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Abstract

Aims/ Objectives: Various efficient estimators using single and dual auxiliary variables with different
functions including log and exponential have been developed in the SRSWOR design. Since the Adaptive
cluster sampling (ACS) design is relatively new, estimators using functions like log and exponential with
single and dual auxiliary variables have not been explored much. Therefore in this article, we propose two
wider classes of estimators using single and dual auxiliary variables respectively so that the properties like
bias and mean squared errors of various estimators using functions like log and exponential or any other
function which belong to the proposed wider classes and have not been developed and studied yet would be
known in advance. Formulae of the bias and mean squared error have been derived and presented. Further,
since log type estimators have not been studied extensively in the ACS design we have developed new log
type classes from each of the proposed wider classes and developed and studied some new log type member
estimators. To examine the performance of these new developed log-type estimators over some competing
estimators simulation studies have been conducted and all the estimators are further applied to a real data
to estimate the average number of Mules in the Indian state of Assam. The studies show that the developed
log-type estimators perform better.
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1 Introduction
In survey sampling, we might come across data that is highly clumped or patchy, in such a case the traditional
sampling designs like the Simple random sampling without replacement (SRSWOR), Stratified random sampling,
and Systematic sampling among other sampling designs do not provide a representative sample. In such cases,
adaptive sampling designs are needed. Adaptive cluster sampling proposed by Thompson [1] is one such adaptive
sampling design where an initial sample using SRSWOR is drawn and based on specified condition and defined
neighborhood additional units are selected. Due to its wide applicability, it has been used in a variety of
disciplines such as ecological science [2, 3], environmental science [4, 5] and social science[6].

Since Cochran [7] proposed the ratio estimator numerous ratio and product type estimators have been developed
using various transformations in SRSWOR, Stratified random sampling, and Systematic sampling among other
sampling designs. Drawing up a list of all such estimators will be of no use. Some noteworthy works where the
authors introduced concepts like a class of estimators, constants which minimize MSE are Grover and Kaur [8],
Khoshnevisan et al.[9], Haq and Shabbir [10]. The use of functions like log and exponential was also explored
and it was found that their use increased the efficiency of the estimators and thus various estimators have been
developed using log and exponential functions Bahal and Tuteja [11], Latpate et al. [12], Grover and Kaur
[8], Singh and Khare [13] and Singh and Rai [14]. Upon observation of such estimators it can be said that it
might be possible to develop a class of estimators such that various estimators existing and non-existing which
use different functions like log and exponential and different transformations can be derived from only one such
developed class. Developing such a class was first attempted by Srivastava [15] where he developed a general
class of estimators. This work was followed by Srivastava [16] and Srivastava and Jhajj [17].

In ACS design since the work of Dryver and Chao [18] where they proposed the transformed population approach
numerous ratio-type estimators using a single auxiliary variable have been developed and studied for estimating
the finite population mean. Dryver and Chao [18] first developed their ratio type estimator for estimating the
finite population mean. Chutiman [19] proposed their ratio type estimator to estimate the finite population
mean of the survey variable using some known parameters of the auxiliary variable. Qureshi et al. [20] proposed
their estimator for the population mean of the survey variable using some robust measures. Chaudhry and Hanif
[21] proposed an estimator using two auxiliary variables for estimating the population mean of the survey variable.

ACS is relatively new and its theory is being developed [22, 23, 24, 25, 26] therefore the use of multi-auxiliary
variables and different functions like log and exponential under different transformations have not been extensively
studied to develop efficient estimators. Thus in this article we have combined all these ideas and proposed wider
classes of estimators based on single and dual auxiliary variables for estimating the finite population mean of
the survey variable so that the properties like bias and mean squared errors of various member estimators using
several functions like log and exponential under different transformations would be known in advance. Further
since log type estimators have not been studied much in the ACS design we have proposed a log-type class of
estimators from each of the proposed wider classes respectively.

Since the ACS design has been of a lot of interest its methodology is known to most readers. For new readers, we
recommend reading Dryver and Chao [18]. In Section 2 all the notations and terminologies used for derivations
are presented. Section 3 comprises of some related estimators in the ACS design. In Section 4 we present
the proposed wider class based on single auxiliary variable along with its derivation of bias and MSE. In sub-
section 4.1 we propose a log type class of estimators along with some new log type estimators from the proposed
wider class based on single auxiliary variable. In sub-section 4.2 two simulation studies have been conducted
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to demonstrate the performance of the proposed log type estimators over competing estimators in ACS design
presented in this paper. In Section 5 we present the proposed wider class based on dual auxiliary variables
along with its derivation of bias and MSE. In sub-section 5.1 we propose a log type class of estimators based on
dual auxiliary variables along with some new log type estimators from the proposed wider class based on dual
auxiliary variables. In sub-section 5.2 we have conducted two simulation studies to demonstrate the performance
of these proposed log type estimators over competing estimators in ACS design. Finally in Section 6 all the
estimators presented in this paper are applied to a real population to estimate the average number of Mules in
the Indian state of Assam to highlight the efficiency of the proposed log-type estimators. In Section 7 we present
the concluding remarks on this article with fruitful future areas of research.

