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Abstract

469219 Kamo‘oalewa is selected as one of the primary targets of Tianwen-2 mission, which is currently believed
to be the most stable quasi-satellite of Earth. Here we derive a weak detection of the Yarkovsky effect for
Kamo‘oalewa, giving A2= (−1.075± 0.447)× 10−13 au day−2, with the available ground-based optical
observations from Minor Planet Center and a relatively conservative weighting scheme. Due to the quasi-
satellite resonance with Earth, we show that the detection of the Yarkovsky effect by orbital fitting with astrometric
observations becomes difficult, as its orbital drift shows a slow oscillatory growth resulting from the Yarkovsky
effect. In addition, we extensively explore the characteristics of orbital uncertainty propagation and find that the
positional uncertainty mainly arises from the geocentric radial direction in 2010–2020 and then concentrates in the
heliocentric transverse direction in 2020–2030. Furthermore, the heliocentric transverse uncertainty is clearly
monthly dependent, which can arrive at a minimum around January and a maximum around July as the orbit moves
toward the leading and trailing edges, respectively, in 2025–2027. Finally, we investigate a long-term uncertainty
propagation in the quasi-satellite regime, implying that the quasi-satellite resonance with Earth may play a crucial
role in constraining the increase of uncertainty over time. Such an interesting feature further implies that the orbital
precision of Kamo‘oalewa is relatively stable at its quasi-satellite phase, which may also be true for other quasi-
satellites of Earth.

Unified Astronomy Thesaurus concepts: Asteroids (72); Asteroid dynamics (2210)

1. Introduction

Near-Earth asteroids are defined as those with perihelion
distances less than 1.3 au. Among them, there is a special
classification called Earth co-orbital asteroids that are captured
in a 1:1 mean motion resonance with Earth (Namouni 1999).
Such asteroids have three typical orbital configurations, i.e.,
tadpole orbit that moves about the Lagrangian points L4 and
L5, horseshoe orbit librating with a large amplitude (as large as
to around 180°) in longitude in the frame corotating with Earth,
and quasi-satellite orbit librating around 0° (typically with
small amplitudes; Connors et al. 2002; Morais & Morbi-
delli 2002). Under the influence of a complex gravitational
environment, the orbits may periodically switch between
horseshoe and quasi-satellite configurations (Sidorenko et al.
2014; Qi & Qiao 2022).

469219 Kamo‘oalewa (provisional designation is 2016
HO3) is a fast-rotating near-Earth asteroid discovered by the
Pan-STARRS1 survey telescope at the Haleakala Observatory
in Hawaii on 2016 April 27 (De la Fuente Marcos & De la
Fuente Marcos 2016; Tholen et al. 2016). The asteroid has a
quasi-satellite orbit with respect to Earth, with a semimajor axis
of 1.001 au, an eccentricity of 0.103, and an orbital inclination
of 7°.79. Spectral observations indicate that Kamo‘oalewa may
comprise lunar material, and the albedos ranging from 0.10 to
0.16 give an estimate of the effective diameter of 58–46 m
(Sharkey et al. 2021; Winter et al. 2022). The amplitudes of

light curves suggest that the shape of this object is probably
elongated, with a length-to-width ratio of less than 0.48 (Li &
Scheeres 2021). The spin period of Kamo‘oalewa is 28.3 1.3

1.8
-
+

minutes (Sharkey et al. 2021), which is lower than the critical
value of ∼2.2 hr (Pravec & Harris 2000), implying that internal
cohesion is required to maintain its internal structure (Hu et al.
2021; Li & Scheeres 2021).
The orbit of Kamo‘oalewa exhibits both retrograde and

prograde motions in the geocentric inertial frame, while it turns
entirely retrograde in the geocentric corotating frame (Pousse
et al. 2017) as shown in Figure 1. Orbital propagation shows
that its quasi-satellite state remains very stable, with a
geocentric distance oscillating in the range 0.1–0.3 au (outside
Earth’s Hill radius 0.01 au). Long-term simulations show that
its orbit periodically switches between horseshoe and quasi-
satellite configurations, and its current orbit state began about
100 yr ago and will transition back to the horseshoe orbit in
roughly 300 yr (De la Fuente Marcos & De la Fuente
Marcos 2016; Sharkey et al. 2021). Kamo‘oalewa is a good
target for low-cost in situ study (Heiligers et al. 2019; Venigalla
et al. 2019) owing to its peculiar orbit relative to Earth. In
addition, the China National Space Administration (CNSA)
will launch a sample-return mission to this asteroid around
2025 (Chi et al. 2018; Huang et al. 2020; Zhang et al.
2021a, 2021b), which will be the second mission of China to
closely rendezvous a near-Earth asteroid (Huang et al. 2013).
Numerical simulations with ground-based and onboard radio-
metric tracking data were performed to estimate the GM value,
which is a major challenge owing to the tiny mass of the
asteroid (Jin et al. 2020; Yan et al. 2022).

