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0e focus of this study is to analyse the free vibration of cylindrical shells under third-order shear deformation theory (TSDT).0e
constitutive equations of the cylindrical shells are obtained using third-order shear deformation theory (TSDT). 0e surface and
traverse displacements are expected to have cubic and quadratic variation. Spline approximation is used to approximate the
displacements and transverse rotations. 0e resulting generalized eigenvalue problem is solved for the frequency parameter to get
as many eigenfrequencies as required starting from the least. From the eigenvectors, the spline coefficients are computed from
which the mode shapes are constructed. 0e frequency of cylindrical shells is analysed by varying circumferential node number,
length dimension, layer number, and different materials. 0e authenticity of the present formulation is established by comparing
with the available FEM results.

1. Introduction

Composite shell structures are source of attraction for
marine structures such as submarines [1–6]. Stability of
these structures depends upon thickness of shells, materials
used, lamination scheme, and ply orientation. 0e multi-
layered structures are analysed using classical and shear
deformation theories [7–9]. 0in structures have ratio of
thickness equal to 1/20 or less and are studied using classical
bending theory; however, structures with the ratio greater
than 1/20 are examined by shear deformation theories. Love
[10] proposed the shell’s classical theory, whereas Naghdi
[11] included the shear deformations in kinematics of the
shells. In addition, Reddy [12] developed a simple SDT for
layered plates, and a simple SDT for layered shells was
developed by Reddy and Liu [13]. To avoid the discrepancies
of the FSDT, HSDT was developed to precisely estimate the
crosswise shear stresses which are significant in thick plates
and shells. iHSDT plate theories suggest the expansion of
displacements to required degree with respect to thickness
coordinates avoiding a shear correction factor (see Vinson
[14] and Noor et al. [15]). Further, HSDT calculates more

precise interlaminar stress distributions and fulfills the re-
quirements that there are no shear stresses at the top and
bottom of the shell surfaces. In TSDT, the displacements are
extended to the power of three so that to get crosswise shear
stresses and strains variation of fourth power through
thickness. 0is neglects the requirement of shear correction
coefficient [16].

Different methods incorporating HSDTwere adopted by
different researchers for analysing free vibration of shells.
Among them, Baghlani et al. [17] used Fourier series to
examine the free vibration of FGM cylindrical shells,
Dehsaraji et al. [18] used the Navier method to analyse free
vibration of FG nanoshells, moreover, Sayyad and Ghugal
[19] used Navier technique to analyse composite spherical
shells, and Rout et al. [20] analysed thermoelastic unre-
stricted vibration of the multilayered shells considering the
Green–Lagrange type of nonlinearity. HSDT along with
Navier solutions was used to examine the vibration of shells
and plates by Zine et al. [21]. Newton–Raphson iterative
technique was used to analyse geometrical nonlinear
bending characteristics of shells by Chavan and Lal [22]
based on HSDTand Green–Lagrange nonlinearity. FEMwas
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used to observe the unrestricted vibration of FG shells under
HSDT (see Zghal et al. [23]). Nonlinear vibration of the
layered shells was studied by Hirwani et al. [24] using
Fourier transform technique based on HSDT. 0e Cheby-
shev–Ritz method was adopted to study the vibration of FG
layered beams for HSDT by Shenas et al. [25]. 0e unre-
stricted vibration of FG carbon nanotube layered quadri-
lateral spherical panels was studied using HSDT with DQM
by Setoodeh et al. [26]. Frequency variation based on sound
radiation of doubly curved layered composite shells was
examined by Sharma et al. [27] using HSDT and FEM. 0e
HSDT incorporating with the discrete method was used to
study curved structural parts [28]. 0e Navier method based
on HSDT was used by Punera and Kant [29] to investigate
FG cylindrical shells. HSDT was used by Hwu et al. [30] to
examine the vibration of layered plates and cylindrical shells.
Moreover, HSDT and GM were used by Nasihatgozar et al.
[31] to analyse the free vibration of doubly curved sheets.
Nguyen et al. [32] examined the vibration of functionally
graded plates using HSDT. Moreover, nanoplates in the
thermal environment were studied by Diakh et al. [33].
Baghlani et al. [34] investigated the free vibration of FGM
cylindrical shells on elastic foundation. 0e FEM method
was used to study the free and static vibration of FGM plates
by Katili [35]. Cross-ply laminates were studied by Dhari
and Singh [36]. Higher-order shear deformation theories
with the unified model were studied for composite plates by
Li et al. [37]. HSDTwas used to analyse wave propagation of
a ceramic-metal functionally graded sandwich plates by
Tahir et al. [38]. Moreover, hygro-thermo-mechanical
bending behavior of advanced functionally graded ceramic-
metal plate was studied by Mudhaffar et al. [39]. An original
four-variable quasi-3D shear deformation theory for the
static and free vibration analysis of new type of sandwich
plates was studied by Kouider et al. [40]. Merazka et al. [41]
examined the hygro-thermo-mechanical bending response
of FG plates. Bending analysis of functionally graded plates
was investigated by Hachemi et al. [42].