2 Notations and Terminologies
Consider a finite population of N units with label i = 1, 2, ..., N . The survey variable is denoted by Y and the
auxiliary variables by X1 and X2 respectively. Using SRSWOR a sample of size n is drawn and network averages
wy = wy1 , wy2 ..., wyn , wx1 = wx11 ,wx12

...,wx1n
and wx2 = wx21 ,wx22

...,wx2n
are obtained (Dryver and Chao

(2007)[18]), where the network averages wyi = 1
mi

∑
j∈ξi wyj , wx1i = 1

mi

∑
j∈ξi wx1j and wx2i = 1

mi

∑
j∈ξi wx2j

are the average values of y, x1 and x2 in the network ξi containing the ith unit where mi is the total number of
units in the network ξi respectively. We are interested in estimating µy. Now consider the following notations:
w̄y = 1

n

∑n
i=1 wyi , w̄x1 = 1

n

∑n
i=1 wx1i , w̄x2 = 1

n

∑n
i=1 wx2i ,

µy = 1
N

∑N
i=1 wyi , µx1 = 1

N

∑N
i=1 wx1i , µx2 = 1

N

∑N
i=1 wx2i ,

S2
wy

= 1
N−1

∑N
i=1(wyi − µy)2, S2

wx1
= 1

N−1

∑N
i=1(wx1i − µx1)2,

S2
wx2

= 1
N−1

∑N
i=1(wx2i − µx2)2, Swywx1

= 1
N−1

∑N
i=1((wy − µy)(wx1i − µx1)), Swywx2

= 1
N−1

∑N
i=1((wy −

µy)(wx2i − µx2)), Swx1
wx2

= 1
N−1

∑N
i=1((wx1i − µx1)(wx2i − µx2)), C2

wy
=

S2
wy

µ2
y
, C2

wx1
=

S2
wx1
µ2
x1

, C2
wx2

=
S2
wx2
µ2
x2

.
The error terms used are follows:
e0 =

w̄y

µy
− 1, e1 =

¯wx1
µx1
− 1, e2 =

¯wx2
µx2
− 1, such that

E(e0) = E(e1) = E(e2) = 0 and E(e2
0) = fC2

wy
, E(e2

1) = fC2
wx1

, E(e2
2) = fC2

wx2
, E(e0e1) = fρwywx1

CwyCwx1
,

E(e0e2) = fρwywx2
CwyCwx2

E(e1e2) = fρwx1
wx2

Cwx1
Cwx2

, f = 1
n
− 1

N
.

3 Some Related Estimators
In this section, we present some related estimators in the ACS design using one and two auxiliary variables.

3.1 Related estimators using one auxiliary variable
In this section, all the estimators presented use one auxiliary variable which will be denoted by X. The Hansen-
Hurwitz type estimator for population mean proposed by Thompson [1] is:

tHH =
1

n

n∑
i=1

wyi . (1)

The expression of variance proposed by Thompson [1] is as follows:

V ar = fS2
wy
. (2)

Dryver and Chao [18] developed their estimator as follows:

tDC = µx
w̄y
w̄x

. (3)
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The expressions of bias and MSE proposed by Dryver and Chao [18] are:

Bias(tDC) = fµy(C2
wx
− ρwywxCwyCwx), (4)

and
MSE(tDC) = fµ2

y(C2
wy

+ C2
wx
− 2ρwywxCwyCwx) (5)

respectively.

A transformed estimator developed by Chutiman using known coefficient of variation and kurtosis[19] is as
follows:

tCH1 = w̄y

(
µx + Cwx

w̄y + Cwx

)
, (6)

tCH2 = w̄y

(
µx + β2(wx)

w̄y + β2(wx)

)
. (7)

The expression of MSE proposed by Chutiman [19] is:

MSE(tCH1) = fµ2
y(C2

wy
+ α2

CH1
C2
wx
− 2αCH1ρwywxCwyCwx) (8)

and
MSE(tCH2) = fµ2

y(C2
wy

+ α2
CH2

C2
wx
− 2αCH2ρwywxCwyCwx), (9)

where αCH1 = µx
µx+Cwx

and αCH2 = µx
µx+β2(wx)

.

Qureshi et al. [20] proposed some ratio type estimators using robust measure as:

tKQ1 = w̄y

(
µxMR+ β1(wx)

w̄xMR+ β1(wx)

)
(10)

and
tKQ2 = w̄y

(
µxMR+ TM

w̄xMR+ TM

)
. (11)

The expressions of bias and MSE give by Qureshi et al. [20] are:

Bias(tKQ1) = fµy(α2
KQ1

C2
wx
− αKQ1ρwywxCwyCwx), (12)

Bias(tKQ2) = fµy(α2
KQ2

C2
wx
− αKQ2ρwywxCwyCwx), (13)

MSE(tKQ1) = fµ2
y(C2

wy
+ α2

KQ1
C2
wx
− 2αKQ1ρwywxCwyCwx), (14)

and
MSE(tKQ2) = fµ2

y(C2
wy

+ α2
KQ2

C2
wx
− 2αKQ2ρwywxCwyCwx), (15)

where αKQ1 = µxMR
µxMR+β1(wx)

and αKQ2 = µxMR
µxMR+TM

.