The Astronomical Journal, 166:178 (12pp), 2023 October https://doi.org/10.3847/1538-3881/acf8cc
© 2023. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0003-2304-3575
https://orcid.org/0000-0003-2304-3575
https://orcid.org/0000-0003-2304-3575
https://orcid.org/0000-0003-4067-3616
https://orcid.org/0000-0003-4067-3616
https://orcid.org/0000-0003-4067-3616
https://orcid.org/0000-0002-9260-1537
https://orcid.org/0000-0002-9260-1537
https://orcid.org/0000-0002-9260-1537
mailto:hushoucun@pmo.ac.cn
mailto:hushoucun@pmo.ac.cn
mailto:hushoucun@pmo.ac.cn
mailto:jijh@pmo.ac.cn
mailto:jijh@pmo.ac.cn
mailto:jijh@pmo.ac.cn
http://astrothesaurus.org/uat/72
http://astrothesaurus.org/uat/2210
https://doi.org/10.3847/1538-3881/acf8cc
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/acf8cc&domain=pdf&date_stamp=2023-09-29
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/acf8cc&domain=pdf&date_stamp=2023-09-29
http://creativecommons.org/licenses/by/4.0/


The Yarkovsky effect is a radiation recoil force acting on
rotating asteroids caused by anisotropic thermal emission of
absorbed sunlight (Vokrouhlickỳ et al. 2000), which plays a
fundamental role as a nongravitational force in the orbital
evolution of near-Earth asteroids, especially for smaller objects
(Bottke et al. 2002; Morbidelli & Vokrouhlickỳ 2003; Bottke
et al. 2006). The transverse component of Yarkovsky
acceleration gives rise to a typically slow variation in the
semimajor axis, as well as a long-term drift in the mean
anomaly (Farinella et al. 1998). Long-term dynamical simula-
tions that included the Yarkovsky effect suggest that the
mechanism can cause an earlier removal of the asteroid from
current co-orbital configuration than that of a gravity-only
model does (Fenucci & Novaković 2021).

The Yarkovsky acceleration can vary as a function of mass,
spin state, and surface thermal properties (Vokrouhlickỳ 1999).
Direct calculation of the force by thermophysical modeling is
usually unrealistic owing to the unknown parameters for a vast
majority of near-Earth asteroids. The effect for a 1 km sized
object generally results in a subtle drift of ∼10−3 au Myr−1 in
the semimajor axis, with a related magnitude of acceleration
close to the order of gravitational perturbation from the main
belt (Nugent et al. 2012). If accurate radar observations are
available or optical observations cover a long arc, this effect
can be detected from orbital fitting (Nugent et al. 2012;

Farnocchia et al. 2013; Deo & Kushvah 2017; Greenberg et al.
2017; Del Vigna et al. 2018; Liu et al. 2022). Greenberg et al.
(2020) presented the detection of the Yarkovsky effect for 247
near-Earth asteroids with optical and radar astrometry, and
high-precision observations will reveal substantial detections
(Chesley et al. 2016; Desmars 2015; Dziadura et al. 2022). If
the shape, diameter, and spin state of the asteroid are measured
from mid-IR observations, the bulk density and even the
thermophysical properties such as thermal inertia may be
further unveiled by the Yarkovsky drift (Chesley et al. 2003;
Rozitis & Green 2011; Rozitis et al. 2013; Chesley et al. 2014;
Rozitis & Green 2014; Hanuš et al. 2018; Jiang et al. 2019;
Fenucci et al. 2021).
Recently, Liu et al. (2022) presented the Yarkovsky

detection for Kamo‘oalewa using a modified open-source
software. Here we aim to perform a comprehensive study of the
Yarkovsky detection and understand orbital uncertainty
propagation characteristics for Kamo‘oalewa. In addition, we
employ our developed orbital determination package that
adopts a slightly more conservative consideration of the
weighting scheme to conduct orbital fitting, resulting in a
weak detection of Yarkovsky drift of the asteroid. Based on a
series of orbital determination simulations, we further show
that Kamo‘oalewa’s peculiar quasi-satellite orbit makes it
difficult to detect the Yarkovsky effect with ground-based

Figure 1. The top panels show the geocentric orbit of Kamo‘oalewa in the mean ecliptic reference frame of J2000.0 and the Sun–Earth rotating frame, respectively
(both are projected from the direction of the north ecliptic pole). The bottom panels show the variations in the geocentric distance and apparent magnitude,
respectively. The time span ranges from 2004 to 2022. The red circles mark up the observation epochs, while the green circles represent Earth’s Hill sphere.

2

The Astronomical Journal, 166:178 (12pp), 2023 October Hu et al.



optical observations. We then study the characteristics of the
orbital uncertainty in the next few years to provide information
for the Tianwen-2 mission. Furthermore, we find that the
uncertainty propagation of Kamo‘oalewa in the quasi-satellite
regime can be constrained by the quasi-satellite resonance with
Earth, which is an interesting feature for such a stable quasi-
satellite.

The paper is structured as follows. Section 2 describes the
adopted observations for orbital fitting, along with the
dynamical model and detection method of the Yarkovsky
effect. In Section 3, we show the orbital behavior of
Kamo‘oalewa involved in the Yarkovsky effect and derive a
weak detection of the Yarkovsky effect from the fitting. In
Section 4, we explore the characteristics of orbital uncertainty
with given orbital solutions and carry out a secular invest-
igation in the quasi-satellite regime. Finally, we summarize the
main results in Section 5.