0e individuality of the current study is evident that
none of the abovementioned researchers used spline ap-
proximation to analyse the free vibrational problems except
Javed et al. [43]. Moreover, Javed et al. [43] used the spline
approximation method to analyse the free vibration of plates
whereas in this research spline approximation is used to
analyse composite cylindrical shells. In addition to that
stress-strain relation of plates and cylindrical shells is dif-
ferent so derivation of equilibrium equation was completely
different as compared with Javed et al. [43]. 0erefore,
current investigation aims to analyse the free vibration of
composite cylindrical shells. Spline approximation is used to
approximate the displacement and rotational functions.
Resulting equations along with the end condition equations
obtain a system of equations. 0e frequency parameter is
obtained using eigen solution technique. 0e mode shapes
are created using eigenvector. Cylindrical shells are inves-
tigated by varying their lengths, layer sequence, layer con-
stituents, and circumferential node number. Results are
depicted using graphs and tables. Autocad software is used
to draw some figures.

2. Formulation and Method

A composite laminated circular cylindrical shell of having
length ℓ, thickness h, and radius r is shown in Figure 1.0e x

coordinate of the shell s is taken along the longitudinal
direction, θ coordinate along the circumferential direction,
and z along the thickness direction.

2.1. Displacement Equations. 0e displacement field is based
on TSDT (see Reddy [16]):

u(x, y, z, t) � u0(x, y, t) + zϕx(x, y, t) −
4z

3

3h
2 ϕx +

zw0

zx
􏼠 􏼡,

v(x, y, z, t) � v0(x, y, t) + zϕθ(x, y, t) −
4z

3

3h
2 ϕθ +

zw0

zy
􏼠 􏼡,

w(x, y, z, t) � w0(x, y, t),

(1)

where u, v, and w are the displacement functions in x, θ,
and z directions, respectively, u0, v0, and w0 are the
displacements of the middle surface of the cone, and ψx

and ψθ are shear rotations of any point on the middle
surface.

2.2. Constitutive Equations. Stress, moment, and shear re-
sultants N, M, and Q and higher-order stress resultants P

and R are defined as
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where σi is the normal stress and τi is the shear stress
components.

0e transformed stress-strain relations are as follows:

2 Journal of Mathematics



σ(k)
x

σ(k)
θ

τ(k)
xθ

τ(k)
θz

τ(k)
xz

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

Q
(k)
11 Q

(k)
12 Q

(k)
16 0 0

Q
(k)
12 Q

(k)
22 Q

(k)
26 0 0

Q
(k)
16 Q

(k)
26 Q

(k)
66 0 0

0 0 0 Q
(k)
44 Q

(k)
45

0 0 0 Q
(k)
45 Q

(k)
55

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ε(k)
x

ε(k)
θ

c
(k)
xθ

c
(k)
θz

c
(k)
xz

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

where Qij
(k) are given in Appendix A.

0e stress-strain relations are obtained as follows:
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where ε is the strain and c is the shear strain components.
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Figure 1: Cylindrical shell (geometry).
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Stiffness coefficients Aij, Bij, and Dij (extensional,
bending-extensional coupling, and bending stiffnesses) and
Eij, Fij , and Hij are the higher-order stiffness coefficients
defined in Appendix B.

2.3. Cylindrical Shell Equations. 0e equilibrium equations
for cylindrical shells based on TSDT are as follows:
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and ρ is the material density of the k-th layer.
Mx � Mx − c1Px, Mθ � Mθ − c1Pθ, and Mxθ �

Mxθ − c1Pxθ:

Qθ � Qθ − c2Rθ,

Qx � Qx − c2Rx,
(7)

where Ni, Mi , and Qi are stress, moment, and shear re-
sultants, respectively. Pi and Ri denote higher-order stress
resultants.

