F. of the GumTII-EE{F} 

distribution are provided in Fig. 1(a-d). As evidenced in the graphs, the GumTII-EE{F} distribution can be 

unimodal, J shaped or reverse-J shaped. 
 

Properties of the Gumbel TypeII-Exponentiated Exponential{Frechet} Distribution 
 

Some properties of the GumTII-EE{F} distribution are presented in this subsection.  
 

Hazard Rate Function. The hazard rate function denoted by ( )h x  is generally defined as 

 

 
 

 1

f x
h x

F x



.         (39) 

 

Therefore, by putting (35) and (36) in (39), the hazard rate function of the GumTII-EE{F} distribution denoted 

by ( )Xh x  is  

 

     

 

ln(1 )1 1

ln(1 )

1 ln(1 )
( )

1

xb
x x x

X
xb

e
be e e e

h x
e

e















   
  

  

  




.    (40) 
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Fig. 1. The graphs of the PDF of GumTII-EE{F} Distribution for varying values of alpha, lambda and b 

 

Fig. 2(a-d) presents the graphs of the hazard rate function of the GumTII-EE{F} distribution. The graphs 

indicate that the distribution can be used to model data that exhibits bathtub, increasing, decreasing or roller-

coaster hazard rate behaviour. 

 

 
 

Fig. 2. The graphs of the HRF of GumTII-EE{F} Distribution for varying values of alpha, lambda and b 

 

Quantile Function. The quantile function of the GumTII-EE{F} distribution is defined as  

 

  
1/(1/ )(1/ )( ) ln

( ) ln 1
b u

XQ u e
  

                        (41) 
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Proof. The quantile function of the Gumbel Type-II distribution is  
1/1/( ) lnT

ccQ u b u


  . Substituting for 

( )TQ u  in (15), simplifying and setting 
c




 , we obtain (41). 

 

Proposition. The r
th

 Non-central moment of the GumTII-EE{F} distribution is as defined below: 

 

 
 

 , ( )/
0 0 0

( 1)
1

1
!

v

v
i j

r i
vr

j i cv c
i j v

r i

i r i
E X r q

i jr j b v










  

 
             

   
   .   (42) 

 

Proof. Recall (16). With T  following the Gumbel Type-II distribution,  

 

   
1

0

c

r i r i
t t

c btE e e bct e dt
 

 

 


    
          

  
 

  
 .                     (43) 

 

Applying the series expansion 

0 !

k
z

k

z
e

k





 , making the substitution 
cz bt  and simplifying, we obtain 

 
 

0

( 1)

1

!

v

v
r i

t

v
v c

vb
c

r i

E e

b v








   

 



 
         

  
  and then the result in (42). 

 

Proposition. The mode of the GumTII-EE{F} distribution is the solution(s) of the equation below 

 

      
   

1

11

ln( ( ))2
1

( ) ln( ( )) ln( ( )) 1
ln

ln( ( ))( ) ln( ( )) ln( ( ))

cc c
Rb F x

R R R

R
R T R R

bc f x F x e bc F x c
x

F xF x f F x F x


 


 


  

 



 
  
     
    

  
  

        (44) 

 

Proof. Since T  follows the Gumbel Type-II distribution, the result in (44) is obtained by evaluating and 

applying the function   
1

ln( ( ))T Rf F x 


   in equation (20).  

 

Proposition. The mean absolute deviation from the mean and median of the GumTII-EE{F} distribution is as 

respectively defined below 

 

 1

( )

0 0 0

1
( 1)

1 1
2 ( ) 2

1
!

k

k
i j

i

R k
i j k c

i

i i
MAD F

i jj
b k

 


 




  

 
             

   
     

 

   (1/ )

,* ( 1), ln ( )
k

j i Rc
P F

 


                                     (45) 
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 1

( )

0 0 0

1
( 1)

1 1
2

1
!

k

k
i j

i

M k
i j k c

i

i i
MAD

i jj
b k








  

 
             

   
     

 

   (1/ )

,* ( 1), ln ( )
k

j i Rc
P F M

 

                                     (46) 

 

Proof. Recall (27) with  

 

     
(1/ ) 1ln ( )

(1/ )( )

(1/ )( ) 0
,0, 1 ( )

exp( )
R

iF q
v

Tv
q i e f v dvS




















  
                   (47) 

 

Since T  is a Gumbel Type-II random variable, by first substituting for  Tf v  in (47) and then applying the 

series expansion 

0 !

k
z

k

z
e

k





  to 
1

(1/ )( )
i

ve
  

 
 

, we obtain  

 

 
  

(1/ )
ln ( )

1

(1/ )( ) 0
0

1
( 1)

,0, 1
exp( ) !