2. Observations and Models

2.1. Ground-based Optical Astrometry

Considering the small size and relatively large geocentric
distance (ΔrE) of Kamo‘oalewa, ground-based radar observa-
tions are unavailable. However, its stable orbit with respect to
Earth allows it to have a good observational window around
April once a year. As of 2022 November 1, 310 measurements
of R.A. and decl. spanning from 2004 March 17 to 2021 May
13 were released from 10 different observatories at MPC,
among which the observations by station T12 (University of
Hawaii 2.24 m telescope, Maunakea) contribute a large portion
of 70%. Figure 1 shows the orbit in the geocentric ecliptic
frame, geocentric rotating frame, time evolution of ΔrE, and
apparent magnitude from 2004 to 2022, where the red circles
correspond to the observation epochs (see also De la Fuente
Marcos & De la Fuente Marcos 2016).

2.2. Yarkovsky Modeling

The Yarkovsky effect can be an important source of
uncertainty in the orbit propagation of a near-Earth asteroid
(Chesley et al. 2014). Generally, only the transverse component
of the force needs to be considered in the modeling. The
following simple expression is adopted to quantify the force
(Del Vigna et al. 2018):

F tA
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where r0= 1 au and d is a parameter related to the thermo-
physical properties. Here d= 2 is assumed, though its specific
value has little effect on the orbit since the heliocentric distance
r of Kamo‘oalewa is always around 1 au. Parameter t̂ is a unit
vector pointing to the transverse direction of the orbit, and A2 is
a free parameter, reflecting the strength of the Yarkovsky
acceleration. The mean semimajor axis drift rate can then be
expressed as (Farnocchia et al. 2013)
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where a, e, and n denote the semimajor axis, the eccentricity,
and the mean motion, respectively, and p is the semilatus
rectum a(1− e2).

2.3. Dynamical Model

To detect the Yarkovsky effect, a high-fidelity dynamical
force model is required to compute the orbit. Here the
Newtonian accelerations of the Sun (as well as the relativistic
effect), the eight major planets, the Moon, and the 16 massive
main-belt asteroids are considered (Farnocchia et al. 2013),
using the JPL planetary ephemeris DE440 to calculate the
positions of the planets during the orbital computation (Park
et al. 2021). Since the orbit is limited to around 1 au, the
uncertainty caused by other massive asteroids is negligible at
the current accuracy. In addition, the oblateness perturbation of
the Sun and Earth, as well as the solar radiation pressure, can
also be safely ignored at the current level of observation
accuracy (Liu et al. 2022).

2.4. Method of Yarkovsky Effect Detection

In this work, we perform the orbital fitting with a seven-
dimensional differential correction in both the orbital elements
and A2 simultaneously from the data set (Farnocchia et al.
2013). Here we have developed a software called the Small-
Body ORbit Determination package (SBORD) to perform
orbital determination with ground-based optical astrometry. A
weighted least-squares algorithm is adopted to fit the
astrometric measurements (Milani & Gronchi 2010). The latest
debiasing technique by Eggl et al. (2020) and the weighting
scheme by Vereš et al. (2017) are implemented to process the
data. The outlier rejection scheme adopted is the same as
Greenberg et al. (2020). The Runge–Kutta–Fehlberg (RKF78)
method is used to propagate the orbit of the asteroid
(Fehlberg 1969).
To examine the reliability of SBORD, we perform an orbital

fit for the near-Earth asteroid (499998) 2011 PT with the
observations from 2011 to 2017 given by MPC. Next, we
measure the Yarkovsky drift of A2= (−2.133± 0.296) ×
10−13 au day−2 for 2011 PT (the epoch is 2023 February 25
TDB), which agrees well with the JPL Horizons solution of
A2= (−2.121± 0.301) × 10−13 au day−2 and the NEODyS-2
solution of A2= (−2.241± 0.298) × 10−13 au day−2. As
indicated subsequently, we will compare our gravity-only
solution of Kamo‘oalewa with that of the JPL Horizons system.
The reliability of the Yarkovsky detection depends strongly

on the orbital arc and the quality of the observations. The
signal-to-noise ratio da dt AS N da dt A2 2s s= á ñ =á ñ∣ ∣ ∣ ∣ is
commonly used to estimate the significance (Farnocchia et al.
2013): the detections that satisfy S/N� 3 and S� 2 are
accepted as valid detections (Chesley et al. 2016; Del Vigna
et al. 2018), where

S
da dt

da dt
3

exp
=

á ñ
á ñ

( )

is an indicator parameter used to assess whether the derived
drift 〈da/dt〉 is physically possible and da dt expá ñ is the
expected value that can be estimated by scaling the parameters
of Bennu (Del Vigna et al. 2018).

3. Analysis of Orbital Fit

3.1. Orbital Characteristics

To better understand the detection of the Yarkovsky effect,
the orbital characteristics of Kamo‘oalewa should be
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investigated. As mentioned by Sharkey et al. (2021), the
semimajor axis exhibits periodical oscillations with a longer
period of ∼40 yr owing to the quasi-satellite resonance with
Earth. For a better measurement of the Yarkovsky effect, a
larger orbital drift over time under the influence of the
Yarkovsky effect is preferred.