Firstly, stress and strain relations are substituted in
equation (5). After that the displacements and rotational
functions for shells [44] are used, and resulting differential
equation was nondimensionalized by using following
parameters:
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Nondimensional equation is obtained in the matrix form
as
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Y31 Y32 Y33 Y34 Y35

Y41 Y42 Y43 Y44 Y45

Y51 Y52 Y53 Y54 Y55

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

U

V

W

ΦX

Φθ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

0

0

0

0

0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (9)
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where differential operators Yij
′s are given in Appendix C.

2.4. Spline Method. Equation (9) consists of U(X) deriva-
tives of order three, V(X) derivatives of order two, W(X)

derivatives of order four, ΦX(X) derivatives of order three,
and Φθ(X) derivatives of order two. 0ese functions are

approximated by using cubic and quintic spline functions, in
the range of Xε[0, 1].

0e displacement functions U(X), V(X), and W(X)

and the rotational functions ΦX(X) andΦθ(X) are ap-
proximated by

U(X) � 􏽘
4

i�0
aiX

i
+ 􏽘

N− 1

j�0
bj X − Xj􏼐 􏼑

5
H X − Xj􏼐 􏼑, V(X) � 􏽘

2

i�0
ciX

i
+ 􏽘

N− 1

j�0
dj X − Xj􏼐 􏼑

3
H X − Xj􏼐 􏼑,

W(X) � 􏽘
4

i�0
eiX

i
+ 􏽘

N− 1

j�0
fj X − Xj􏼐 􏼑

5
H X − Xj􏼐 􏼑,ΦX(X) � 􏽘

4

i�0
giX

i
+ 􏽘

N− 1

j�0
gj X − Xj􏼐 􏼑

5
H X − Xj􏼐 􏼑,

ΦΘ(X) � 􏽘
2

i�0
liX

i
+ 􏽘

N− 1

j�0
qj X − Xj􏼐 􏼑

3
H X − Xj􏼐 􏼑.

(10)

Here, H(X − Xj) is the Heaviside step function and N is
the number of intervals into which the range [0, 1] of X is
divided. 0e pointsX � Xs � (s/N) (s � 0, 1, 2, . . . , N) are
selected as the spline knots. 0erefore, differential equation
(9) is satisfied by the spline, at all Xs. 0e resulting ex-
pressions contain (5N + 5) homogeneous system of equa-
tions in the (5N + 21) spline coefficients. 0e S-S boundary
condition is considered in order to coincide the number of
equations and unknowns.

3. Results and Discussion

0e vibrational response of cylinderical shells under S-S end
condition is analysed. Cylindrical shells of cross-ply ori-
entations of two, three, four, five, and six layers are con-
sidered. Figure 2 shows 6-layered composite with cross-ply
orientation.

Comparative study can be seen in Table 1 with Khare
et al. [45] (using FSDT and HSDT) and Bhimaraddi [46]
(using constant shear deformation theory and thin shell

theory) for orthotropic two-layer cross-ply S-S cylindrical
shells.

Table 2 shows the relation between the angular frequency
parameter and length of 2-layered cylindrical shells ωm and
length of 2-layered cylindrical shells. 0ere is the inverse
relation between the angular frequency and length whereas
there is a positive relation between frequency and mode
number.

Table 3 depicts the relation between frequency parameter
λm and circumferential node number n for three
00/900/00(GE/KE/GE) and six layered cylindrical shells
00/900/00/900/00/900(GE/KE/GE/KE/GE/KE). 0e length
is considered to be L � 1.5. 0e frequency declines till n � 5
and slightly rises afterward.

Figures 3–5 demonstrate the effect of length on the
angular frequency parameter of 3-, 4-, and 5-layered cy-
lindrical shells with the fixed n � 2. 0e frequency declines
till L� 1 and remains same afterward.0is is because that the
membrane longitudinal strain dominates the total strain
energy of the system till length of the shell is 1. However, as

0° layers

90° layers

Figure 2: Composite with six layers.

Journal of Mathematics 5



length increases, the bending deformation becomes domi-
nant in the system.

