
Citation: Torregrosa, S.; Muñoz, D.;

Herbert, V.; Chinesta, F. Parametric

Metamodeling Based on Optimal

Transport Applied to Uncertainty

Evaluation. Technologies 2024, 12, 20.

https://doi.org/10.3390/

technologies12020020

Academic Editor: Yiqi Liu

Received: 20 November 2023

Revised: 18 January 2024

Accepted: 22 January 2024

Published: 2 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

technologies

Article

Parametric Metamodeling Based on Optimal Transport Applied
to Uncertainty Evaluation
Sergio Torregrosa 1,2,* , David Muñoz 1, Vincent Herbert 2 and Francisco Chinesta 1

1 PIMM Laboratory, Arts et Métiers Institute of Technology, 151 Boulevard de l’Hopital, 75013 Paris, France;
david.munoz_pellicer@ensam.eu (D.M.); francisco.chinesta@ensam.eu (F.C.)

2 STELLANTIS, 10 Boulevard de l’Europe, 78300 Poissy, France; vincent.herbert@stellantis.com
* Correspondence: sergio.torregrosa@stellantis.com

Abstract: When training a parametric surrogate to represent a real-world complex system in real
time, there is a common assumption that the values of the parameters defining the system are known
with absolute confidence. Consequently, during the training process, our focus is directed exclusively
towards optimizing the accuracy of the surrogate’s output. However, real physics is characterized
by increased complexity and unpredictability. Notably, a certain degree of uncertainty may exist in
determining the system’s parameters. Therefore, in this paper, we account for the propagation of these
uncertainties through the surrogate using a standard Monte Carlo methodology. Subsequently, we
propose a novel regression technique based on optimal transport to infer the impact of the uncertainty
of the surrogate’s input on its output precision in real time. The OT-based regression allows for the
inference of fields emulating physical reality more accurately than classical regression techniques,
including advanced ones.

Keywords: uncertainty quantification; Monte Carlo; artificial intelligence; parametric metamodeling

1. Introduction

In any scientific domain, a system can be subjected to various sources of uncertainties,
whether aleatoric, resulting from the inherent randomness of reality, or epistemic, arising
from a lack of knowledge. In this context, uncertainty quantification (UQ) can be defined as
the end-to-end study of the reliability of science inference [1]. This entails an examination of
the relationship between approximate pieces of information regarding reality or, in simpler
terms, the sensitivity of the analysis output to variations in the governing assumptions.
UQ analyzes uncertainties within mathematical models, simulations, and data, quantifying
how they propagate from input variables to the distribution of the final output in a system
or model. It aims to assess the reliability of predictions and consider the impacts of
variability and randomness in models. Consequently, UQ is playing an increasingly critical
role in various tasks, including sensitivity analysis, design with uncertainty, reliability
analysis, risk evaluation, and decision-making, becoming an indispensable tool across
diverse engineering fields [2].

Today, the development of a vast majority of fields relies on predictions derived
from data-driven models. Indeed, in the late 20th century, models based on data gained
widespread development. These metamodels, also identified as parametric surrogates,
serve as representations of real-world systems with all the complexity, ensuring real-
time constraints without necessitating insights into the actual physics of the asset [3–8].
Consequently, they facilitate real-time monitoring and control of the most pertinent physical
quantities of the system, enabling intelligent decision-making and optimization.

Real-time surrogates are of significant interest in both industrial applications and
research. These tools, employing regression techniques, enable the exploration of the
parametric space of a problem in an online manner, eliminating the need for expensive
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and time-consuming numerical or experimental evaluations. However, they also present
certain challenges and considerations. First, they need an offline training stage, which can
be time-consuming, along with a training data set whose quality is crucial for the accuracy
of the trained surrogate. Additionally, the choice of the surrogate’s architecture plays
a fundamental role in achieving precise predictions and ensuring the tool’s operational
efficiency, particularly in cases with limited computing power. Lastly, with the increasing
complexity of the surrogates’ model design, the interpretability and understandability of
the model become essential.

However, modeling a complex system involves the characterization of some inputs
that may carry uncertainties, such as material properties and initial or boundary condi-
tions. Despite the comprehensible and coherent evolution of nature, a level of physical
variability should always be considered, introducing uncertainty into any real process and
its corresponding model. Additionally, data uncertainty may arise during the measurement
of a system’s features, independent of its inherent variability. This uncertainty can be
related to factors such as measurement population sampling, measurement methodology,
or imperfections in the manufacturing process [9]. Therefore, Uncertainty Quantification
(UQ) contributes to a deeper understanding of how models respond to changes in their
input parameters.

Therefore, UQ endeavors to overcome the deterministic aspect inherent in data-driven
modeling. Various statistical, computational, and mathematical methods are employed
for this purpose, enabling the identification of the probabilistic distribution of data and its
propagation through a system’s surrogate [10–15]. Notable methods among them include
Monte Carlo methods [16], Polynomial Chaos Expansion [17,18], and Gaussian Processes
[19].

This paper aims to delve into the propagation of uncertainty in a system through its
data-driven metamodeling. In this context, we investigate how uncertainty in a system’s
parameters propagates through its surrogate model. Therefore, we present a strategy
to quantify the impact of input uncertainty on the precision of the trained parametric
metamodel. When training a surrogate, we focus on maximizing the accuracy of the
quantity of interest (QoI) inferred for a given set of input parameters with respect to its
reference value. Here, we focus on evaluating the precision of the surrogate’s output,
assuming uncertainty in its inputs once it is trained.

Therefore, within a parametric metamodeling framework, we can develop a data-
based model that characterizes the uncertainty associated with the surrogate’s output.
Specifically, for a trained surrogate representing the studied system, we introduce a data-
based model that takes the definition of its input’s uncertainty as an input and provides
a confidence interval (CI) of its output. In this context, certain descriptors of the input’s
uncertainty are assumed to be known. The corresponding output’s uncertainty, represented
by the CI, is computed using a standard Monte Carlo estimator approach.

The novelty presented in this paper lies in the creation of such a data-based model
relying on optimal transport (OT) theory [20]. Leveraging this theory enables us to infer a
CI for a surrogate’s output in real time when provided with an uncertainty descriptor for its
input. This approach accurately emulates physical reality, benefiting from a conceptually
different regression perspective offered by OT theory.