R

k

k

F q ck c bv

v
k

i

q i bc v e dv
k

S















 
   




 
  

     .(48) 

 

Making the substitution 
cw bv , simplifying and applying   1

0
,

z
wz w e dw      , we obtain 

 

     (1/ )

(1/ )( )
0

1
( 1)

,0, 1 ( 1), ln ( )
exp( )

!

k

k

k

Rckv
k c

i

q i F q

b k

S















 
  

       (49) 

 

Then putting (49) in (27) and applying to ( ) 2 ( ) 2 IMAD F     and ( ) 2IM MMAD   , we obtain 

the results in (45) and (46) respectively. 

 

Proposition. The Shannon’s entropy of a random variable following the GumTII-EE{F} distribution is as 

defined below 

 

1log( ) log( ) ( 1) (log , ( )) ( )( ) ( 1)
X T

c
X T c

T f t b


       
          (50) 

 

where 
0

(log , ( )) log( ) ( ) E(log( ))T TT f t T f t dt t


  . 

 

Proof. Recall (28). With T  following the Gumbel Type-II distribution, we have 

 

 
0

E log( ) (log ) ( ) ψ(log , ( ))T TT T f t dt T f t


   and   

 

1

0
E( )

cc btT bc t e dt  
      .                      (51) 
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Making the substitution 
cw bt  in (51) and simplifying, we obtain  E( ) 1c

c
T b


     . Then 

substituting accordingly for  E log( )T  and E( )T 
 in (28) we obtain the result in (50). 

 

Estimation 

 

If we take 1 2 3, , ,..., nX X X X  to be a random sample of size n  from the Gumbel TypeII-Exponentiated 

Exponential{Frechet} distribution with P.D.F. as given in equation (36), then the likelihood function and the 

corresponding log-likelihood function for the GumTII-EE{F} distribution, denoted by L  and lnL  respectively, 

are  

 

    
 

1 1

1 ln 1

1 1 1

( ) 1 ln 1

n n

i
i

i i i i

xn n nx bn
x xn n n

X i

i i i

e
L f x b e e e e






 



 

 
    

   

  

 
          (52) 

 

           

     
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i

i
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e
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enxbnnn

111
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
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












n

i

ix
eb

1

1ln




.                      (53) 

 

Taking the partial derivative of (53) w.r.t. each of the parameters gives us the likelihood equations for the 

GumTII-EE{F} distribution below: 
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1lnln1ln1lnln
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  (55) 

 

 











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


n

i

ix
e

b

n

b

L

1

1ln
ln




.       (56) 

 

Then the maximum likelihood estimates, ξ̂  of ξ  (the vector of the parameters) is the simultaneous solution of 

the equations 
ln

0
L







, 

ln
0

L







 and 

ln
0

L

b





. However, the equations are not in closed-form and 

cannot be solved analytically. Therefore, iterative numerical methods are used for solving the equations in R 

software. 
 

Application 
 

We present in this section some applications of the GumTII-EE{F} distribution by fitting the distribution to two 

real life data sets. The method of maximum likelihood discussed above is used for the estimation of the 

parameters of the distribution. For the purpose of comparing the distribution with some existing distributions, 

we report the values of the goodness-of-fit indices, namely the Akaike Information Criterion and the Bayesian 

Information Criterion, for the fitted distributions. The smaller the value of these indices, the better the fit of the 

distribution to the data.  
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Data Set 1: The first data set pertains to relief times (in minutes) of twenty patients receiving an analgesic. The 

data was reported in [28] and has been widely applied by many authors to illustrate the modelling capabilities of 

their proposed probability distributions. Some of the existing distributions fitted to the data include the Odd 

Frechet InverseWeibull (OFIW) distribution [29], the Extended Topp Leone Exponentiated Generalized 

Exponential (ETLGenExEx) distribution [30], Extended Exponentiated Chen (EE-C) distribution [31] and Burr-

XII Exponentiated Exponential (BrXIIEE) distribution [32]. The results of fitting the GumTII-EE{F} 

distribution and these existing distributions are presented in Table 1. As shown in Table 1, the best fit to the data 

was provided by the GumTII-EE{F} distribution.  