Relation between the frequency and circumferential
node number of 3- and 5-layered shells (00/900/00,
00/900/00/900/00) with material combinations
((EGE/KE/EGE), (EGE/KE/EGE/KE/EGE)) and L � 0.5

is shown in Figures 6 and 7. 0e frequency value de-
creases till n � 6 and gradually increases as the cir-
cumferential node number increases. Since the decrease
in the frequency shows that the rigidity of the structure
decreases till n � 6 and as the circumferential node
number increases, the frequency increases and so the

Table 1: 0e value of frequency parameter λ � ωℓ
�������
(I0/A11)

􏽰
of two-layered orthotropic shells under S-S boundary conditions is compared

with Khare et al. [45] ω � ωa/(ρ/E2)
1/2 and Bhimaraddi [46].

L H Present Khare et al. [45] Bhimaraddi [46]
HSDT FOST HOST PSD CSD

1 0.05 0.77214 0.78567 0.78627 0.79993 0.79798
0.10 1.03241 1.04062 1.04357 1.09189 1.07475
0.15 1.28216 1.29578 1.30351 1.38174 1.33274

2 0.05 0.55132 0.56568 0.56684 0.58000 0.57733
0.10 0.91734 0.91367 0.91801 0.95664 0.93653
0.15 1.22513 1.22101 1.23107 1.28933 1.23527

Table 2: Relation between angular frequency ωm and length L of two-layered 00/900 cylindrical shelln � 2.

L 00/900(GE/KE) 00/900(EGE/KE)

ω1 ω2 ω3 ω1 ω2 ω3
0.5 7.29447 9.93625 12.71320 7.06273 8.60076 11.03650
1 1.28747 1.86972 2.78669 1.27003 1.90977 2.72980
1.5 0.23862 0.70058 1.25013 0.27338 0.73691 1.22422
2 0.09704 0.63671 1.12197 0.20645 0.57914 0.91235
2.5 0.08611 0.53729 1.05032 0.02844 0.52499 0.85376

Table 3: Relation between frequency λm and circumferential node number n of three- and six-layered cylindrical shell L � 1.5.

n 00/900/00 (GE/KE/GE) 00/900/00/900/00/900(GE/KE/GE/KE/GE/KE)

λ1 λ2 λ3 λ1 λ2 λ3
1 0.00025 0.00039 0.00049 0.00029 0.00033 0.00041
3 0.00015 0.00022 0.00030 0.00020 0.00026 0.00032
5 0.00011 0.00018 0.00025 0.00018 0.00024 0.00028
7 0.00016 0.00023 0.00032 0.00021 0.00026 0.00032
9 0.00023 0.00035 0.00047 0.00029 0.00033 0.00041

1 1.5 2 2.50.5
L

0

2

4

6

8

10

12

14

ω m
 (×

10
3  H

z)

m=1
m=2
m=3

Figure 3: Relation between frequency and length of three-layered shells 00/900/00(GE/KE/GE); n � 2.
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Figure 4: Relation between frequency and length of four-layered shells 00/900/00/900 (GE/KE/GE/KE); n � 2.
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Figure 5: Relation between frequency and length of five-layered shells 00/900/00/900/00 (EGE/KE/EGE/KE/EGE); n � 2.
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Figure 6: Relation between frequency and circumferential node number of three-layered shells 00/900/00 (EGE/KE/EGE); L � 0.5.
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rigidity of the structure also increases. It is also evident
that as rigidity of the structure increases, its flexibility
decreases.

Figures 8 and 9 show the relation between frequency
parameter λm and circumferential node number n for 5- and
3-layered cross-ply cylindrical shells, respectively.

0e relation of fundamental frequency λ and circum-
ferential node number n of 3-layered cylindrical shells with
material orientations (GE/KE/GE) and (EGE/KE/EGE) is
shown in Figure 10. 0e fundamental frequency value is
significantly higher for cylindrical shells with material
combination (EGE/KE/EGE) than (GE/KE/GE).