Regression, a foundational mathematical operation extensively applied in engineering,
may yield non-physical results in certain fields, such as fluid dynamics, even with advanced
classical techniques [21]. A smarter approach involves leveraging optimal transport theory,
which offers a fundamentally distinct method for function interpolation, deemed more
physically relevant in various domains. In contrast to conventional Euclidean interpolation,
where a blend of two interpolated functions occurs with one progressively disappearing
while the other appears, OT-based interpolation involves gradual translation and scaling,
as illustrated in Figure 1. This solution is more realistic in fields like fluid dynamics
and computer vision, justifying its widespread use. In this context, optimal transport
quantifies the distance between functions by identifying the most cost-effective way to
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transform all mass units describing one function into the shape of another [22]. However,
the computational cost associated with computing optimal transport presents a challenge.
Despite recent advances in solving it [23,24], the problem remains inaccessible for real-time
applications.

Figure 1. Interpolated function ρ(t) is depicted for different t values, spanning from ρ1 to ρ2, utilizing
the optimal transport approach (Top) and the classic interpolation method ρ(t) = (1− t)ρ1 + tρ2 with
associated spurious effects (Bottom). Notably, when inferring the 2-dimensional solutions between
the fields ρ1 and ρ2, OT provides a solution that can be considered much more realistic in various
fields, such as fluid dynamics. Unlike the conventional Euclidean interpolation, which exhibits a
blend of two interpolated functions with one progressively disappearing while the other appears,
OT-based interpolation involves gradual translation and scaling.

The authors have previously explored such a regression solution, as detailed in a
previous work [25], where it was employed to construct a surrogate for the studied system,
overcoming the real-time accessibility issue. In this current paper, the same optimal
transport regression technique is employed to model the confidence interval of the trained
surrogate’s output, given descriptors of the input’s uncertainty. Therefore, we leverage the
previously developed regression tool to establish an optimal transport-based parametric
metamodel for this CI, with the parameters representing the descriptors of the input’s
uncertainty.

In this article, we first introduce the uncertainty propagation methodology. Then,
we present the key concepts of optimal transport theory along with the main steps of the
OT-based regression methodology. Finally, we study some examples from various domains,
including fluid and solid dynamics.

2. Uncertainty Propagation through Parametric Surrogate

In this section, we study the uncertainty propagation of a parameter of the studied
system through the corresponding system’s surrogate. For this purpose, we introduce a
system parameterized by d features denoted as p = (p1, . . . , pd) ∈ Rd. For such a system,
we suppose the existence of a trained surrogate g, taking the d parameters as input and
returning the QoI in real time:

g :Rd → Ω

p → Q(p).
(1)

where Q(p) denotes any QoI associated with the system characterized by p within its
corresponding space Ω. To train this surrogate during an offline phase, a Design of
Experiment (DoE) is established based on the system’s parameters, and the corresponding
system’s responses are compiled in a training database. These responses may be obtained
through numerical simulations or experimental measurements.

The surrogate is subsequently trained employing Machine Learning and Model Order
Reduction techniques [26–31]. It is important to emphasize that during the surrogate
training process, we assume precise knowledge of the values of each feature in p. This
assumption enables the collection of the corresponding quantity of interest for the parame-
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ters’ samples within the DoE. Consequently, once it is trained, the surrogate can efficiently
infer the quantity of interest Q(p) associated with any possible value of p in real time.

We now introduce uncertainty into the features p of the system. Specifically, we
suppose that each parameter pk, k ∈ JdK, follows a normal distribution with mean µk and
variance σ2

k , denoted as pk ∼ N (µk, , σ2
k ). Assuming all pk are independent:

p ∼ N (µ, Σ), µ = (µk)
d
k=1, Σ = diag(σ), σ =

(
σ2

k

)d

k=1
. (2)

The objective at this stage is to relate the descriptors defining the uncertainty of
the features and the uncertainty associated with the quantity of interest Q(p). This can
be understood as learning estimators for the average M and variance Σ of the quantity
of interest, given any choice of µ and σ. This relationship is established through two
parametric data-based models, respectively:

SM : (µ, σ) → M̄Q(p)

SΣ : (µ, σ) → Σ̄Q(p),
(3)

where M̄Q(p) and Σ̄Q(p) are the estimators of the average and variance of the quantity of
interest, respectively.

To train these data-based models, a training data set comprising Ns points is required:{(
µj, σj

)
,
(

M̄Q(pj)
, Σ̄Q(pj)

)}Ns

j=1
, (4)

which can be generated through a Monte Carlo sampling strategy. It is important to note
that the architecture of these parametric data-based models follows the OT-based regression
technique developed by the authors [25], which is further presented in detail later in this
paper.

After training the OT-based models, it becomes possible to infer a real-time confidence
interval for the surrogate’s output Q(p) concerning new uncertainty descriptors for the
system parameters. This involves a new parameter set denoted as (µ∗, σ∗) corresponding
to p∗.

g(p∗) ∈
[

M̄Q(p∗) − α
√

Σ̄Q(p∗), M̄Q(p∗) + α
√

Σ̄Q(p∗)

]
, (5)

The coefficient α follows a Student’s t distribution. Its choice depends on the desired
confidence level: a higher value of the coefficient corresponds to a greater desired confi-
dence level, indicating a reduced risk of inaccuracies in predictions assumed. A commonly
adopted choice across various fields is α = 1.96 for a confidence level of 95%.

The procedure for training the data-based models of the estimators is outlined in
Algorithm 1. It is noteworthy that the surrogate of the system is called multiple times,
underscoring the necessity for a surrogate that is accessible in real time. Moreover, note
that the accuracy error of the system’s surrogate is not considered. Indeed, we assume that
this error is small in absolute terms and in comparison with the variability introduced by
the Monte Carlo sampling in the system’s output.



Technologies 2024, 12, 20 5 of 24

Algorithm 1 Estimators Data-based Models Based on Monte Carlo Sampling

1: Input:
2: System surrogate g(p) = Q(p);
3: Number of training points Ns for the estimators’ surrogates SM and SΣ;
4: Number of Monte Carlo sampling points NMC;
5: Output:
6: Estimators’ surrogates SM and SΣ for the mean and variance of Q(p);
7: for j = 1, . . . , Ns do
8: Randomly sample (e.g., LHS) the descriptors of the uncertainty for the features

(
µj, σj

)
, µj =

(
µj,k

)d

k=1
, σj =

(
σj,k

)d

k=1
.