 

Table 1. The MLEs and the goodness-of-fit indices for the Relief Times Data – Data Set 1 

 

Models Parameter Estimates AIC BIC 

GumTII-EE{F} ˆ 1.722768 

ˆ 2.069364

b̂ 7.206328










 

38.00 40.99 

OFIW ˆ 25.815 

ˆ 13.215

ˆ 0.208












 

44.25 42.16 

ETLGenExEx ˆ 4.8070

ˆ 0.8105

ˆ 0.6391

ˆ 1.8022

ˆ 3.6225





















 

44.49 49.47 

EE-C ˆ 43:94

ˆ 4:44

ˆ 1:30

ˆ 0:39

a

b













 

39.41 43.39 

BrXIIEE  

ˆ 3.911

ˆ 0.273

ˆ 3.777

ˆ  1.298

a

b













 

38.9 42.9 

*The maximum likelihood estimates and the goodness-of-fit indices for the competing distributions were respectively 

obtained from their various authors 

 

Data Set 2: The second data was sourced from [33] and represents the times between failures for repairable 

items. It is a reliability data from the engineering discipline and many distributions have been fitted to the data 

in the literature. Among the distributions fitted to the data include Gamma Generalized Pareto (GGP) 

distribution [33], Exponentiated Generalized Gumbel (EGGu) distribution [34], Exponentiated Generalized 

Fréchet Geometric (EGFG) distribution [35] and Exponentiated Weibull Power Function (EWPF) Distribution 
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[36]. In Table 2, the results of fitting these distributions and the GumTII-EE{F} distribution to the data are 

presented. According to the results, the GumTII-EE{F} distribution provided the best fit to the data when 

compared with the other distributions. 

 

Table 2. The MLEs and the goodness-of-fit indices for the Times between Failure of Repairable Items’ 

Data – Data Set 2 

 

Models Parameter Estimates AIC BIC 

GumTII-EE{F} ˆ 0.7749828 

ˆ 1.0012793

b̂ 2.7325119











 

85.23 89.43 

GGP 

 
ˆ  2.100

ˆ 0.698

ˆ 0.028













 

85.25 89.45 

EGGu ˆ  0.2914

ˆ  1.3294

ˆ 0.3146

ˆ 0.3004

















 

87.55 93.16 

EGFG 

ˆ 42.5002

ˆ 0.2211

ˆ 0.6997

ˆ 18.6780

ˆ 0.1020















 



 

91.31 98.32 

EWPF 39.68

5.629

0.248

4.73

1.033

a



















 

89.25 96.25 

*The maximum likelihood estimates and the goodness-of-fit indices for the competing distributions were respectively 

obtained from their various authors 

 

5 Conclusion 
 

This article set out to generalize the Exponentiated Exponential distribution using the T-R{Y} framework. The 

T-Exponentiated Exponential{Frechet} family of distributions was derived and the Gumbel TypeII-

Exponentiated Exponential{Frechet} distribution was subsequently defined as a new generalized Exponentiated 

Exponential distribution. Various properties of the T-Exponentiated Exponential{Frechet} family of 

distributions were derived which are applicable to prospective members of the family. Some properties which 

are specific to the Gumbel TypeII-Exponentiated Exponential{Frechet} distribution were also derived. These 

include quantile function, hazard rate function, moments, mode, Shannon’s entropy and mean absolute 

deviations due to mean and median. 
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The new distribution was fitted to two real life data sets from the medical and engineering disciplines for 

comparison with some existing distributions. The results obtained from fitting to the two data sets showed that, 

on the basis of AIC and BIC goodness-of-fit indices, the Gumbel TypeII-Exponentiated Exponential{Frechet} 

distribution provided better fits to the two data sets than the distributions compared with it. 
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