The two panels in Figure 2 show the time evolution of the
differences in the semimajor axis and the mean longitude
(denoted as Δa and Δλ, respectively) between the Yarkovsky-
included and gravity-only models with the same initial states
from 2000 to 2100 for an assumed value of A2=−1.0× 10−13

au day−2. Two scenarios are considered in Figure 2, where one
includes the full planetary gravitational perturbations (as
described in Section 2.3), whereas the other model considers
all of the perturbation except the gravity of Earth. Figure 2
exhibits that when Earth’s orbital perturbation is excluded, the
drifts in the semimajor axis and the mean longitude caused by
the Yarkovsky effect are shown to vary linearly and
quadratically with time, respectively. Moreover, the difference
of the semimajor axis Δa is in good agreement with that
predicted by the analytical method (Equation (2)). In this
situation, Kamo‘oalewa would not move in the quasi-satellite
orbit but behave like a normal asteroid beyond the mean
motion resonances.

However, for the real scenario considering Earth, we can see
that both the variations of Δa and Δλ are constrained and
oscillate with a longer period of ∼40 yr over time. This
phenomenon can be understood as the motion of Kamo‘oalewa
being actually stably trapped near Earth owing to the quasi-
satellite resonance, and the small perturbation of the Yarkovsky
effect cannot destabilize this state. In fact, Kortenkamp (2013)
showed that the orbit of interplanetary dust particles can be
trapped in the 1:1 co-orbital resonance with Earth when the
influence of the nongravitational effects, including the radiation
pressure, Poynting–Robertson light drag, and solar wind drag,
are considered. Here we show that the influence of the
Yarkovsky effect can have a similar effect in the quasi-satellite
regime.

To better understand the stability of Kamo‘oalewa’s orbit
due to the Yarkovsky effect, a comparison of the variations of
Δλ over 100 yr with five Earth quasi-satellites discovered so
far, i.e., (164207) 2004 GU9, (277810) 2006 FV35, 2013
LX28, 2014 OL339, and 2023 FW13, is illustrated in the left
panel of Figure 3, in which we find that only 2004 GU9 and
2023 FW13 show obvious oscillations similar to Kamo‘oalewa,
while the variation amplitude of Kamo‘oalewa remains
smallest. For the other three cases, however, they still exhibit
remarkable drifts. The dynamical mechanism that caused this
difference will be investigated in the future. This observation
demonstrates that Kamo‘oalewa’s orbit is the most stable one
in terms of the Yarkovsky perturbation among the six quasi-
satellites.
It is noteworthy that this feature of Kamo‘oalewa may hinder

the Yarkovsky detection using ground-based astrometry,
although the situation may be complicated since the detection
S/N depends not only on orbital drift in the heliocentric frame
but also on the observational conditions related to ground-
based stations, such as the distance to the asteroid, the number
of observations, the observational accuracy, etc. Nevertheless,
to analyze this feature quantitatively, we carry out a series of
orbital fitting including the Yarkovsky effect for the six quasi-
satellites using simulated observations.
The values of A2 for all the asteroids are assumed to be

−1.0× 10−13 au day−2 in our simulations. In addition, the
asteroids are observed from the geocentric framework, which
can be a good approximation of a ground-based station owing
to a small parallax (typically less than 1′) relative to the
asteroids. The observational accuracy of the station is assumed
to be 0 3, and constraints from the limit magnitude, asteroid–
Sun angle, and asteroid–Moon angle are not considered. The
simulated astrometric observations are carried out on the
brightest day of the year, with four observations made at 10-
minute intervals for each batch of data. We fix the start
observation time and vary only the end time for each case. The
evolution of the Yarkovsky detection S/N over the observation
time span between 3 and 100 yr is obtained from the orbital fit,
as shown in the right panel of Figure 3, from which we can see

Figure 2. The two panels show the changes in Δa and Δλ for Kamo‘oalewa from 2000 to 2100 with the same initial states. Δa and Δλ are the differences of the
semimajor axis and the mean longitude between the Yarkovsky-included and the gravity-only models. The difference between the blue lines and the red lines is that
the former includes all the planetary gravitational perturbations while the latter includes all of those but Earth. The black dashed line is the Δa computed with the
analytical method (Equation (2)). The value of A2 in these figures is assumed to be −1.0 × 10−13 au day−2.
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that the S/N increases with time as expected. However, the
change rate for Kamo‘oalewa (as well as 2004 GU9) is much
smaller than those of the other asteroids, which clearly
demonstrates that the peculiar orbital characteristics of
Kamo‘oalewa lead to a reduced Yarkovsky detection S/N.

3.2. Results of Orbital Fit

Although we have demonstrated that the orbital drift induced
by the Yarkovsky effect for Kamo‘oalewa is alleviated by
strong gravitational perturbation of Earth, it is still possible to
obtain a valid Yarkovsky detection if the observations are
qualified, as shown by the simulations in Figure 3. By
implementing the latest debiasing technique of Eggl et al.
(2020) in the open-source OrbFit 5.0.7 package (http://adams.
dm.unipi.it/orbfit/; Consortium et al. 2011) and using the
weighting scheme of Vereš et al. (2017), Liu et al. (2022)

derived A2= (−1.434± 0.410)× 10−13 au day−2 for
Kamo‘oalewa, whose S/N is greater than the threshold of 3.
Here we also conduct the seven-dimensional correction with
the same observations with our SBORD package and detect
A2= (−1.470± 0.400)× 10−13 au day−2, with a variation of
less than 3% in the nominal value, as shown in Table 1 (where
the solution is denoted as S7*). The difference between two
results is marginal, which may be caused by the implementa-
tion of the force models, the propagators and the settings in the
convergence schemes involved, etc.
Among the observations, however, a pair of precoveries

released by the Apache Point–Sloan Digital Sky Survey
(SDSS) on 2004 March 17 should be carefully examined.
These data significantly extend the observational arc length
from ∼11 to ∼18 yr, which may give rise to an inordinate
estimation on the Yarkovsky effect, as explained by Chesley