4. Conclusion

0e present investigation explicates the vibrational response
of cylindrical shells under HSDTfor SS support condition. It
is concluded that length, circumferential node number,
stacking sequence, number of layers, and their constituents
significantly affect the shell analysis. Moreover, the effect of
length on the shell’s angular frequency parameter is that the
membrane longitudinal strain dominates the total strain
energy of the system till length of the shell is 1, and as the
length increases, the bending deformation becomes domi-
nant in the system. 0e effect of the circumferential node
number on frequency shows that the frequency value de-
creases till n � 6 and gradually increases as the

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007

λ m

3 5 7 91
n

m=1
m=2
m=3

Figure 7: Relation between frequency and circumferential node number of five-layered shells 00/900/00/900/00(EGE/KE/EGE/KE/EGE);L � 0.5.
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0.003

0.0035

λ m

3 5 7 91
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Figure 8: Relation between frequency and circumferential node
number of five-layered shells 00/900/00/900/00(GE/KE/GE/KE/G
E); L � 0.5.
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Figure 9: Relation between frequency and circumferential node
number of three-layered shells 00/900/00(GE/KE/GE); L � 0.5.
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Figure 10: Relation between frequency and circumferential node
number of three-layered shells 00/900/00 L � 1.5.
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circumferential node number increases. 0e decrease in the
frequency value shows that the rigidity of the structure
decreases till n � 6, and as the circumferential node number
increases, the frequency increases and so the rigidity of the
structure also increases. 0e comparative study confirms the
existing results that may contribute its unique part to already
existing research of the related field.

Appendix

A

Elements of the transformed stiffness matrix for the material
of k-th layer are as follows:

Q
(k)

11 � Q
(k)
11 cos

4 θ + Q
(k)
22 sin

4 θ + 2 Q
(k)
22 + 2Q

(k)
66􏼐 􏼑sin2 θ cos2 θ, (A.1)

Q
(k)

22 � Q
(k)
11 sin

4 θ + Q
(k)
22 cos

4 θ + 2 Q
(k)
12 + 2Q

(k)
66􏼐 􏼑sin2 θ cos2 θ, (A.2)

Q
(k)

12 � Q
(k)
11 + Q

(k)
22 − Q

(k)
66􏼐 􏼑sin2 θ cos2 θ + Q

(k)
12 cos4 θ + sin4 θ􏼐 􏼑, (A.3)

Q
(k)

16 � Q
(k)
11 − Q

(k)
22 − 2Q

(k)
66􏼐 􏼑cos3 θ sin θ − Q

(k)
22 − Q

(k)
12 − 2Q

(k)
66􏼐 􏼑sin3 θ cos θ, (A.4)

Q
(k)

26 � Q
(k)
11 − Q

(k)
22 − 2Q

(k)
66􏼐 􏼑cos θ sin3 θ − Q

(k)
22 − Q

(k)
12 − 2Q

(k)
66􏼐 􏼑sin θ cos3 θ, (A.5)

Q
(k)

66 � Q
(k)
11 + Q

(k)
22 − 2Q

(k)
12 − 2Q

(k)
66􏼐 􏼑cos2 θ sin2 θ + Q

(k)
66 sin4 θ + cos4 θ􏼐 􏼑, (A.6)

Q
(k)

44 � Q
(k)
55 sin

2 θ + Q
(k)
44 cos

2 θ, (A.7)

Q
(k)

55 � Q
(k)
55 cos

2 θ + Q
(k)
44 sin

2 θ, (A.8)

Q
(k)

45 � Q
(k)
55 − Q

(k)
44􏼐 􏼑cos θ sin θ. (A.9)

B

Stiffness coefficients are

Aij � 􏽘
k

Q
(k)

ij zk − zk− 1( 􏼁,

Bij �
1
2

􏽘
k

Q
(k)

ij z
2
k − z

2
k− 1􏼐 􏼑,

Dij �
1
3

􏽘
k

Q
(k)

ij z
3
k − z

3
k− 1􏼐 􏼑,

Eij �
1
4

􏽘
k

Q
(k)

ij z
4

k − z
4

k− 1􏼐 􏼑,

Fij �
1
5

􏽘
k

Q
(k)

ij z
5
k − z

5
k− 1􏼐 􏼑,

Hij �
1
7

􏽘
k

Q
(k)

ij z
7
k − z

7
k− 1􏼐 􏼑, for i, j � 1, 2, 6,

Aij
′ � 􏽘

k

Q
(k)

ij zk − zk− 1( 􏼁,

Dij
′ �

1
3

􏽘
k

Q
(k)

ij z
3
k − z

3
k− 1􏼐 􏼑,

Fij
′ �

1
5

􏽘
k

Q
(k)

ij z
5
k − z

5
k− 1􏼐 􏼑, for i, j � 4, 5.