3.2 Related estimators using dual auxiliary variables
Since ACS is relatively new, estimators using multi-auxiliary information are not much explored and thus in this
sub-section, we present a related estimator based on two auxiliary variables proposed by Chaudhry and Hanif
[21] as follows:

tH = (w̄y + β(µx2 − w̄x2))exp

(
µx1 − w̄x1

µx1

)
. (16)

The expression of MSE proposed by Chaudhry and Hanif [21] is:

MSE(tH) = µ2
yfC

2
wy

+ µ2
yfC

2
wx1

+ β2µ2
x2fC

2
wx2
− 2βµyµx2fρwywx2

CwyCwx2
− 2µ2

yfρwywx1
CwyCwx1

+ 2βµyµx2fρwx1
wx2

Cwx1
Cwx2

.
(17)
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4 Proposed Wider Class of Estimators Based One Auxiliary
Variable

In this section we propose a wider class of estimators using one auxiliary variable as follows:

twI = (k1w̄y + k2(µx − w̄x))δ(u) (18)

where u = αµx+γ
αw̄x+γ

, k1, k2 are constants such that they minimize the MSEtwI
and δ(.) is a parametric function

and satisfies the following condition:

1. δ(1) = 1.

2. The first and the second order partial derivatives of δ with respect to u exists and are known constants
at δ = 1.

To derive the expression of bias and MSE of the proposed wider class twI , we first expand δ(u) about the value
1 in second order Taylor’s series as

δ(u) = δ(1) + (u− 1)H1 + (u− 1)2H2,

where H1 = ∂δ
∂u

∣∣∣∣
u=1

and H2 = 1
2
∂2δ
∂2u

∣∣∣∣
u=1

.

Note that upon simplification we get u − 1 = −e1
θ

+
e21
θ2

and (u − 1)2 =
e21
θ2

where θ = 1 + γ
αµx

. Using above
values and the error terms defined in Section 2, we get

twI = (k1µy + k1µye0 − µxe1k2)

(
(1 + (

−e1

θ
+
e2

1

θ2
)H1 +

e2
1

θ2
H2

)
. (19)

Simplifying and subtracting µy from both sides and taking expectation we get

Bias(twI ) = k1µy(1 +
1

θ2
fC2

wx
(H1 +H2)

−1

θ
H1fρwywxCwyCwx) + k2µx

1

θ
H1fC

2
wx
− µy

(20)

Similarly, the expression of MSE is obtained as

MSE(twI ) = µ2
y + k2

1A+ k2
2B + 2k1k2C − 2k1D − 2k2E (21)

where
A = µ2

y + 1
θ2
µ2
yfC

2
wx
H2

1 + µ2
yfC

2
wy

+ 2
(

1
θ2
µ2
yfC

2
wx

(H1 +H2)− 2
θ
µ2
yfρwywxCwyCwxH1

)
,

B = µ2
xfC

2
wx

,
C = 2

θ
µyµxfC

2
wx
H1 − µyµxfρwywxCwyCwx ,

D = µ2
y + 1

θ2
µ2
yfC

2
wx
H1 + 1

θ2
µ2
yfC

2
wx
H2 − 1

θ
µ2
yfρwywxCwyCwxH1,

E = 1
θ
µyµxfC

2
wx
H1.

Partially differentiating equation (21) with respect to k1 and k2 and equating it to zero, we get the optimum
values as

k1opt =
BD − CE
AB − C2

(22)

k2opt =
AE − CD
AB − C2

(23)

Putting k1opt and k2opt in (21) the minimum MSE of twI is

MSE(twImin) = µ2
y + k2

1opt
A+ k2

2opt
B + 2k1optk2optC − 2k1optD − 2k2optE (24)
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Is should be noted that all the estimators based on single auxiliary variable presented in this article are members
of the proposed wider class twI .

1. For (k1,k2,δ(u))=(1,0,1), twI → tHH [1].

2. For (k1,k2,δ(u))=(1,0, µx
w̄x

), twI → tDC [18].

3. For (k1,k2,δ(u))=(1,0, (µx+Cwx )

(w̄x+Cwx )
), twI → tCH1 [19].

4. For (k1,k2,δ(u))=(1,0, (µx+β2(wx))
(w̄x+β2(wx))

), twI → tCH2 [19].

5. For (k1,k2,δ(u))=(1,0, (MRµx+β1(wx))
(MRw̄x+β1(wx))

), twI → tKQ1 [20].

6. For (k1,k2,δ(u))=(1,0, (MRµx+TM)
(MRw̄x+TM)

), twI → tKQ2 [20].