Figure 3. The left panel shows the variations ofΔλ for the six Earth quasi-satellites over 100 yr with the same initial states. The right panel shows the evolution of the
Yarkovsky detection S/N with different observational time spans with simulated optical astrometry for the quasi-satellites. The initial epochs are set to 1950 January 1
for 2013 LX28 and 2000 January 1 for the other five asteroids, to ensure that the 100 yr time spans are within the quasi-satellite periods. The black dashed lines denote
those results for Kamo‘oalewa without considering the gravity of Earth. Here A2 is assumed to be −1.0 × 10−13 au day−2.

Table 1
Yarkovsky-included Solutions and the 1σ Uncertainties at 2023 February. 25 00:00:00 TDB in the J2000 Ecliptic System

Para. This Work (S7*) This Work (S7) Unit

Semimajor axis (a) 1.001007386 ± 1.5 × 10−8 1.001007397 ± 1.6 × 10−8 au
Eccentricity (e) 0.102825645 ± 3.9 × 10−7 0.102825664 ± 3.9 × 10−7 L
Inclination (i) 7.79201870 ± 2.7 × 10−5 7.79202059 ± 2.7 × 10−5 deg
Longitude of ascending node (Ω) 65.90561406 ± 2.1 × 10−5 65.90561102 ± 2.1 × 10−5 deg
Argument of perihelion (ω) 305.35162823 ± 2.6 × 10−5 305.35162629 ± 2.6 × 10−5 deg
Mean anomaly (M) 141.14310070 ± 3.6 × 10−5 141.14308147 ± 3.7 × 10−5 deg
Position (x) −150252517.8 ± 35.6 −150252498.2 ± 37.6 km
Position (y) 57277763.1 ± 23.0 57277816.5 ± 36.9 km
Position (z) 21969115.7 ± 81.6 21969121.6 ± 81.8 km
Velocity (vx) −11.2749657 ± 4.6 × 10−6 −11.2749753 ± 6.9 × 10−6 km s−1

Velocity (vy) −24.9419584 ± 1.1 × 10−5 −24.9419539 ± 1.1 × 10−5 km s−1

Velocity (vz) 0.0150928 ± 8.1 × 10−7 0.0150941 ± 1.1 × 10−6 km s−1

A2 −1.470 ± 0.400 −1.075 ± 0.447 10−13 au day−2

〈da/dt〉 −63.06 ± 17.15 −46.10 ± 19.18 10−4 au Myr−1

Note. The orbital solutions are initially determined in the middle epoch of the observation arc and then propagated to near the current epoch.
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et al. (2016). Here we can obtain the two source images at the
observation epochs from the SDSS archive server,4 as shown in
Figure 4. The inferred positions of Kamo‘oalewa are circled in
red, from which we can observe that the S/N of the left image
may not be sufficient for precise targeting. The reason is that
the apparent magnitude of Kamo‘oalewa when observed by
SDSS was ∼22.8, which is close to the limit of the SDSS
facility (Raymond et al. 2004). Since the astrometric quality
depends significantly on the brightness of a target (Vereš et al.
2017) and a moving object has to be detected from at least two
valid images, we propose to reject the data pair from the orbital
fit out of a conservative rule.

Actually, we have two more points to support this treatment.
First, we can perform the orbital fit using the data without the
SDSS observations (the solution S7 in Table 1, as will be
discussed in the following) and propagate the orbit to compute
the R.A./decl. at the time of the SDSS observations. The
resulting O–C is 0 23 and 0 24 for R.A. and −0 78 and
−0 97 for decl., respectively. Although the predictions for R.
A. are satisfactory, it is noteworthy that the differences in decl.
reach up to 2.6 and 3.2 standard deviations (the weight for
SDSS is 0 3). Second, we need to use the star catalog flag
(located in the 72nd character of the MPC 80-column
observation) to estimate debiasing. However, the two SDSS
observational data sets do not contain the flag information,
making it impossible for us to conduct the debiasing, which
increases the uncertainty of the observations. Anyhow, the
rejection treatment will increase the orbital uncertainty
estimate, but it is still worth considering, since having some
margin in the ephemeris is usually a good idea for a space
mission.

Under the consideration above on the data quality, the
solution is recomputed and denoted as S7 in Table 1, which
gives A2= (−1.075± 0.447)× 10−13 au day−2, or

equivalently 〈da/dt〉= (−46.10± 19.18)× 10−4 au Myr−1.
The corresponding S/N is 2.4, slightly below the threshold
of 2.5 for a weak detection. However, we conservatively accept
this result as a weak detection, as the weights for the data are
typically not that precise and a gravity-only solution may
underestimate the orbital uncertainty if the Yarkovsky effect is
ignored. Figure 5 shows the respective probability density
distributions of A2 for the solutions S7 and S7*, from which we
can see that S7 has a slightly lower estimate for the Yarkovsky
drift than that of S7*, as well as a slightly larger uncertainty.
Nevertheless, the result still indicates that A2 is likely negative,
suggesting that Kamo‘oalewa is probably a retrograde rotator,
which is consistent with that of Liu et al. (2022).