9: Perform the Monte Carlo sampling:

10: 1. Sample a set of NMC vectors pj =
(

pj,k

)d

k=1
:

pj,k ∼ N (µj,k, σ2
j,k), k ∈ JdK; (6)

11: 2. Generate a set of corresponding NMC quantities of interest
12: by evaluating the system’s surrogate g(p):

g
(

pj,i
)
= Q

(
pj,i
)
, i ∈ JNMCK;

13: 3. Compute the mean and variance of the so-generated set
14: to obtain the corresponding Monte Carlo estimators(

M̄Q(pj)
, Σ̄Q(pj)

)
;

15: end for
16: Train the estimators’ surrogates SM and SΣ with the previously computed data set:

SM : (µ, σ) →
(

M̄Q(p)

)
SΣ : (µ, σ) →

(
Σ̄Q(p)

)
;

(7)

3. Revisiting Optimal Transport

In this section, we introduce the optimal transport framework and present the foun-
dational tools upon which the subsequently developed OT-based parametric surrogate
relies. It is important to note that this section provides a non-exhaustive overview of the
key concepts in optimal transport. For further documentation on this subject, we encourage
interested readers to refer to [32] and its associated references.

In the 18th century, the optimal transport theory was initially explored by Monge [33].
Driven by a military context, he delved into determining the most cost-effective method for
transporting a specified quantity of soil from its source to construction sites. To introduce
the OT-based regression technique, we will constrain the Monge discrete problem within a
2-dimensional convex domain.

First, we present this optimal transport discrete problem by considering the trans-
portation of wheat produced by W wheat fields to F farms, as schematized in Figure 2. The
wheat must be optimally transported, minimizing the defined cost: the distance traveled.
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Figure 2. optimal transport discrete Monge problem between W = 4 wheat fields and F = 3 farms.
Each field produces a certain quantity of wheat: w1 = 3, w2 = 1, w3 = 1 and w4 = 2. Each farm
consumes a certain quantity of wheat: f1 = 4, f2 = 1 and f3 = 2. The minimized cost is the square of
the Euclidian distance.

We consider that each wheat field, indexed by i ∈ JWK (where JWK represents the
set 1, . . . , i, . . . , W) and situated at xi, yields a wheat quantity of wi. Similarly, each farm,
indexed by j ∈ JFK and located at yj, consumes a quantity f j of wheat. Introducing the
concept of measure, the distributions of wheat produced by the fields, denoted as ω, and
consumed by the farms, denoted as γ, can be defined as

ω =
W

∑
i=1

wiδxi andγ =
F

∑
j=1

f jδyj , (8)

where δxi and δyj represent the Dirac measures at positions xi and yj, respectively.
Therefore, the Monge problem involves finding an optimal map T that associates each

location xi with a unique location yj. This map is required to transfer the produced wheat in
the fields ω to the consumed wheat by the farms γ. Since no wheat can be created, destroyed,
or divided during the transportation, this surjective map T : x1, . . . , xW → y1, . . . , yF must
satisfy the mass conservation

∀j ∈ JFK, f j = ∑
i:T(xi)= f j

wi, (9)

Furthermore, this map must minimize the cost function c, defined here as the square
of the Euclidean norm of the distance traveled between the wheat field indexed by i and its
corresponding farm indexed by j:

Cxi ,yj = c
(
xi, yj

)
= ∥xi − yj∥2

2. (10)

Hence, the resulting minimization problem writes:

min
T

 W

∑
i=1

Cxi ,T(xi)
: ∑

i:T(xi)= f j

wi = f j, ∀j ∈ JFK

. (11)

The just presented Monge discrete problem is now simplified by introducing certain
hypotheses for the development of the OT-based parametric surrogate. Indeed, the Monge
minimization problem seeks the most cost-effective way to map the distributions of wheat
produced by the fields and consumed by the farms. Likewise, we aim to find the most
cost-effective way to map our functions. Upon discovering this mapping, we can utilize it
to infer any new solutions between our functions.
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First, we assume an equal number of wheat fields and farms: W = F. Additionally,
we consider that each wheat field produces an identical quantity of wheat, and each farm
consumes the same quantity of wheat, i.e., wi = f j = 1/W. Consequently, the Monge
discrete problem applies now between two discrete distributions featuring an equal number
of points, with uniform weights assigned to each point.

As a result, the mass conservation constraint implies that the sought-after map T be-
comes a bijection, and the corresponding optimal transport minimization problem evolves
into an optimal assignment problem between two 2-dimensional point clouds featuring
the same number of points and uniform weights. Given the cost matrix Cxi ,yj ∈ RW×F,
where W = F, this optimal assignment problem aims to find the bijection T within the set
of permutations of W elements, solving:

min
T

W

∑
i=1

Ci,T(i). (12)

Thus, as illustrated in Figure 3, where each point is defined by its x and y coordinates,
our objective is to find the bijection T between the red and blue clouds, minimizing
the specified cost function: the square of the Euclidian distance between the assigned
points. Such an optimal assignment problem can be efficiently addressed through Linear
Programming.

Figure 3. Discrete Monge problem equivalent to an optimal assignment problem where W = F and
wi = f j = 1/W. Wheat fields are represented by red circles, and farms by blue ones. The optimal
matching is illustrated by black arrows. The interpolated distribution is depicted by violet points.

Upon solving the optimal matching between the two point clouds, it becomes feasible
to interpolate between the two distributions in an optimal transport manner. This process
involves partially displacing all points along the corresponding segments formed between
matched points. The resultant interpolated distribution, or point cloud, is depicted in Figure
3 by violet points. Therefore, we employ this discrete point cloud interpolation technique,
relying on an optimal assignment, to interpolate between our functions. However, given
that our functions are continuous, we first decomposed them into a sum of identical
Gaussian functions, leading to discrete point clouds that we can work with, as presented
thereafter.

4. Learning Surrogate’s Output Variability with Optimal Transport

The regression technique based on optimal transport, developed by the authors and
published in [25], is shortly reviewed here. For a comprehensive understanding of its im-
plementation, we strongly recommend that interested readers consult the aforementioned
publication for all the details.