4.1 Log type class derived from twI
In this sub-section we have developed a log type class from the proposed wider class twI using δ(u) = 1 + log(u)
where u = αµx+γ

αw̄x+γ
. The developed class is as follows:

tL = (k1w̄y + k2(µx − w̄x))

(
1 + log

(
αµx + γ

αw̄x + γ

))
. (25)

The bias of this class can be obtained by putting H1 = ∂δ
∂u

∣∣∣∣
u=1

= 1 and H2 = 1
2
∂2δ
∂2u

∣∣∣∣
u=1

= − 1
2
in (20). Similarly

the MSE can be obtained by putting H1 = 1 and H2 = − 1
2
in (22)-(23) and putting it in (24). The exact

expressions of bias and MSE are

Bias(tL) = k1µy(1 +
1

2

1

θ2
fC2

wx
− 1

θ
fρwywxCwyCwx) + k2µx

1

θ
fC2

wx
− µy, (26)

and
MSE(tLmin) = µ2

y + k2
1Lopt

AL + k2
2Lopt

BL + 2k1Lopt
k2Lopt

CL − 2k1Lopt
DL − 2k2Lopt

EL (27)

respectively where AL = µ2
y + 2

θ2
µ2
yfC

2
wx

+ µ2
yfC

2
wy
− 4

θ
µ2
yfρwywxCwyCwx ,

BL = µ2
xfC

2
wx

,
CL = 2

θ
µyµxfC

2
wx
− µyµxfρwywxCwyCwx ,

DL = µ2
y + 1

2
1
θ2
µ2
yfC

2
wx
− 1

θ
µ2
yfρwywxCwyCwx ,

EL = 1
θ
µyµxfC

2
wx

with k1Lopt
= BLDL−CLEL

ALBL−C2
L

and k2Lopt
= ALEL−CLDL

ALBL−C2
L

.

From this developed class we propose the following estimators:

1. tL1 = (k1w̄y + k2(µx − w̄x))
(

1 + log
(
TM(wx)µx+MR(wx)
TM(wx)w̄x+MR(wx)

))
,

2. tL2 = (k1w̄y + k2(µx − w̄x))
(

1 + log
(
TM(wx)µx+β2(wx)
TM(wx)w̄x+β2(wx)

))
,

3. tL3 = (k1w̄y + k2(µx − w̄x))

(
1 + log

(
MR(wx)µx+S2

wx
MR(wx)w̄x+S2

wx

))
.

The bias and MSE of these estimators can be easily obtained from equation (26)− (27) using θ = 1 + γ
αµx

.
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4.2 Simulation study

To study the performance of the developed log type estimators (tL1−3) over competing estimators based on
single auxiliary varaible presented in Section 2 we have conducted two simulation studies. The performance
of the estimators are compared on the basis of Relative root mean square error (RRMSE). For the simulation
studies, we use the Blue Winged Teal data used by Dryver and Chao (2007)[18] and Smith et al.[27].
The following algorithm is used for conducting the simulation studies:

1. Population-1 of size 50 is generated using the model y = 4x+ e where x takes the values of Blue-Winged
Teal[18, 27] and e ∼ N(0, 4x).

2. Using sample sizes n = 9, 11, 13, 15 sampling procedure of ACS is repeated 20000 times and several values
of estimates of population mean µy are obtained.

3. MSE for each sample size is calculated using the formula MSE(ti) = 1
20000

∑20000
r=1 (ti − µy)2 where

ti = tHH , tDC , tCH1 , tCH2 , tKQ1 , tKQ2 , tL1 , tL2 , tL3 .

4. For comparison RRMSE is calculated as RRMSE(ti) = 1
µy

√
MSE(ti) where ti is defined in step 3 and

the values of RRMSEs are presented in Table 1.

For the second simulation study population-2 is generated using model y = 3x+e. Following steps 2-4, RRMSEs
are obtained and presented in Table 2.

Table 1. Relative root mean square errors of all estimators in case of population-1

Estimators n = 9 n = 11 n = 13 n = 15

tHH 0.7472 0.6673 0.5943 0.5434
tDC 0.3392 0.2884 0.2345 0.1942
tCH1 0.4399 0.3627 0.2921 0.2394
tCH2 0.4361 0.3594 0.2893 0.2371
tKQ1 0.3770 0.3045 0.2429 0.1976
tKQ2 0.3770 0.3045 0.2429 0.1976
tL1 0.1609 0.1408 0.1239 0.1122
tL2 3.8993 3.3459 1.2320 0.7745
tL3 0.1710 0.1492 0.1309 0.1184

Table 2. Relative root mean square errors of all estimators in case of population-2

Estimators n = 9 n = 11 n = 13 n = 15

tHH 0.7036 0.6297 0.5628 0.5106
tDC 7.0590 5.5925 4.4035 3.3961
tCH1 1.7612 1.4310 1.1637 0.9297
tCH2 1.9853 1.6180 1.3200 1.0556
tKQ1 6.9331 5.5329 4.3742 3.3807
tKQ2 6.9351 5.5344 4.3754 3.3814
tL1 0.1639 0.1428 0.1255 0.1139
tL2 3.9165 3.3120 1.2339 0.7685
tL3 0.1735 0.1506 0.1327 0.1198
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5 Proposed Wider Class of Estimators Based on Two Auxiliary
Variabales

In this section we propose the wider class of estimators based on dual auxiliary variables as follows

twII = (m1w̄y +m2(µx1 − w̄x1) +m3(µx2 − w̄x2))δ(s, v), (28)

where s =
α1µx1

+γ1
α1 ¯wx1

+γ1
, v =

α2µx2+γ2
α2 ¯wx2

+γ2
, m1, m2, m3 are constants such that they minimize the MSEtwII

and
δ(s, v) is a function of s and v such that it satisfies the following condition:

1. The point (s, v) assumes the value in a closed convex subset of R2 of two-dimensional real space containing
the point (1, 1).