(B.1)
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C

Y11 �
d2

dX
2 − s10

n
2

r
2 + λ2, (C.1)

Y12 � s2 + s10( 􏼁
n

r

d
dX

, (C.2)

Y13 � − s17c2
d3

dX
3 + s2

1
r

+ s18c2 − 2s26( 􏼁
n
2

r
2􏼠 􏼡

d
dX

− λ2p5c1
d
dX

, (C.3)

Y14 � s4 − s17c2( 􏼁
d2

dX
2 − s11 − s26c2( 􏼁

n
2

r
2 + λ2p4 − λ2p5c1, (C.4)

Y15 � s5 − s18c2 + s11 − s26c2( 􏼁
n

r

d
dX

, (C.5)

Y21 � − s10 + s2( 􏼁
n

r

d
dX

, (C.6)

Y22 � s10
d2

dX
2 − s13 − s29c1( 􏼁

1
r
2 − s3

n
2

r
2 + λ2 +

2
r
λ2p4, (C.7)

Y23 � 2s26c2 + s18c2( 􏼁
n

r

d2

dX
2 − s19c2

n
3

r
3 − s3 + s13 − s29c1( 􏼁

n

r
2 + λ2p5nc1 +

1
r
λ2p2nc1, (C.8)

Y24 � − s11 − s26c2 + s5 − s18c2( 􏼁
n

r

d
dX

, (C.9)

Y25 � s11 − s26c2( 􏼁
d2

dX
2 + s13 − s29c1( 􏼁

1
r

− s6 − s19c2( 􏼁
n
2

r
2 + λ2p4 +

1
r
λ2p1 − λ2p5c1 −

1
r
λ2p2c1, (C.10)

Y31 � s17c2
d3

dX
3 − s2

1
r

+ s18c2 + 2s26c2( 􏼁
n
2

r
2􏼠 􏼡

d
dX

+ λ2p5c1
d
dX

, (C.11)

Y32 � s18c2 + 2s26c2( 􏼁
n

r

d2

dX
2 − s19c2

n
3

r
3 − s13 − s29c1 − s29c2 + s31c1c2 + s3( 􏼁

n

r
2 + λ2p5nc1 +

1
r
λ2p2nc1, (C.12)

Y33 � − s23c
2
2
d4

dX
4 + 2s24c

2
2 + 4s28c

2
2􏼐 􏼑

n
2

r
2 + s14 − s30c1 − s30c2 + s32c1c2 + 2s18c2

1
r

􏼢 􏼣
d2

dX
2

− s13 − s29c1 − s29c2 + s31c1c2( 􏼁
n
2

r
2 − 2s19c2

n
2

r
3 + s25c

2
2
n
4

r
4 + s3

1
r
2 − λ2p3c

2
1
d2

dX
2 + λ2 + λ2p3c

2
1n

2
,

(C.13)

Y34 � s20c2 − s23c
2
2􏼐 􏼑

d3

dX
3 + s14 − s30c1 − s30c2 + s32c1c2 − s5

1
r

+ s18c2
1
r

+ s24c
2
2 − s21c2 − 2s27c2 + 2s28c

2
2􏼐 􏼑

n
2

r
2􏼢 􏼣

d
dX

+ c1λ
2
p2 − c

2
1λ

2
p3􏼐 􏼑

d
dX

,

(C.14)

Y35 � s21c2 − s24c
2
2 + 2s27c2 − 2s28c

2
2􏼐 􏼑

n

r

d2

dX
2 − s22c2 − s25c

2
2􏼐 􏼑

n
3

r
3 + s13 − s29c1 − s29c2 + s31c1c2( 􏼁

n

r
− s6 − s19c2( 􏼁

n

r
2

+ c1λ
2
p2n − c

2
1λ

2
p3n,

(C.15)
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Y41 � s4 − s17c1( 􏼁
d2

dX
2 − s11 − s26c1( 􏼁

n
2

r
2 + λ2p4 − λ2p5c1, (C.16)

Y42 � s5 − s18c1 + s11 − s26c1( 􏼁
n

r

d
dX

, (C.17)