Our objective is to develop a regression technique capable of inferring any possible
solution within a parametric space, utilizing the optimal transport theory. For this purpose,
we leverage the discrete Monge problem, which has been simplified based on the previously
presented hypotheses. Hence, employing this Lagrangian formulation of the problem and
displacement interpolation [34], the developed method addresses the regression problem
as an optimal assignment problem, such as the one represented in Figure 3. The paths
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followed by each point are parameterized, providing access to an interpolated solution by
selectively displacing the points along these paths at specific parameter values.

Let us introduce a parametric problem defined in Θ(θ1, . . . , θd, . . . , θD), where θd, d ∈
JDK represent the parameters of the studied system. Next, we consider P samples in Θ
corresponding to the solutions of the problem. To introduce the OT-based parametric
surrogate, but without loss of generality, we assume that each sample is a surface ψ : Ω ∈
R2 → R+, where Ω is the 2-dimensional physical domain of the problem. This choice is
coherent with the cases studied and presented in the results section.

First, the OT-based model is trained in an offline stage as follows:

1. Pre-processing: Normalization of the surfaces ψ to obtain unitary integral surfaces:

ρ =
ψ

I
whereI =

∫
Ω

ψdΩ. (13)

2. Particles decomposition: Each surface is represented as a sum of N identical 2D-
Gaussian functions, referred to as particles. These particles are characterized by a
fixed standard deviation σ and a mass of 1/N. It should be highlighted that the
number of particles N and the standard deviation σ for each particle constitute
hyperparameters in our methodology.

ρ̄(x) =
N

∑
n=1

Gµn ,σ(x)whereGµn ,σ(x) =
1

Nσ22π
exp

−(x−µn)2

2σ2 (14)

Hence, for a given surface, the only variables are the means µn of each Gaussian
function, i.e., N vectors with 2 components each: µn,x and µn,y (because we are in 2
dimensions).
Therefore, to determine the positions of the N particles, we need to solve P optimiza-
tion problems (i.e., one for each surface) aimed at minimizing the error between the
reconstructed surface and the original one. To solve each optimization problem, a
Gradient Descent approach is employed:

min
µp

1
2
∥ρp − ρ̄p∥2

2 = min
µp

1
2

 M

∑
m=1

(
ρp(xm)−

N

∑
n=1

Gµ
p
n
, σ(xi)

)2
, (15)

where M is the number of points of the mesh where the surface ρp is represented.
Once the decomposition is computed, the matrix µp ∈ RN×2, composed by the x and
y coordinates of every particle of the surface ρp, can be introduced:

µp =



µ
p
1
...

µ
p
n
...

µ
p
N

 =



[µ
p
1x

, µ
p
1y
]

...
[µ

p
nx , µ

p
ny ]

...
[µ

p
Nx

, µ
p
Ny
]


∈ RN×2. (16)

It is important to emphasize that the arrangement of particles in this matrix µp is
not arbitrary; instead, it is utilized to account for the matching between point clouds.
Specifically, the particle in the nth row for one cloud is paired with the particle in the
nth row in every other cloud.

3. P-dimensional matching: Once two surfaces, ρp and ρp′ , are decomposed into N
particles, the optimal matching between the two clouds can be computed solving the
optimal assignment problem. This involves minimizing the cost Cp,p′ , as presented
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before, which is defined as the sum of the squared Euclidian distances between
matched particles:

Cp,p′(ϕp, ϕp′) =
N

∑
n=1

∥∥∥∥µ
p
ϕp(n)

− µ
p′

ϕp′ (n)

∥∥∥∥2

2
, (17)

where ϕp is a bijection within the set of permutations of N elements. The function
ϕp : N → N assigns a new position to each particle n in the distribution p, considering
the order within µp. Indeed, ϕp captures the arrangement of the N particles in the
distribution p. The goal is to determine the optimal function ϕp, representing the
most advantageous ordering that corresponds to the optimal matching, therefore
minimizing the defined cost.
Subsequently, as illustrated in Figure 4, it becomes feasible to interpolate between the
two surfaces by reconstructing the surface after partially displacing all the particles
along the respective segments formed between each particle from one surface and its
corresponding optimal pair on the other surface.
However, the complexity of the problem significantly increases when attempting to
interpolate among the P > 2 surfaces sampled in Θ. In this scenario, the optimal
assignment must be performed between each surface and every other surface within
the training data set. Hence, each particle of each surface should be matched with one,
and only one, particle from every other surface, aiming to minimize the matching cost.
The cost function is now defined among the P surfaces, summing the cost between
the two surfaces for all possible pairs:

CP(ϕ1, . . . , ϕp, . . . , ϕP−1) =
P−1

∑
p=1

P

∑
p′=p+1

Cp,p′(ϕp, ϕp′). (18)

This P-dimensional optimal matching involves seeking P − 1 orderings ϕp, p ∈ JPK,
for the N particles in each surface (when matching two sets, permuting just one is
sufficient, hence P − 1 orderings). The P-dimensional matching problem writes:

min
ϕ1,...,ϕP−1

CP(ϕ1, . . . , ϕP−1). (19)

A Genetic Algorithm (GA) [35] is implemented to address this P-dimensional optimal
assignment, given that this problem is equivalent to an NP-complete minimization
problem. Once a reachable optimal solution is found, each particle in each surface is
paired with exactly one particle from every other surface, as depicted in Figure 5. This
enables us to “follow” each particle across the P surfaces.

4. Regressor training: The regressor aims to learn the locations of the N particles based
on the training set of P surfaces. Thus, for any point in the parametric space Θ,
it can predict the N positions of the corresponding inferred surface. To construct
this parametric model, we perform a proper orthogonal decomposition (POD) [36]
over the matrix of snapshots, which is composed of the x and y coordinates of the
corresponding N particles reshaped as a column (reading along the rows) and this for
the P decomposed training surfaces (reading along the columns).
Next, we select R modes from the POD that capture sufficient information, determined
by a criterion involving the relative energy of the retained snapshots. Finally, for
each retained mode r ∈ JRK, a sparse Proper Generalized Decomposition (sPGD)
regression [37,38] is performed on the corresponding coefficients. It can be noted that
the sPGD is a robust regression technique suitable for high dimensionality without
requiring a specific structure of the training data set. Indeed, when working with
high-dimensional models, we must deal with the exponential growth of a basis since
the growth of base elements is accompanied by the same exponential growth of data
required to build the model. The sPGD technique can greatly mitigate the exponential
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growth of necessary data by working with a sparse training data set. This is achieved
by assuming a separate representation of the solution inspired by the so-called Proper
Generalized Decomposition. Moreover, the sPGD regression has a light computational
training effort due to the choice of a quick-computation basis, such as a polynomial
basis. The theoretical background of the sPGD is briefly presented in Appendix A.