2. δ(s, v) is bounded and continuous in R2.

3. δ(1, 1) = 1.

4. The partial derivatives of first and second order of δ(s, v) exists and are continuous and bounded in R2.

In order to derive the expression of bias and MSE of the proposed wider class twII , we first expand δ(s, v) about
the value (1, 1) in second-order Taylor’s series as

δ(s, v) = δ(1, 1) + (s− 1)∆1 + (v − 1)∆2 + (s− 1)2∆3 + (v − 1)2∆4 + (s− 1)(v − 1)∆5,

where ∆1 = ∂δ
∂s

∣∣∣∣
(s=1,v=1)

, ∆2 = ∂δ
∂v

∣∣∣∣
(s=1,v=1)

, ∆3 = 1
2
∂2δ
∂s2

∣∣∣∣
(s=1,v=1)

, ∆4 = 1
2
∂2δ
∂v2

∣∣∣∣
(s=1,v=1)

and ∆5 = ∂2δ
∂s∂v

∣∣∣∣
(s=1,v=1)

.

Note that upon simplification we get s − 1 = −e1
θ1

+
e21
θ21
, v − 1 = −e2

θ2
+

e22
θ22
, (s − 1)2 =

e21
θ21
, (v − 1)2 =

e22
θ22

,

(s− 1)(v− 1) = e1e2
θ1θ2

, (s− 1)2 =
e21
θ21

where θ1 = 1 + γ1
α1µx1

and θ2 = 1 + γ2
α2µx2

. Using above values and the error
terms defined in Section 2, we get

twII = (m1µy +m1µye0 −m2µx1e1 −m3µx2e2)(1 + (
−e1

θ1

+
e2

1

θ2
1

)h1 + (
−e2

θ2
+
e2

2

θ2
2

)h2 +
e2

1

θ2
1

h3 +
e2

2

θ2
2

h4 +
e12

θ1θ2
h5).

(29)

Simplifying and subtracting µy from both sides and taking expectation we get

Bias(twI ) = m1µy(1 +
1

θ2
1

fC2
wx1

h1 +
1

θ2
2

fC2
wx2

h2 +
1

θ2
1

fC2
wx1

h3 +
1

θ2
2

fC2
wx2

h4 +
1

θ1θ2
f

ρwx1
wx2

Cwx1
Cwx2

h5 −
1

θ1
fρwywx1

CyCwx1
h1 −

1

θ2
fρwywx2

CyCwx2
h2) +m2µx1(

1

θ1
fC2

wx1
h1

+
1

θ2
fρwx1

wx2
Cwx1

Cwx2
h2) +m3µx2(

1

θ2
fC2

wx2
h2 +

1

θ1
fρwx1

wx2
Cwx1

Cwx2
h1)− µy.

(30)

Similarly, the expression of MSE is obtained as

MSE(twII ) = µ2
y +m2

1Aw +m2
2Bw +m2

3Cw + 2m1m2Dw

+2m1m3Ew + 2m2m3Fw − 2m1Gw − 2m2Hw − 2m3Iw,
(31)