Y43 � s23c1c2 − s20c2( 􏼁
d3

dX
3 + s5 − s18c1( 􏼁

1
r

− s14 − s30c1 − s30c2 + s32c1c2( 􏼁 + s21c2 − s24c1c2( 􏼁
n
2

r
2 + 2 s27c2 − s28c1c2( 􏼁

n
2

r
2􏼢 􏼣

d
dX

− λ2p2c1 − λ2p3c
2
1􏼐 􏼑

d
dX

,

(C.18)

Y44 � s7 − s20c2 − s20c1 + s23c1c2( 􏼁
d2

dX
2 − s12 − s27c2 − s27c1 + s28c1c2( 􏼁

n
2

r
2 − s14 − s30c1 + s30c2 + s32c1c2( 􏼁

+ λ2p1 − 2λ2p2c1 + λ2p3c
2
1􏼐 􏼑,

(C.19)

Y45 � s8 − s21c2 − s21c1 + s24c1c2 + s12 − s27c2 − s27c1 + s28c1c2( 􏼁
n

r

d
dX

, (C.20)

Y51 � − s11 − s26c1 + s5 − s18c1( 􏼁
n

r

d
dX

, (C.21)

Y52 � s11 − s26c1( 􏼁
d2

dX
2 − s6 − s19c1( 􏼁

n
2

r
2 + s13 − s29c1 − s29c2 + s31c1c2( 􏼁

1
r

+ λ2p4 +
1
r
λ2p1 − λ2p5c1 −

1
r
λ2p2c1, (C.22)

Y53 � 2s27c2 − 2s28c1c2 + s21c2 − s24c1c2( 􏼁
n

r

d2

dX
2 − s22c2 − s25c1c2( 􏼁

n
3

r
3 − s6 − s18c1( 􏼁

1
r
2 + s13 − s29c1 − s29c2 + s31c1c2( 􏼁

1
r

+ c1λ
2
p2 − c

2
1λ

2
p3􏼐 􏼑n,

(C.23)

Y54 � − s12 − s27c1 − s27c2 + s28c1c2 + s8 − s21c1 − − s21c2 + s24c1c2( 􏼁
n

r

d
dX

, (C.24)

Y55 � s12 − s27c1 − s27c2 + s28c1c2( 􏼁
d2

dX
2 − s13 − s29c1 − s29c2 + s31c1c2( 􏼁 − s9 − s22c2 − s22c1 + s25c1c2( 􏼁

n
2

r
2

+ λ2p1 − 2c1λ
2
p2 + c

2
1λ

2
p3􏼐 􏼑,

(C.25)

where

λ2 �
I0ω

2ℓ2

A11
, (C.26)

p1 �
I2

I0ℓ
2, p2 �

I4

I0ℓ
2, p3 �

I6

I0ℓ
2, p4 �

I1

I0ℓ
2, p5 �

I3

I0ℓ
2, (C.27)

s2 �
A12

A11
, s3 �

A22

A11
, s4 �

B11

ℓA11
, s5 �

B12

ℓA11
, s6 �

B22

ℓA11
s7 �

D11

ℓ2A11
, s8 �

D12

ℓ2A11
, s9 �

D22

ℓ2A11
, (C.28)

s10 �
A66

A11
, s11 �

B66

ℓA11
, s12 �

D66

ℓ2A11
, s13 �

A44

A11
, s14 �

A55

A11
, s15 �

B16

ℓA11
, s16 �

B26

ℓA11
, s17 �

E11

ℓ3A11
, (C.29)

Journal of Mathematics 11



s18 �
E12

ℓ3A11
, s19 �
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[28] H. Ersoy, K. Mercan, and Ö. Civalek, “Frequencies of FGM
shells and annular plates by the methods of discrete singular
convolution and differential quadrature methods,” Composite
Structures, vol. 183, pp. 7–20, 2018.

[29] D. Punera and T. Kant, “Elastostatics of laminated and
functionally graded sandwich cylindrical shells with two re-
fined higher order models,” Composite Structures, vol. 182,
pp. 505–523, 2017.

[30] C. Hwu, H. W. Hsu, and Y. H. Lin, “Free vibration of
composite sandwich plates and cylindrical shells,” Composite
Structures, vol. 171, pp. 528–537, 2017.