Figure 4. The two images of Kamo‘oalewa (inside the red circles) observed by SDSS. The left was observed at 11:16:48.5 and the right at 11:21:35.1 UTC on 2004
March 17.

Figure 5. The probability density distributions of A2 for the solutions S7
and S7*.

4 https://dr12.sdss.org/
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Note that the JPL Horizons online ephemeris system only
presents a gravity-only solution (with a six-dimensional fit) for
Kamo‘oalewa (SJ

6), which is listed in Table 2. Using the above
conservative rejection scheme, we can also compute a gravity-
only solution, which is displayed in Table 2 (S6). Note that the
difference in the nominal position between SJ

6 and S6 is only
∼6 km, much smaller than the 1σ uncertainty. However, if the
SDSS data are included, the solution (denoted as S6*) has a
much larger positional difference of ∼145 km with SJ

6 . These
comparisons imply that the JPL solution may have de-weighted
the SDSS data, which lends support to our conservative
consideration on the data quality to some extent.5

Figure 6 presents the histograms of normalized O–C
residuals for the solution S6 and S7, from which we note that
the distributions of the residuals are more concentrated around
the zero-point when the Yarkovsky effect is introduced. In fact,
the normalized χ2 is 0.38752 and 0.36985 for S6 and S7,
respectively. Therefore, the latter is a better fit. In the following

discussions we will analyze the orbital uncertainty based on the
solution S7.

4. Analysis of Orbital Uncertainty

4.1. Orbital Uncertainty in Different Frames

The orbital uncertainty at the initial epoch t0 can be obtained
from the covariance matrix P t0( ), which is solved together with
the orbit determination procedure. According to the linear
covariance propagation theory, the covariance matrix P(t) at
time t is given by

P t t t P t t t

t t

, ,

,
, 4

T

X t

X t

0 0 0

0
0

= F F

F = ¶
¶

⎧
⎨
⎩

( ) ( ) ( ) ( )
( )

( )( )
( )

in which X is the seven-dimensional vector X= [Z, A2] (Z
represents the orbital parameters, which can be the Cartesian
positions and velocities or the orbital elements). t t, 0F( ) is the
7× 7 state transition matrix (STM) that is derived numerically
by integrating the variational equations (Montenbruck et al.
2002; Milani & Gronchi 2010). If the Cartesian coordinates are
used, we can transform the covariance matrix P(t) to another

Table 2
Comparisons of Gravity-only Solutions with JPL Horizons at 2023 February 25 00:00:00 TDB in the J2000 Ecliptic System

Para. JPL (S6
J ) This Work (S6) This Work (S6*) Unit

a 1.001007435 ± 3.5 × 10−9 1.001007435 ± 2.8 × 10−9 1.001007441 ± 2.1 × 10−9 au
e 0.102826447 ± 2.4 × 10−7 0.102826443 ± 2.1 × 10−7 0.102826990 ± 1.2 × 10−7 −
i 7.79207609 ± 1.7 × 10−5 7.79207538 ± 1.4 × 10−5 7.79211288 ± 8.3 × 10−6 deg
Ω 65.90557126 ± 1.5 × 10−5 65.90557112 ± 1.3 × 10−5 65.90554701 ± 1.0 × 10−5 deg
ω 305.35166689 ± 2.3 × 10−5 305.35166430 ± 2.1 × 10−5 305.35169827 ± 1.8 × 10−5 deg
M 141.14300832 ± 2.3 × 10−5 141.14300950 ± 2.1 × 10−5 141.14299347 ± 2.1 × 10−5 deg
x −150252552.0 ± 35.2 −150252550.1 ± 30.8 −150252628.9 ± 18.7 km
y 57277879.8 ± 26.2 57277885.1 ± 23.2 57277827.2 ± 14.7 km
z 21969289.4 ± 51.1 21969287.4 ± 43.3 21969400.6 ± 25.0 km
vx −11.2749878 ± 4.5 × 10−6 −11.2749886 ± 4.0 × 10−6 −11.2749792 ± 2.8 × 10−6 km s−1

vy −24.9419298 ± 4.5 × 10−6 −24.9419295 ± 3.7 × 10−6 −24.9419201 ± 2.2 × 10−6 km s−1

vz 0.0150945 ± 1.2 × 10−6 0.0150946 ± 1.0 × 10−6 0.0150925 ± 8.0 × 10−7 km s−1

Figure 6. Histograms of normalized O–C residuals of R.A. (α) and decl. (δ) for the solutions S6 and S7.

5 We note that the estimated uncertainties for the JPL solution are slightly
larger than ours (the reason is unknown). However, these differences are not
significant given the uncertainty in the accuracy of the observations.
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reference system by

P t B P t B , 5T¢ =( ) · ( ) ( )

in which P t¢( ) is the covariance in the new reference and B is
the rotation matrix between the two references. Note that the
covariance remains unchanged if we apply a translation to an
inertial frame.

Figure 7 shows the time evolution of the uncertainty in the
orbital elements from 2010 to 2030 for our solution S7, from
which we can see that σa, σe, and σi are relatively smaller
compared to the results of the other angular elements σΩ, σω,
and σλ, and σλ is generally the maximum one among the six.
We find that σλ reaches a minimum value in ∼2018 and then
gradually increases superlinearly with time, which is attributed
to the uncertainty in the Yarkovsky effect.