where
Aw = µ2

y(1 + fC2
wy

+ 1
θ21
fC2

wx1
h2

1 + 1
θ22
fC2

wx2
h2

2 + 2( 1
θ21
fC2

wx1
h1 + 1

θ22
fC2

wx2
h2 + 1

θ21
fC2

wx1
h3 + 1

θ22
fC2

wx2
h4 +

1
θ1θ2

fρwx1wx2
Cwx1

Cwx2
h5 − 1

θ1
fρwywx1

CwyCwx1
h1 − 1

θ2
fρwywx2

CwyCwx2
h2 + 1

θ1θ2
fρwx1wx2

Cwx1
Cwx2

h1h2 −
1
θ1
fρwywx1

CwyCwx1
h1− 1

θ2
fρwywx2

CwyCwx2
h2),

Bw = µ2
x1fC

2
wx1

,
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Cw = µ2
x2fC

2
wx2

,
Dw = µyµx1( 2

θ1
fC2

wx1
h1 + 2

θ2
fρwx1

wx2
Cwx1

Cwx2
h2 − fρwywx1

CwyCwx1
),

Ew = µyµx2( 2
θ2
fC2

wx2
h2 + 2

θ1
fρwx1

wx2
Cwx1

Cwx2
h1 − fρwywx2

CwyCwx2
),

Fw = µx1µx2fρwx1
wx2

Cwx1
Cwx2

,
Gw = µ2

y(1 + 1
θ21
fC2

wx1
h1 + 1

θ22
fC2

wx2
h2 + 1

θ21
fC2

wx1
h3 + 1

θ22
fC2

wx2
h4 + 1

θ1θ2
fρwx1wx2

Cwx1
Cwx2

h5

− 1
θ1
fρwywx1

CwyCwx1
h1 − 1

θ2
fρwywx2

CwyCwx2
h2), Hw = µyµx1( 1

θ1
fC2

wx1
h1 + 1

θ2
fρwx1

wx2
Cwx1

Cwx2
h2),

Iw = µyµx2( 1
θ2
fC2

wx2
h2 + 1

θ1
fρwx1wx2

Cwx1
Cwx2

h1).

Partially differentiating (31) with respect to m1, m2 and m3 and equating them to zero we get

m1Aw +m2Dw +m3Ew = Gw, (32)

m1Dw +m2Bw +m3Fw = Hw, (33)

m1Ew +m2Fw +m3Cw = Iw (34)

This system of linear equation can be written asAw Dw Ew
Dw Bw Fw
Ew Fw Cw

×
m1

m2

m3

 =

GwHw
Iw

 (35)

Using Cramer rule we get

m1opt =
∆m1

∆
,m2opt =

∆m2

∆
,m3opt =

∆m3

∆
, (36)

where

∆m1 =

∣∣∣∣∣∣
Gw Dw Ew
Hw Bw Fw
Iw Fw Cw

∣∣∣∣∣∣ (37)

∆m2 =

∣∣∣∣∣∣
Aw Gw Ew
Dw Hw Fw
Ew Iw Cw

∣∣∣∣∣∣ (38)

∆m3 =

∣∣∣∣∣∣
Aw Dw Gw
Dw Bw Hw
Ew Fw Iw

∣∣∣∣∣∣ (39)

and

∆ =

∣∣∣∣∣∣
Aw Dw Ew
Dw Bw Fw
Ew Fw Cw

∣∣∣∣∣∣ (40)

Solving the determinants in equations (37)− (40) and using them in (36) we get

m1opt =
Gw(BwCw − F 2

w)−Dw(HwCw − IwFw) + Ew(HwFw − IwBw)

AwBwCw −AwF 2
w −D2

wCw + 2DwEwFw −BwE2
w

, (41)

m2opt =
Aw(HwCw − IwFw)−Gw(DwCw − EwFw) + Ew(DwIw − EwHw)

AwBwCw −AwF 2
w −D2

wCw + 2DwEwFw −BwE2
w

, (42)

m3opt =
Aw(IwBw −HwFw)−Dw(IwDw −HwEw) +Gw(DwFw − EwBw)

AwBwCw −AwF 2
w −D2

wCw + 2DwEwFw −BwE2
w

. (43)

Using (41)− (43) in (31) we get

MSE(twIImin
) = µ2

y +m2
1opt

Aw +m2
2opt

Bw +m2
3opt

Cw + 2m1optm2optDw

+ 2m1optm3optEw + 2m2optm3optFw − 2m1optGw − 2m2optHw − 2m3optIw. (44)
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5.1 Log type class derived from twII
In this sub-section we have developed a log type class from the proposed wider class twII using δ(s, v) =

(1 + log(s))(1 + log(v)) where s =
α1µx1

+γ1
α1 ¯wx1+γ1

, v =
α2µx2

+γ2
α2 ¯wx2+γ2

. The developed class is:

tLII = (m1w̄y +m2(µx1 − w̄x1) +m3((µx2 − w̄x2)))(
1 + log

(
α1µx1 + γ1

α1w̄x1 + γ1

))(
1 + log

(
α2µx2 + γ2

α2w̄x2 + γ2

)) (45)

The bias and MSEmin of this class can be obtained using

∆1 = ∂δ
∂s

∣∣∣∣
(s=1,v=1)

= 1, ∆2 = ∂δ
∂v

∣∣∣∣
(s=1,v=1)

= 1, ∆3 = 1
2
∂2δ
∂s2

∣∣∣∣
(s=1,v=1)

= − 1
2
,

∆4 = 1
2
∂2δ
∂v2

∣∣∣∣
(s=1,v=1)

= − 1
2
and ∆5 = ∂2δ

∂s∂v

∣∣∣∣
(s=1,v=1)

= 1

in (30) and (41)− (44) respectively.The expressions of bias and MSEmin of the developed class tLII are

Bias(tLII ) = m1µy(1 +
1

2θ2
1

fC2
wx1

+
1

2θ2
2

fC2
wx2

+
1

θ1θ2
fρwx1wx2

Cwx1

Cwx2
− 1

θ1
fρwywx1

CyCwx1
− 1

θ2
fρwywx2

CyCwx2
) +m2µx1(

1

θ1
fC2

wx1

+
1

θ2
fρwx1

wx2
Cwx1

Cwx2
) +m3µx2(

1

θ2
fC2

wx2
+

1

θ1
fρwx1

wx2
Cwx1

Cwx2
)− µy,

(46)