Figure 4. 1st column: Surface ρp and its corresponding point cloud (in red). 2nd column: Partially
displaced point cloud (in violet) and its corresponding reconstructed surface ρ̂. The optimal matching
between clouds is represented by black lines. 3rd column: Surface ρp′ and its corresponding point
cloud (in blue).

Figure 5. P-dimensional matching problem scheme. In this example, P = 4 and N = 3. Indeed,
four-point clouds of three points each can be observed. Please note that each cloud is colored
differently.

This OT-based regression technique can be evaluated in an online manner within the
parameter space of the problem. This leads to a partial displacement of all the particles,
resulting in an inferred µ̂ for the assessed point (θ1, . . . , θd, . . . , θD) ∈ Θ. Hence, the corre-
sponding predicted surface ρ̂ following the optimal transport theory can be reconstructed
in real time by summing all the N Gaussian functions of standard deviation σ at the just
forecasted positions µ̂:

ρ̂ =
N

∑
n=1

Gµ̂n ,σwhereGµ̂n ,σ(x) =
1

Nσ22π
exp

−(x−µ̂n)2

2σ2 . (20)

Finally, the total mass Î, which has been normalized in (13), is also inferred at
(θ1, . . . , θd, . . . , θD) ∈ Θ to recover ψ̂:

ψ̂ = Î · ρ̂. (21)

The just presented OT-based surrogate methodology is summarized in Figure 6, where
the offline stage is colored in blue and the online one in red.
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Figure 6. Surrogate methodology overview: the offline stage is colored in blue and the online one in
red.

5. Results

The OT-based parametric metamodeling of uncertainty propagation through the
trained surrogate, as presented earlier, is now applied to the following three problems from
fluid and solid dynamics:

1. a 3D steady turbulent flow into a channel facing a backward ramp.
2. a crack propagation in a notched test piece loaded in tension.
3. the design of a car dashboard aerator from the automotive manufacturer Stellantis.

For each example, we first introduce the problem and define the quantity of interest
under consideration. Then, we present the problem’s surrogate g, which takes as input
some parameters p of the problem and returns the corresponding quantity of interest
Q(p). Next, we apply the standard Monte Carlo methodology, as previously explained,
to collect the mean M̄Q(p) and variance Σ̄Q(p) estimators of the QoI for different values of
uncertainty descriptors (µ, σ) for the surrogate’s inputs. Finally, we train the OT-based
regressors SM and SΣ to learn the Monte Carlo estimators for a given set of uncertainty
descriptor values of the inputs, leading to the metamodel of the surrogate’s output CI.

5.1. Case 1: 3D Steady Turbulent Flow into a Channel Facing a Backward Ramp

Here, we focus on a 3D steady turbulent flow into a channel facing a backward ramp,
as illustrated in Figure 7. As indicated in Equation (22), the fluid, considered incompressible,
exhibits a uniform velocity profile at the inlet domain ΩInlet with an inlet velocity of vInlet.

Figure 7. Problem geometry schema.

The geometry used in this paper is close to the geometry of Ahmed’s study. The slant
angle of our geometry corresponds nearly to the minimum of drag found in Ahmed’s study
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[39]. A nonslip condition is imposed on the walls ΩWall , and a zero-gradient condition is
imposed on the outlet section ΩOutlet. Therefore, the problem is:

v · ∇v = − 1
ρ∇p + ν∇2v in ΩChannel ,

∇ · v = 0 in ΩChannel ,
v(x = 0, y, z) = vInlet · ex in ΩInlet,
v = 0 on ΩWall ,
∇v · ex = 0 on ΩOutlet,

(22)

where ρ is the density, ν the kinematic viscosity and ex the elementary vector of the x axis.
The turbulence model chosen is k − ω SST with a stepwise switch wall function:ω = ωvis =

6νw
β1y2 ify+ ≤ y+lam

ω = ωlog =
√

k
Cµκy ify+ > y+lam,

(23)

where ω is the specific dissipation rate, k the turbulent kinetic energy, y the wall-normal
distance, Cµ and β1 model constants, νw the kinematic viscosity of fluid near wall, κ the
von Karman constant, y+ the estimated wall-normal distance of the cell center in wall units
and y+lam the estimated intersection of the viscous and inertial sub-layers in wall units.

The geometry is parameterized, as can be seen in Figure 8. The numerical values
chosen for each parameter are collected in Table 1. It can be noted that by determining α,
and since h3 is fixed, h1 and h2 are, thus, also fixed:

h2 =
l2

tan(90 − α)
and h1 = H − h3 − h2. (24)

Likewise, by fixing L, l1 and l2, l3 is thus also fixed by:

l3 = L − l2 − l1. (25)

Figure 8. Parameterized geometry.

Table 1. Numerical values for the geometrical parameters.

Geometrical Parameter H h3 L l1 l2 W

Value (cm) 30 5 200 40 20 30

To solve this problem, the channel is meshed using a hexahedral mesh. The Compu-
tational Fluid Dynamics OpenFOAM code is used to solve both finite volume problems.
The SIMPLE solver is chosen to solve the Navier–Stokes equations. The convergence of the
simulations is ensured by monitoring the residual convergence. Moreover, the norm of the
velocity field is tracked on a plane of interest PoI perpendicular to the channel at x = lPoI ,
as represented in Figure 7.

The parameters defining the system are ν and α, and thus p = (ν, α) ∈ R2. Moreover,
the quantity of interest QoI in this case is the norm of the velocity field on the plane of
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interest PoI, i.e., a surface SQoI . Hence, the surrogate g takes as input the d = 2 parameters
and returns SQoI :

g : R2 → R2

(ν, α) → SQoI .
(26)

It can be noted that since the output of the system’s surrogate g is a surface, the chosen
architecture for the surrogate is also the one previously introduced based on the optimal
transport theory.