In addition, Figure 8 shows the time evolution of the
positional uncertainty (1σ) for Kamo‘oalewa. The results in the
four panels are the uncertainty of the Cartesian coordinates in
the heliocentric frame, the RTN uncertainty in the heliocentric
frame, the RTN uncertainty in the geocentric frame, and the
Cartesian uncertainty in the geocentric rotating frame,
respectively. We can see that all the results exhibit complicated
cyclic changes with time, except that the uncertainty from 2010
to 2020 is generally smaller than that from 2020 to 2030, which
can be explained by the fact that the orbit is constrained by the
astrometry from 2010 to 2019 (the constraint by the
observations in 2021 is weak owing to a relatively lower
accuracy estimation).

According to the results in the two middle panels, we can see
that the uncertainty from 2010 to 2020 is mainly concentrated
along the radial direction of the orbit in the geocentric frame.
This is because ground-based optical astrometry can provide a
better constraint on the orbit along the geocentric transverse
and normal directions, while the constraint for the radial
direction is weaker. However, the uncertainty from 2020 to
2030 is more suitable for description in the heliocentric frame,
where the transverse uncertainty gradually increases to a
maximum of ∼370 km in 2030 while the radial and normal
components remain within ∼80 km.

Moreover, monthly dependencies in the uncertainty can be
observed from the oscillations in Figure 8. To better illustrate
this phenomenon, Figure 9 shows the evolution in the

heliocentric RTN directions, with the month as the horizontal
axis. The results clearly demonstrate the oscillations of the
uncertainties within a year. However, due to the complicated
orbital evolution relative to Earth, the month at the maximum
amplitude shifts slowly with the year. For the period
2025–2027, which is more important for the mission, the
uncertainty reaches a minimum in around January and a
maximum in around July. As seen in the top right panel of
Figure 1, the orbit of Kamo‘oalewa moves approximately
toward the leading and trailing edges in January and July,
respectively. The normal component always reaches a mini-
mum around late May (or early June) or mid-November, which
occurs when the orbit is moving around the ascending/
descending nodes, or crossing the ecliptic.

4.2. Uncertainty Propagation in the Quasi-satellite Regime

The previous subsection only analyzes the uncertainty
propagation for a few years. However, due to the peculiar
orbital configuration of Kamo‘oalewa, it will be helpful to
improve the knowledge of the orbit propagation by investigat-
ing the uncertainty in the quasi-satellite regime for a longer
period of time.
From Equation (4), the covariance matrix depends strongly

on the STM, which is solved together with the orbit
propagation. Similar to the study in Section 2.4, here we
consider two force models to compute the STM in addition to
the Yarkovsky force, where one takes into account the full
planetary gravitational perturbations and the other includes
those except Earth. Figure 10 shows the uncertainties of the
semimajor axis, eccentricity, inclination, and mean longitude,
respectively, for the two models, in which the initial
covariances are taken from the solution S7. The time range is
from 2000 to 2200, well within the quasi-satellite period.
The results demonstrate that the along-track uncertainty σλ is

undoubtedly the most significant component for both models.
However, the evolution differs significantly between them: for
the full model, σλ undergoes complex oscillatory changes with
increasing amplitudes over time, while for the model without
Earth the values increase quadratically at much faster rates. The
difference in σλ between both can be as large as 40 times
in 2200.

Figure 7. Time evolution of uncertainty in the orbital elements from 2010 to 2030 for the solution S7.
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The propagation of σλ is mainly governed by the terms t

a0

l¶
¶

( )

and t

A2

l¶
¶

( ) in the STM, which correspond to the uncertainties in

the initial semimajor axis and the Yarkovsky effect, respec-
tively. Figure 11 shows the time evolution of the two partial
derivatives for the two models. We find that the magnitudes of
the variations in t

A2

l¶
¶

( ) are significantly larger than that of t

a0

l¶
¶

( )

for both models, indicating that the uncertainty caused by the
Yarkovsky effect is much larger than that of the uncertainty in
the initial semimajor axis for this propagation of 200 yr.
Therefore, we will focus on the evolution of t

A2

l¶
¶

( ) in the
following.
As expected, for the model without Earth, t

A2

l¶
¶

( ) propagates
quadratically with time. For the full model, however, the
evolution oscillates over a period of about 40 yr, with the
amplitude increasing slowly with time. This very different
mode of change explains the remarkable difference in the
evolution of σλ. Note that Kamo‘oalewa would not behave as a
quasi-satellite when the perturbation of Earth is excluded. This
phenomenon indicates that the propagation of the orbital
uncertainty under the Yarkovsky effect is strongly constrained,
which facilitates the orbital prediction throughout the quasi-
satellite period.
To understand the oscillatory variation in σλ for the full

model, we use the following forward difference method to

Figure 8. Variations of the positional uncertainty from 2010 to 2030 for the solution S7 in different frames. The top two panels show the changes in the heliocentric
frame for the Cartesian and RTN coordinates, respectively. The third panel shows the results for the RTN directions in the geocentric frame, and the bottom panel
shows the results for the Cartesian coordinates in the geocentric Sun–Earth rotating frame.