MSE(tLIImin
) = µ2

y +m2
1opt

AwLII
+m2

2opt
BwLII

+m2
3opt

CwLII
+ 2m1optm2optDwLII

+ 2m1optm3optEwLII
+ 2m2optm3optFwLII

− 2m1optGwLII
− 2m2optHwLII

− 2m3optIwLII
, (47)

where AwLII
= µ2

y(1 + fC2
wy

+ 2
θ21
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wx1
+ 2
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wx2
+ 4

θ1θ2
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2
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x2fC

2
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= µyµx1( 2
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wx1
+ 2
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Cwx2
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EwLII

= µyµx2( 2
θ2
fC2

wx2
+ 2
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wx2
Cwx1

Cwx2
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FwLII
= µx1µx2fρwx1

wx2
Cwx1

Cwx2
,

GwLII
= µ2
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2θ21

fC2
wx1

+ 1
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+ 1
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1
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CwyCwx2
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fρwywx1
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fC2
wx1
θ1

+
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θ2
),

IwLII
= µyµx2(

fC2
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θ2
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Cwx2
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−F2
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FwLII
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CwLII
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−EwLII
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)

AwLII
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=
AwLII
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)−DwLII
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−EwLII
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.

From this developed classtLII we propose the following estimators:

1. tLII1
= (m1w̄y +m2(µx1 − w̄x1) +m3((µx2 − w̄x2)))(

1 + log
(
TM(wx1 )µx1+MR(wx1 )

TM(wx1
) ¯wx1

+MR(wx1
)

))(
1 + log

(
TM(wx2 )µx2+MR(wx2 )

TM(wx2
) ¯wx2

+MR(wx2
)

))
,
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2. tLII2
= (m1w̄y +m2(µx1 − w̄x1) +m3((µx2 − w̄x2)))(

1 + log
(
TM(wx1 )µx1+β2(wx1 )

TM(wx1
) ¯wx1

+β2(wx1
)

))(
1 + log

(
TM(wx2 )µx2+β2(wx2 )

TM(wx2
) ¯wx2

+β2(wx2
)

))
,

3. tLII3
= (m1w̄y +m2(µx1 − w̄x1) +m3((µx2 − w̄x2)))(

1 + log

(
MR(wx1

)µx1
+S2

wx1
MR(wx1

) ¯wx1
+S2

wx1

))(
1 + log

(
MR(wx2

)µx2
+S2

wx2
MR(wx2

) ¯wx2
+S2

wx2

))
.

The bias and MSE of these estimators can be easily obtained from equation (46) − (47) using θ1 = 1 + γ1
α1µx1

and θ2 = 1 + γ2
α2µx2

.

5.2 Simulation study
In this section we conduct two simulation studies to assess the performance of the developed log type estimators
over competing estimators that are based on two auxiliary variables presented in Section 2 on the basis of
Relative root mean square error (RRMSE). For the simulation studies, we again use the Blue Winged Teal data
from Dryver and Chao (2007)[18] and Smith et al.[27].
The following algorithm is used for conducting the simulation studies:

1. Population-3 of size 50 is generated using the model y = 1
3
x1 + 1

3
x2 + e where x1 takes the values of

Blue-Winged Teal [18] and x2 is generated using the model x2 = 3x1 + e.

2. Using sample sizes n = 9, 11, 13, 15 sampling procedure of ACS is repeated 20000 times and several values
of estimates of population mean µy are obtained.

3. MSE for each sample size is calculated using the formulaMSE(ti) = 1
20000

∑20000
r=1 (ti−µy)2 where ti = tH ,

tLII1
, tLII2

, tLII3
.

4. For comparison RRMSE is calculated as RRMSE(ti) = 1
µy

√
MSE(ti) where ti is defined in step 3 and

the values of RRMSEs are presented in Table-3.

For the second simulation study population-4 is generated using model y = 1
3
x1 + 1

3
x2 + e where x1 takes the

values of Blue-Winged Teal [18] and x2 is generated using the model x2 = 3.5x1 + e. Following steps 2-4,
RRMSEs are obtained and presented in Table-4.

Table 3. Relative root mean square errors of all estimators in case of population-3

Estimators n = 9 n = 11 n = 13 n = 15

tHH 0.748470 0.668437 0.595328 0.544375
tH 0.887735 0.778505 0.683279 0.620539
tLII1

0.430774 0.336801 0.277607 0.240991
tLII2

0.741258 0.372371 0.501833 0.887541
tLII3

0.685537 0.475919 0.370864 0.311403

Table 4. Relative root mean square errors of all estimators in case of population-4

Estimators n = 9 n = 11 n = 13 n = 15

tHH 0.748383 0.668359 0.595258 0.544311
tH 0.887737 0.778506 0.683280 0.620538
tLII1

0.742780 0.502529 0.387352 0.323269
tLII2

0.744425 0.371564 0.507063 0.896693
tLII3

0.685473 0.475888 0.370845 0.311389

62



Singh and Mishra; Asian J. Prob. Stat., vol. 24, no. 2, pp. 52-66, 2023; Article no.AJPAS.105765