In this scenario, we assume that the only uncertain parameter is the kinematic viscosity
ν. Thus, ν ∼ N

(
µν, σ2

ν

)
. Following the developed methodology based on the Monte Carlo

estimators and optimal transport theory, we proceed to train our two regressors:

SM : (µν, σν) → M̄Q(ν)

SΣ : (µν, σν) → Σ̄Q(ν).
(27)

To evaluate the accuracy of the estimators’ regressors, we compare the reference and
inferred Monte Carlo mean and variance estimators, as can be seen in Figures 9 and 10,
respectively. Three error metrics are employed over these fields concerning the maximum
value magnitude εmax and position εpos, and the shape of the field through the 2-Wasserstein
metric W2

2 where the cost function c is the squared Euclidean distance. These metrics are
presented in Table 2. The three errors allow a comparison between the reference estimators,
denoted as f , and the inferred ones, denoted as f̂ .

εmax

(
f , f̂
)
= 100

|max( f )− max( f̂ )|
max( f )

εpos

(
f , f̂
)
=

∥∥∥∥∥argmax
(y,z)

( f )− argmax
(y,z)

( f̂ )

∥∥∥∥∥
2

W2
2

(
f , f̂
)
= min

π∈Π( f , f̂ )

∫
Y×Z

c(y, z)dπ(y, z)

(28)

Figure 9. Reference (left) and inferred (right) Monte Carlo mean estimator M̄Q(ν).

Figure 10. Reference (left) and inferred (right) Monte Carlo variance estimator Σ̄Q(ν).
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Table 2. Error of the Monte Carlo estimators’ regressors.

Estimator

Error
εmax

(
f , f̂
)
[%] εpos

(
f , f̂
)

[m] W2
2

(
f , f̂
)

M̄Q(ν) 3.6 0.007 0.006

Σ̄Q(ν) 1.8 0.006 0.006

For a new test value of the uncertainty descriptors of the parameter ν, (µ∗
ν , σ∗

ν ), we can
infer the confidence interval:

g(ν) ∈
[

M̄Q(ν) − α
√

Σ̄Q(ν), M̄Q(ν) + α
√

Σ̄Q(ν)

]
, (29)

where α is the coefficient depending on our desired level of confidence (e.g., α = 1.96 for a
95% level of confidence), as can be seen in Figures 11 and 12.

Figure 11. Left: Contour plots of the inferred mean and the 95% CI for ∥v∥ = 0.15 and 0.25 m.s−1.
Right: Inferred mean and 95% CI for the surface of interest SQoI .

Figure 12. Inferred and reference mean and 95% CI for the surface of interest SQoI represented on
different planes.

5.2. Case 2: Crack Propagation in a Notched Test Piece Loaded in Tension

Here, we study the propagation of cracks within notched test pieces under tension
loading. The geometry of the test specimens, presented in Figure 13, features a V-shaped
notch defect consistently positioned near the bottom-middle region. On the opposing
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edge of the test piece, there exists a semi-circular groove. The objective is to forecast crack
propagation from the V-shaped notch defect, considering various positions (S) and radii
(R) of the groove, along with different thicknesses of the test piece (h), as schematized in
Figure 13.

Figure 13. Test piece scheme.

To train the surrogate of the test piece, we compute numerical simulations (carried
out in the ESI Group software VPS) employing an Explicit Analysis and the EWK rupture
model [40], as presented in Figure 14. It is important to note that the way the crack advances
from the defect to the opposite edge of the specimen is highly dependent on the groove’s
location. Two main behaviors can be observed: the crack can propagate from the defect to
the groove or the opposite edge of the piece in front of the defect’s position, as illustrated
in Figure 14.

Figure 14. Main different manners of the crack propagation.

In this case, the surrogate of the problem also follows the OT-based architecture
introduced before. However, a slight modification is made to the presented OT-based
surrogate technique. Instead of decomposing the crack propagation field into a sum
of Gaussian functions, we identify the crack and place points over it. Thus, the crack
is represented by a line of N points, as can be seen in Figure 15. Then, the developed
methodology can be applied to train the OT-based surrogate of the test piece, which takes
the parameters R, S, and h of the piece as input and returns the 2D positions of the N points
representing the crack.

Figure 15. Left: Crack propagation field where a value of 1 represents the crack. Right: Particle
representation of the crack.

The parameters defining the system are R, S, and h, and thus p = (R, S, h) ∈ R3. In this
case, the quantity of interest QoI is the position of the crack on the test piece, represented
by a 2D line LQoI , illustrated in red in Figure 15 (right), i.e., a N sets of 2-dimensional points.
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Hence, the surrogate g of the test piece takes as input the d = 3 parameters and returns
LQoI :

g : R3 → RN×2

(R, S, h) → LQoI .
(30)

Here, we assume that the 3 parameters are uncertain. Hence, we suppose that
R ∼ N

(
µr, σ2

r
)
, S ∼ N

(
µs, σ2

s
)

and h ∼ N
(
µh, σ2

h
)
. When computing the Monte Carlo

estimators of the mean and the variance, an additional modification of the methodology
should be considered.

Indeed, the OT-based surrogate of the system returns the 2D positions of the N
particles. Hence, for each particle, one can compute the mean of the x and y coordinates
from the Monte Carlo sampling, represented by a red point in Figure 16. However, instead
of computing the variance of the x and y coordinates separately, one should take into
account the covariance between dimensions. To achieve this, for each particle, we compute
the Confidence Ellipse. As seen in Figure 16, the NMC sampled positions for the nth

particle are represented for a given uncertainty descriptors (µ, σ) of the input features. The
directions of the axes of the ellipse are given by the eigenvectors of the covariance matrix.
The length of the axes of the ellipse is determined by the formula:

l =
√

λχ2
crit, (31)

where λ is the eigenvalue of the corresponding eigenvector and χ2
crit is the critical value of

the chi-squared test χ2(k). Here, k = 2 degrees of freedom, and we choose a significance
level of 0.05. Once computed, we keep the extremes of the major axis, represented by green
and blue points in Figure 16.

Figure 16. NMC sampled positions for the nth particle for a given uncertainty descriptors (µ, σ) of the
input features. The 95% Confidence Ellipse is plotted. Vmax and λmax correspond to the eigenvector
and eigenvalue of the largest eigenvalue, respectively. Likewise, Vmin and λmin correspond to the
eigenvector and eigenvalue of the smallest eigenvalue, respectively.

