
 

________________________________________ 
 
*Corresponding author: Email: gourhrahi27@gmail.com; 

 

J. Adv. Math. Com. Sci., vol. 39, no. 2, pp. 11-19, 2024 

 
 

 

Journal of Advances in Mathematics and Computer Science 

 
Volume 39, Issue 2, Page 11-19, 2024; Article no.JAMCS.112216 
ISSN: 2456-9968 

(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851) 

 

_______________________________________________________________________________________________________________________________________ 

 

On unique Fixed-Point Theorems via 

Interpolative and Rational  

Contractions in Super Metric Spaces 
 

Rahul Gourh a*, Manoj Ughade b and Manoj Kumar Shukla b 

 
a Department of Mathematics, Govt. LBS College Sironj, Madhya Pradesh, 464228, India. 

b Department of Mathematics, Institute for Excellence in Higher Education, Bhopal,  

Madhya Pradesh, 462016, India. 

 

Authors’ contributions 

 

This work was carried out in collaboration among all authors. All authors read and approved the final 

manuscript. 

 

Article Information 

 
DOI: 10.9734/JAMCS/2024/v39i21865 

 

Open Peer Review History: 

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review 
comments, different versions of the manuscript, comments of the editors, etc are available here: 

https://www.sdiarticle5.com/review-history/112216 

 

 

Received: 01/12/2023 

Accepted: 05/02/2024 

Published: 13/02/2024 

__________________________________________________________________________________ 
 

Abstract 

 
In the present research paper, Kannan, Reich, and Dass-Gupta-type contractions are defined and discussed in 

the framework of super metric space. Further, some fixed-point results are proved using the notion of 

interpolation. 
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1 Introduction 
 

One of the appealing areas of nonlinear functional analysis is metric fixed-point theory. In light of Banach’s 

pioneering fixed-point theorem, several findings and publications on the topic have been made during the past 

100 years. Essentially, there are two widely accepted theories about how to advance the metric fixed point: the 

first is changing (weakening) the constraints on the contraction mapping, and the second is altering the abstract 

structure. Metric spaces have already seen several generalizations and extensions. These include the quasi-metric 

space, the b-metric space, the symmetric space, the fuzzy metric space, the dislocated metric space, the partial 

metric space, the 2-metric space, the modular metric space, the cone metric space, the ultra-metric space, and a 

variety of other combinations of these. 

 

It is important to note that the fixed-point theory is very practical and helpful in finding solutions to numerous 

issues in a variety of industries. As a result, this topic has been the subject of extensive research, the findings of 

which have been disseminated in the form of articles and books. These discoveries highlight the fact that the fixed-

point theory is congested and constrained. As an illustration, most of the results for cone metric spaces are 

equivalent to the comparable results when standard metric space is used. Regarding the G-metric space, the same 

result may be drawn. The Banach contraction principle was then widely generalized in the literature see [1-18]. 

Both pure and applied mathematics make extensive use of it.  Kannan [14] defined a new variation of this theory 

in 1968 and eliminated the continuity condition from it.  Kannan fixed-point theorem is the first significant variant 

of the outstanding result of Banach on the metric fixed-point theory. Kannan’s theorem has been generalized in 

different ways. In the present note, we zoom in on one of the recent generalizations that was proposed by Karapınar 

[4] as interpolative Kannan-type contraction. It was indicated in Karapinar [4] that each interpolative Kannan-

type contraction in a complete metric space admits a fixed point.  Erdal Karapinar and Andreea Fulga [5] 

introduced super-metric space. We were able to derive some fixed-point theorems in this structure, and we believe 

that this method could assist in alleviating the congestion and squeezing problems noted before. 

 

We prove some fixed-point theorems for interpolative contraction and interpolative rational contraction in super 

metric space. Our findings extend the contractions of the metric space to a super metric space by Kannan's 

contraction, Riech’s contraction and Dass-Gupta's rational contraction.  

 

2 Preliminaries 
 

We begin this section with the definition of the super metric. 

 

Definition 2.1 (see [5]) Let 𝔇 is a non-empty set. We say that a function 𝜂: 𝔇 × 𝔇 → [0, +∞)  is a super metric 

if it satisfies the following axioms: 

  

(s1). ∀ 𝜎, 𝜍 ∈ 𝔇, if 𝜂(𝜎, 𝜍) = 0, 𝑡ℎ𝑒𝑛 𝜎 = 𝜍. 
(s2). ∀ 𝜎, 𝜍 ∈ 𝔇, 𝜂(𝜎, 𝜍) = 𝜂(𝜍, 𝜎). 

(s3). There exists 𝑠 ≥ 1 such that for every 𝜍 ∈ 𝔇, there exist distinct sequences {𝜎𝑛}, {𝜍𝑛} ⊂ 𝔇, with 

𝜂(𝜎𝑛, 𝜍𝑛) → 0 when 𝑛 → ∞, such that  

                             

 lim sup
𝑛→∞

𝜂(𝜍𝑛, 𝜍) ≤ 𝑠 lim sup
𝑛→∞

𝜂(𝜎𝑛 , 𝜍) 

The tripled (𝔇, 𝜂, 𝑠) is called a super metric space.  

 

Definition 2.2 (see [5]) On a super metric space (𝔇, 𝜂, 𝑠), a sequence {𝜎𝑛}: 
 

(i). converges to 𝜎 in 𝔇 if and only if lim
𝑛→∞

𝜂(𝜎𝑛 , 𝜎) = 0. 