6 Application on Real Data
In this section we use all the estimators presented in this article to estimate the average number of Mules in
the Indian state of Assam using number of Mules over three years and number of male Donkeys in the same
district as the auxiliary variables. In this section we use the 19th Livestock Census data [28] of the state of
Assam. In order to use the ACS design, each of the twenty seven districts of Assam are treated as a quadrat
and the entire population of Mules is divided into twnety seven quadrats. In order to have 5X6 quadrats (for
easily applying the ACS design) we add three quadrats having zero Mules and finally a population of Mules of
Assam divided amongst thrity quadrats is used for this study. For comparison of estimators the formula of MSE
of each estimator is used and the values obtained are presented in Table 5.

Fig. 1. Network of Mules formed using the condition Cy : yi > 0

Table 5. Mean squared errors of all estimators in estimating average number of Mules in Assam
Estimators n = 9 n = 10 n = 11 n = 12

tHH 1.4421 1.2361 1.0676 0.9271
tDC 3.1050 2.6621 2.2991 1.9966
tCH1 2.8298 2.4255 2.0948 1.8191
tCH2 2.4508 2.1007 1.8142 1.5755
tKQ1 3.0923 2.6505 2.2891 1.9879
tKQ2 3.0600 2.6200 2.2600 1.9700
tH 1.2277 1.0523 0.9088 0.7892
tLI1

1.3000 1.1300 0.9830 0.8610
tLI2

1.3400 1.1600 1.0100 0.8810
tLI3

1.2795 1.1100 0.9731 0.8530
tLII1

0.0642 0.0562 0.0493 0.0433
tLII2

0.0361 0.0365 0.0351 0.0330
tLII3

0.0561 0.0506 0.0452 0.0403

Fig. 2. MSEs of all estimators based on one auxiliary variable in estimating average number of
Mules
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Fig. 3. MSEs of all estimators based on two auxiliary variable in estimating average number of
Mules

7 Conclusion
The ACS design is relatively new and has not been explored much. Various efficient estimators based on single
and dual auxiliary variables studied in the SRSWOR design have not been explored in the ACS design. Thus
the aim of this research paper was to develop wider classes of estimators based on single and dual auxiliary
variables in the ACS design so that the properties like bias and MSE of numerous member estimators of these
proposed wider classes will be known in advance. The proposed wider classes using single and dual auxiliary
variables have been presented in section 4 and 5 with their formulae of bias and MSE. In sections 4.1 and 5.1 we
developed new log type classes of estimators using single and dual auxiliary variables twLI

and twLII
from the

proposed wider classes twI and twII and further proposed some log type estimators from each developed class
twLI

and twLII
respectively.

The proposed log type estimators twLI1
−twLI3

and twLII1
−twLII3

have been developed using known parameters
of auxiliary variables namely Tri-mean, Mid-range, coefficient of kurtosis and population variance. The performance
of these estimators are then compared with several competing estimators presented in this article using various
simulation studies presented in sections 4.2 and 5.2 respectively. The performance is compared using the Relative
root mean square errors or RRMSEs. The results of the simulation studies have been tabulated in Tables 1-4.
From the results we can see that the developed log type estimators twLI1

, twLI3
and twLII1

, twLII3
result in

lower RRMSEs than the competing estimators.

Further we studied the performance of all the estimators on real data in section 6 using the 19th Livestock
Census data[28] to estimate the average number of Mules in the Indian state of Assam using all the estimators
that have been presented in this article. The performance of all of these estimators have been compared on
the criteria of MSE which is calculated using the formulae of MSE of all the estimators. The result of this
study is tabulated in Table-5. It should be noted that amongst all the estimators based on single auxiliary
variable namely tHH , tDC , tCH1 , tCH2 , tKQ1 , tKQ2 our proposed estimators twLI1

-twLI3
result in much lower

MSE. Further we observe that the competing estimator based on two auxiliary variables namely tH results in
much higher MSE than the proposed log type estimators based on two auxiliary variables namely twLII1

−twLII3
.

Our aim in this study was to develop wider classes of estimators based on single and dual auxiliary variables
so that the properties like bias and MSE of numerous member estimators based on different functions which
have not been developed yet will be known in advance without much effort. Since the ACS design is relatively
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new, estimators using functions like log and multiauxiliary variables have not been explored much therefore from
the proposed wider classes twI and twII we develop log type classes twLI

and twLII
and further propose some

log type estimators twLI1
− twLI3

and twLII1
− twLII3

using known parameters of auxiliary variables namely
Tri-mean, Mid-range, coefficient of kurtosis and population variance from the proposed log type classes twLI

and twLII
respectively. From the results of the simulation studies and application on real data, we recommend

using the proposed log type estimators twLI1
, twLI3

and twLII1
, twLII3

when the population under study is rare
or hidden clustered and ACS design is to be used. For future research studies we recommend studying different
functions like exponential and different transformations of u, s and v. It is also advised to study the effects of
different definitions of neighborhood.
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