In Figure 17 (Left), the Monte Carlo sampling is illustrated for 6 particles of a crack. For
each particle, the mean of the sampling and the extremes of the ellipses are identified with
the same color code as in Figure 16. Once we compute the mean and the 95% Confidence
Ellipses for every particle of the inferred cracks of the Monte Carlo sampling, we obtain the
three estimators, M̄, Σ̄1 and Σ̄2, respectively, as presented in Figure 17 (Right).
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Then, following the developed methodology based on Monte Carlo estimators and the
optimal transport theory, we train our three regressors to learn the Monte Carlo estimators
of the mean crack M̄ and of the two 95% confidence limits, Σ̄1 and Σ̄2.

SM : (µr, σr, µs, σs, µh, σh) → M̄Q(R,S,h)

SΣ1 : (µr, σr, µs, σs, µh, σh) → Σ̄1Q(R,S,h)

SΣ2 : (µr, σr, µs, σs, µh, σh) → Σ̄2Q(R,S,h).

(32)

For a new test value of the uncertainty descriptors of the parameters R, S, and h,(
µ∗

r , σ∗
r , µ∗

s , σ∗
s , µ∗

h, σ∗
h
)
, we can infer, as presented in Figure 18, the confidence interval:

g(R, S, h) ∈
[
Σ̄1Q(R,S,h), Σ̄2Q(R,S,h)

]
. (33)

Figure 17. Left: Monte Carlo sampling for 6 particles. The mean and the Confidence Ellipse for each
particle are represented. Right: Monte Carlo estimators M̄, Σ̄1 and Σ̄2.

Figure 18. Mean crack and 95% confidence limits for two uncertainty descriptors (µ, σ) of the input
features, left and right, respectively.

In Figure 18 (left), it can be observed that, although the mean crack M̄ and one of the
two 95% confidence limits follow a propagation from the defect to the groove, the other
95% confidence limit propagates to the opposite edge in front of the defect. This could be
inconsistent with the two possible crack propagations defined before. However, it should
be noted that the geometry shown in Figure 18 corresponds to the mean value of the Monte
Carlo sampling. Indeed, it is possible that among all the sampled propagations for a given
(µ, σ), some of the specimens’ geometries present the other possible crack propagation
behavior.
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5.3. Case 3: Design of a Car Dashboard Aerator

Here, we focus on the design of a car dashboard aerator from the automotive man-
ufacturer Stellantis. The aerator is defined by 10 parameters: 8 geometrical parameters
and the horizontal and vertical positions of the blades. A parametric surrogate model of
the aerator is developed to study, in real time, the effect of its geometrical parameters on
its performance. It can be noted that because of confidentiality issues, those geometrical
parameters and the aerator geometry cannot be explicitly shown.

The trained aerator surrogate takes the 8 geometrical parameters of the aerator and
the horizontal and vertical positions of the blades as input. It outputs the norm of the 3D
velocity field of the air stream coming out from the aerator, particularized on a 2D plane
representing the driver’s face, as can be seen in Figure 19. High-fidelity computational
fluid dynamics simulations are computed to train the aerator surrogate.

Figure 19. 3D iso-contour of velocity for the airflow in the cockpit coming out the dashboard aerators.
The plane of interest is represented in red. The amplitude of the velocity field is plotted in the plane
of interest.

The performance of the aerator is quantified by assessing the position and magnitude
of the maximum of this 2D scalar field. Stellantis establishes optimal values for both
position and magnitude objectives based on comfort criteria. From a practical point of view,
in this paper, we will focus on the left-door aerator.

The parameters defining the system are the 8 geometrical parameters of the aerator
pgeo and the horizontal and vertical positions of the blades, Bh and Bv, respectively. Thus,
p = (pgeo, Bh, Bv) ∈ R10. The quantity of interest QoI is the norm of the velocity field on
the plane of interest at the driver’s face, i.e., a surface SQoI . Hence, the aerator’s surrogate
g takes as input the d = 10 parameters and returns SQoI :

g : R10 → R2

(pgeo, Bh, Bv) → SQoI .
(34)

It can be noted that since the output of the aerator’s surrogate is a surface, the cho-
sen architecture for the surrogate is the one previously introduced based on the optimal
transport theory.

Here, we assume that the only uncertain parameters are the horizontal and vertical
positions of the blades. The other 8 geometrical parameters of the aerator are fixed at
an intermediate value. Therefore, we consider that Bh ∼ N

(
µh, σ2

h
)

and Bv ∼ N
(
µv, σ2

v
)
.

Following the developed methodology based on Monte Carlo estimators and the optimal
transport theory, we train our two estimators’ regressors:
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SM : (µh, σh, µv, σv) → M̄Q(Bh ,Bv)

SΣ : (µh, σh, µv, σv) → Σ̄Q(Bh ,Bv).
(35)

To evaluate the accuracy of the estimators’ regressors, we compare the reference and
inferred Monte Carlo mean and variance estimators, as can be seen in Figures 20 and 21,
respectively. The three error metrics, presented in Equation (28), are applied to these fields,
measuring the maximum value magnitude εmax and position εpos errors, and the error over
the shape of the field through the 2-Wasserstein metric W2

2 , as can be observed in Table 3.
For a new test value of the uncertainty descriptors of the parameters Bh and Bv,(

µ∗
h, σ∗

h , µ∗
v , σ∗

v
)
, we can infer the confidence interval:

g(Bh, Bv) ∈
[

M̄Q(Bh ,Bv) − α
√

Σ̄Q(Bh ,Bv), M̄Q(Bh ,Bv) + α
√

Σ̄Q(Bh ,Bv)

]
, (36)

where α is the coefficient depending on our desired level of confidence (e.g., α = 2 for a
95% level of confidence).

Figure 20. Reference (left) and inferred (right) Monte Carlo mean estimator M̄Q(Bh ,Bv).

Figure 21. Reference (left) and inferred (right) Monte Carlo variance estimator Σ̄Q(Bh ,Bv).

Table 3. Monte Carlo estimators regressors’ errors.

Estimator

Error
εmax

(
f , f̂
)
[%] εpos

(
f , f̂
)

[m] W2
2

(
f , f̂
)

M̄Q(Bh ,Bv) 0.3 0.000 0.009

Σ̄Q(Bh ,Bv) 3.8 0.009 0.068

Finally, we aim to create a more practical representation of the confidence interval.
Indeed, the outputs of the estimators’ surrogates are surfaces that are hardly industrially
operable. Consequently, we establish a line ζ along the maximum values of the mean
estimator field, i.e., where the most information is available, as can be observed in Figure
22 (left). Then, we plot over this line the computed and inferred 95% CI, as presented in
Figure 22 (right).
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Figure 22. Left: ζ line over the mean estimator field. Right: computed and inferred 95% CI.