Figure 9. Plots of the positional uncertainties for the solution S7 from 2010 to
2030 in the heliocentric RTN directions, in which the horizontal axis is taken as
the month and the color gradient from dark to light indicates the evolution of
the year. The dashed line arrow shows the evolution direction for σT.
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approximately calculate the partial derivative:

t

A

Z A h Z A

h

, ,
, 6

2

2 2l l l¶
¶

»
+ -( ) ( ) ( ) ( )

in which h is a small quantity. Since A2 is also very small, we
can safely substitute h with −A2, and then we have

t

A

Z Z A

A A

, 0 ,
, 7

2

2

2 2

l l l l¶
¶

»
-
-

=
D( ) ( ) ( ) ( )

in which Δλ is the difference in the mean longitude between
the Yarkovsky-included and gravity-only model, a typical
example of which can be seen in Figure 2. This feature
indicates that the evolution of the along-track uncertainty σλ
under the influence of the Yarkovsky effect is consistent with
the evolution of Δλ, which is governed by the quasi-satellite
resonance with Earth, as explained in Section 3.1.

5. Summary and Conclusions

469219 Kamo‘oalewa is a small near-Earth asteroid, which
is currently known as the most stable quasi-satellite of Earth. In
addition, this asteroid is the sample-return target of the Chinese
Tianwen-2 mission scheduled for launch in 2025. To facilitate
the mission, precise orbit determination is important to ensure a
successful rendezvous with the object. However, the small size
of Kamo‘oalewa may correspond to a remarkable Yarkovsky
acceleration. This is usually the most important nongravita-
tional force that can affect the orbital precision and may be
detected from the orbital fit. Considering that additional
observations may not be available prior to the launch (the
apparent magnitude of the observation window at the brightest
time is dimming in the next few years), the uncertainty estimate
for the next few years including the Yarkovsky effect is
needed. In addition, due to the peculiar quasi-satellite orbit, the
uncertainty characteristics in the quasi-satellite regime are
analyzed, which provides more insights into the orbit
propagation of Kamo‘oalewa.

Figure 10. The panels show the uncertainty in the semimajor axis, eccentricity, inclination, and mean longitude, respectively, from 2000 to 2200. The results in blue
are computed using the full planetary gravitational perturbation model, and the red ones exclude the Earth perturbation.
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In this work, we first show numerically that the Yarkovsky
effect can cause a periodic change in Kamo‘oalewa’s
semimajor axis owing to its particular quasi-satellite resonance
with Earth, rather than a normal secular drift for a general
asteroid. This feature can reduce the sensitivity of the orbital
drift to the influence of the Yarkovsky effect, to some extent
making it more difficult to detect the drift from the orbital
fitting, as demonstrated by the comparisons of S/N over
observational arc among the six Earth quasi-satellites dis-
covered so far (Figure 3).

Nevertheless, we still find a weak detection of the Yarkovsky
effect using the ground-based optical observations spanning
from 2011 to 2021 (the precoveries by SDSS in 2004 are
rejected owing to the poor quality), giving
A2= (−1.075± 0.447)× 10−13 au day−2, with a slightly lower
significance in the detection S/N than that of Liu et al. (2022).
Here we take a relatively conservative approach and reject a
pair of pre-recovery SDSS observations to avoid overestimat-
ing the drift, which is supported by the possible lower S/N in
one of the source images.

Based on our derived solution including the Yarkovsky
effect, the orbital uncertainty propagation of Kamo‘oalewa is
extensively studied. We find that the positional uncertainty
comes mainly from the radial direction for the geocentric orbit
in 2010–2020 and is concentrated in the transverse direction for
the heliocentric orbit in 2020–2030. The variation of the
uncertainty within a year is clearly related to the month owing
to the peculiar orbit configuration. The heliocentric transverse
uncertainty is minimized around January and maximized
around July in 2025–2027, corresponding to the period when
the orbit moves toward the leading and trailing edges,
respectively.

Finally, we further investigate a long-term uncertainty
propagation in the quasi-satellite regime. We show that the
along-track uncertainty with the Yarkovsky effect can be
significantly constrained during this period, rather than a
general rapid quadratic propagation. This feature indicates that
the orbit precision of this asteroid is relatively stable even when
the uncertainty of the Yarkovsky effect is considered.

Note that the above conclusions about the orbital uncertainty
in the next few years are based on the ground-based optical
observations from 2011 to 2021. Since the T12 station accounts
for most of the observations, the treatment of the weighting will
lead to a various solution. In particular, since the uncertainties
have been inflated by a N factor to mitigate possible effects of
unresolved systematics (Vereš et al. 2017), this artificial
treatment will also add more uncertainties in the weight and
then finally affect the solution. With the addition of spacecraft-
based radio and optical observations during the rendezvous, the
uncertainty in the Yarkovsky detection and orbital precision is
likely to be significantly improved.
Nevertheless, the uncertainty analysis procedures proposed

here remain valid. Moreover, since the behavior of orbital
variations under the influence of the Yarkovsky effect is an
intrinsic orbital property of Kamo‘oalewa, the uncertainty
propagation for a longer period of time in the quasi-satellite
regime is still constrained, and even the orbital solution would
be improved in the future. This feature may also apply to other
quasi-satellites (e.g., 2004 GU9 and 2023 FW13), which will
be explored in a forthcoming study.
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