[31] Nasihatgozar, M. Khalili, and I. R. K. M. Fard, “General
equations for free vibrations of thick doubly curved sandwich
panels with compressible and incompressible core using
higher order shear deformation theory,” Steel and Composite
Structures, vol. 24, no. 2, pp. 151–176, 2017.

[32] T.-K. Nguyen, H.-T. 0ai, and P. V. 0uc, “A novel general
higher-order shear deformation theory for static, vibration
and thermal buckling analysis of the functionally graded
plates,” Journal of ?ermal Stresses, pp. 1–21, 2020.

[33] A. A. Daikh, A. Drai, Bensaid, M. S. A. Houari, and A. Tounsi,
“On vibration of functionally graded sandwich nanoplates,”
Journal of Sandwich Structures and Materials,
p. 1099636220909790, 2020.

[34] A. Baghlani, M. Khayat, and S. M. Dehghan, “Free vibration
analysis of FGM cylindrical shells surrounded by pasternak
elastic foundation in thermal environment considering fluid-
structure interaction,” Applied Mathematical Modelling,
vol. 78, pp. 550–575, 2020.

[35] R. Katili, “On static and free vibration analysis of FGM plates
using an efficient quadrilateral finite element based on
DSPM,” Composite Structures, p. 113514, 2020.

[36] Dhari and R. Singh, “A numerical study on cross ply laminates
subjected to stray fragments impact loading,” Composite
Structures, vol. 261, p. 113563, 2021.

[37] M. Li, R. Yan, L. Xu, and C. Guedes Soares, “A general
framework of higher-order shear deformation theories with a

novel unified plate model for composite laminated and FGM
plates,” Composite Structures, vol. 261, p. 113560, 2021.

[38] S. I. Tahir, A. Chikh, A. Tounsi, M. A. Al-Osta, S. U. Al-
Dulaijan, and M. M. Al-Zahrani, “Wave propagation analysis
of a ceramic-metal functionally graded sandwich plate with
different porosity distributions in a hygro-thermal environ-
ment,” Composite Structures, vol. 269, p. 114030, 2021.

[39] I. M. Mudhaffar, A. Tounsi, A. Chikh, M. A. Al-Osta,
M. M. Al-Zahrani, and S. U. Al-Dulaijan, “Hygro-thermo-
mechanical bending behavior of advanced functionally graded
ceramic metal plate resting on a viscoelastic foundation,”
Structures, vol. 33, pp. 2177–2189, 2021.

[40] D. Kouider, A. Kaci, M. M. Selim et al., “An original four-
variable quasi-3D shear deformation theory for the static and
free vibration analysis of new type of sandwich plates with
both FG face sheets and FGM hard core,” Steel and Composite
Structures, vol. 41, no. 2, pp. 167–191, 2021.

[41] B. Merazka, A. Bouhadra, A. Menasria et al., “Hygro-thermo-
mechanical bending response of FG plates resting on elastic
foundations,” Steel and Composite Structures, vol. 39, no. 5,
pp. 631–643, 2021.

[42] H. Hachemi, A. A. Bousahla, A. Kaci et al., “Bending analysis
of functionally graded plates using a new refined quasi-3D
shear deformation theory and the concept of the neutral
surface position,” Steel and Composite Structures, vol. 39,
no. 1, pp. 51–64, 2021.

[43] S. Javed, K. K. Viswanathan, M. D. Nurul Izyan, Z. A. Aziz,
and J. H. Lee, “Free vibration of cross-ply angle-ply laminated
plates based on higher order shear theory,” Steel and Com-
posite Structures, vol. 22, no. 6, pp. 1281–1299, 2018.

[44] S. Javed, “Free vibration characteristic of laminated conical
shells based on higher-order shear deformation theory,”
Composite Structures, vol. 204, pp. 80–87, 2018.

[45] R. K. Khare, T. Kant, and A. K. Garg, “Free vibration of
composite and sandwich laminates with a higher-order facet
shell element,” Composite Structures, vol. 65, no. 3-4,
pp. 405–418, 2004.

[46] A. Bhimaraddi, “Free vibration analysis of doubly curved
shallow shells on rectangular planform using three-dimen-
sional elasticity theory,” International Journal of Solids and
Structures, vol. 27, no. 7, pp. 897–913, 1991.

Journal of Mathematics 13