6. Conclusions

Although data-based models of complex systems have proliferated widely, their
architectures are commonly trained assuming full confidence in the knowledge of the
system’s parameters, focusing exclusively on the accuracy of their outputs. In this paper,
based on Monte Carlo estimators, we quantify the propagation of the uncertainty over
input parameters for a given trained surrogate, focusing on its output’s precision. Then,
we propose a novel regression technique based on optimal transport to infer, in real time, a
confidence interval for the surrogate’s output, given a descriptor of its inputs’ uncertainty.
Optimal transport provides a fundamentally distinct method for function interpolation,
considered more physically relevant in various domains. However, its high computational
cost becomes an issue for real-time applications. By integrating the simplified optimal
transport Monge problem, equivalent to an optimal assignment problem, with the sPGD
model order reduction technique, our method results in a parametric data-driven model
that operates in real time, following the OT interpolation perspective.

The main drawback of this OT-based regression technique is the computational cost
associated with the offline resolution of the P-dimensional matching problem, equivalent
to a NP-complete minimization problem. Future work aims to enhance the implemented
Genetic Algorithm to achieve an optimal solution or approach the P-dimensional matching
problem from a different perspective, simplifying its resolution. Moreover, in ongoing
research, we aim to extend this method to surrogate inputs whose uncertainty follows
an unknown distribution, incorporating more sophisticated uncertainty quantification
methodologies.
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Appendix A. sPGD: Sparse Proper Generalized Decomposition

Let us now consider an unknown function that we aim to approximate:

f
(
η1, . . . , ηQ

)
: Ω ⊂ RQ → R, (A1)

which depends on Q different variables ηq, q = 1, . . . , Q, considered to be dimensions of
the parametric space.

The sPGD tries, as standard PGD procedures, to approximate the objective function
by a sum of products of one-dimensional functions. Each one of these functions represents
one dimension, and each sum is known as a mode. This separated approximate expression
reads:

f
(
η1, . . . , ηQ

)
≈ f̂

(
η1, . . . , ηQ

)
=

M
∑

m=1

Q

∏
q=1

ζ
q
m(ηq), (A2)

where f̂ is the approximation, M denotes the number of PGD modes and ζ
q
m are the

one-dimensional functions of the mode m and the dimension q.
In the sPGD context, the ζ

q
m, m = 1, . . . , M and q = 1, . . . , Q functions are expressed

from standard approximation functions:

ζ
q
m(ηq) =

L

∑
l=1

Nq
m,l(ηq)aq

m,l =
(

N⃗q
m

)T
a⃗q

m, (A3)

where L is the number of degrees of freedom of the chosen approximation. Moreover, N⃗q
m is

a column vector composed of the basis functions (chosen by the user; in our case, we have
chosen Chebyshev polynomials) and a⃗q

m is a column vector that contains the coefficients for
the qth dimension and the mth mode. The choice of the set of basis functions is important
here and needs to suit the problem studied.

Finally, as for any other regression, the aim is to minimize the distance (here related to
the L2-norm) to the measured function, finding the best f̂ approximation. This leads to the
following minimization problem:

f̂ = argmin
f ∗

nt

∑
i=1

∥ f (η⃗i)− f ∗(η⃗i)∥2
2, (A4)

where f ∗ is expressed following the separated form Equation (A2), nt is the number of
training points, and η⃗i are the vectors containing the parameters of the corresponding
training point.

A greedy algorithm is employed to determine the coefficients of each one-dimensional
function for each mode, such that once the approximation up to order M− 1 is known, the
Mth order is solved:

f̂M
(
η1, . . . , ηQ

)
=

M−1

∑
m=1

Q

∏
q=1

ζ
q
m(ηq) +

Q

∏
q=1

ζ
q
M(ηq), (A5)

where the subscript M highlights the rank of the sought function. To solve the resulting
non-linear problem of the Mth order, an iterative scheme based on an Alternating Direction
Strategy is used.

For ease of explanation and without loss of generality, let us continue by supposing
that the unknown function depends on Q = 2 different variables: x and y. Therefore, the
objective function is

f (x, y) : Ω ⊂ R2 → R, (A6)

which can be written in a separate form as
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f̂M(xi, yi) =
M
∑

m=1

((
N⃗x

m(xi)
)T

a⃗x
m ·
(

N⃗y
m(yi)

)T
a⃗y

m

)
, (A7)

where N⃗x
m(xi) and N⃗y

m(yi) are the vectors containing the evaluation of the interpolation
basis functions of the mth mode at xi and yi, respectively. Therefore, the optimization
problem writes:

f̂ = argmin
f ∗

nt

∑
i=1

∥∥∥ f̂M(xi, yi)− f ∗(xi, yi)
∥∥∥2

2
. (A8)

Then, the Alternating Direction Strategy computes a⃗x,k
M from a⃗y,k−1

M and a⃗y,k
M from a⃗x,k

M,
where a⃗x,k

M indicates the values of a⃗x
M at the kth iteration.

Finally, the system to be solved can be written as:

Mx · a⃗x
M = r⃗,

My · a⃗y
M = r⃗,

(A9)

where:

r⃗ =

 f (x1, y1)− f̂M−1(x1, y1)
...

f (xnt , ynt)− f̂M−1(xnt , ynt)

,

Mx =


(

N⃗y
M(y1)

)T
a⃗y
M ·

(
N⃗x
M(x1)

)T

...(
N⃗y
M(ynt)

)T
a⃗y
M ·

(
N⃗x
M(xnt)

)T

,

My =


(

N⃗x
M(x1)

)T
a⃗x
M ·

(
N⃗y
M(y1)

)T

...(
N⃗x
M(xnt)

)T
a⃗x
M ·

(
N⃗y
M(ynt)

)T

.

(A10)

To conclude, the sPGD regression faces classical machine learning challenges asso-
ciated with regressions: the approximation must not only fit the training set but also
generalize effectively to the test set. This second objective becomes particularly difficult
when dealing with sparse data in a high-dimensional problem. In this low-data limit,
the risk of overfitting increases. To solve this problem, improved sPGD regressions are
proposed, implementing L1 and L2 regularization techniques [38].
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