(ii). is a Cauchy sequence in 𝔇 if and only if lim sup
𝑛→∞

{𝜂(𝜎𝑛, 𝜎𝜎): 𝜎 > 𝑛} = 0. 

  

Proposition 2.3 (see [5]) On a super metric space, the limit of a convergent sequence is unique. 

 

Definition 2.4 (see [5]) We say that a super metric space (𝔇, 𝜂, 𝑠)  is complete if and only if every Cauchy 

sequence is convergent in 𝔇.   
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Example 2.5 (see [5]) Let the set 𝔇 =  ℝ, 𝑠 =  2, and  𝜂: 𝔇 × 𝔇 → [0, +∞) be an application defined as follows: 

 

𝜂(𝜎, 𝜍) = (𝜎 − 𝜍)2, for 𝜎, 𝜍 ∈ ℝ\{1} 

𝜂(1, 𝜍) = 𝜂(𝜍, 1) = (1 − 𝜍3)2, for 𝜍 ∈ ℝ. 
 

Then, the tripled (𝔇, 𝜂, 𝑠) forms a super metric space. 

 

Example 2.6 (see [5]) Let the set 𝔇 =  [0, +∞] and 𝜂: 𝔇 × 𝔇 → [0, +∞) be a function, defined as follows: 

 

𝜂(𝜎, 𝜍) =
|𝜎𝜍−1|

𝜎+𝜍+1
, for 𝜎, 𝜍 ∈ [0,1) ∪ (1, +∞], 𝜎 ≠ 𝜍, 

 

𝜂(𝜎, 𝜍) = 0, for 𝜎, 𝜍 ∈ [0, +∞), 𝜎 = 𝜍, 
 

𝜂(𝜎, 1) = 𝜂(1, 𝜎) = |𝜎 − 1|, for 𝜎 ∈ [0, +∞]. 
  

We can easily see that 𝜂 forms a super metric on 𝔇. 

 

Proposition 2.7 (see [5]) Let 𝛤: 𝔇 → 𝔇 be an asymptotically regular mapping on a complete super metric space 

(𝔇, 𝜂, 𝑠). Then, the Picard iteration {𝛤𝑛𝜎} for the initial point 𝜎 ∈ ℝ is a convergent sequence on 𝔇. 

 

Theorem 2.8 (see [5]) Let (𝔇, 𝜂, 𝑠) be a complete super-metric space and let 𝛤: 𝔇 → 𝔇 be a mapping. Suppose 

that 0 < 𝛼 < 1 such that 

 

                                𝜂(𝛤𝜎, 𝛤𝜍) ≤ 𝜂(𝜎, 𝜍) 

 

for all (𝜎, 𝜍) ∈ 𝔇. Then 𝛤 has a unique fixed point in 𝔇. 

 

Theorem 2.9 (see [5]) Let (𝐷, 𝜂, 𝑠) be a complete super metric space and 𝛤: 𝐷 → 𝐷 be a mapping, such that there 

exist 𝛼 ∈ [0, 1) and that 

 

                                   𝜂(Γ𝜎, Γ𝜍) ≤ 𝑘 max {𝜂(𝜎, 𝜍),
𝜂(𝜎,Γ𝜎)𝜂(𝜍,Γ𝜍)

𝜂(𝜎,𝜍)+1
} 

 

Then, 𝛤 has a unique fixed point. 

 

3 Main Results 
 

We start with the following definition. 

 

Definition 3.1 Let (𝔇, 𝜂, 𝑠) be a super metric space and 𝛤: 𝔇 → 𝔇 a self-map. Then  𝛤 is called a (𝜆, 𝛼)-

interpolative Kannan contraction, if there exist 𝜆 ∈ [0,1), 𝛼 ∈ (0,1) such that 

 

                                     𝜂(𝛤𝜎, 𝛤𝜍) ≤ 𝜆(𝜂(𝜎, 𝛤𝜎))
𝛼

(𝜂(𝜍, 𝛤𝜍))
1−𝛼

                                                      (3.1) 

 

for all 𝜎, 𝜍 ∈ 𝔇, with 𝜎 ≠ 𝜍.   

 

Definition 3.2 Let (𝔇, 𝜂, 𝑠) be a super metric space and 𝛤: 𝔇 → 𝔇 a self-map. Then  𝛤 is called a (𝜆, 𝛼, 𝛽)-

interpolative Kannan contraction, if there exist 𝜆 ∈ [0,1), 𝛼, 𝛽 ∈ (0,1), 𝛼 + 𝛽 < 1 such that  

 

                                  𝜂(𝛤𝜎, 𝛤𝜍) ≤ 𝜆(𝜂(𝜎, 𝛤𝜎))
𝛼

(𝜂(𝜍, 𝛤𝜍))
𝛽

                                                             (3.2) 

 

for all 𝜎, 𝜍 ∈ 𝔇, with 𝜎 ≠ 𝜍.   
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Definition 3.3 Let (𝔇, 𝜂, 𝑠) be a super metric space and 𝛤: 𝔇 → 𝔇 a self-map. Then  𝛤 is called a (𝜆, 𝛼, 𝛽, 𝛾)-

interpolative Reich contraction, if there exist 𝜆 ∈ [0,1), 𝛼, 𝛽, 𝛾 ∈ (0,1), 𝛼 + 𝛽 + 𝛾 < 1 such that  

 

                                 𝜂(𝛤𝜎, 𝛤𝜍) ≤ 𝜆(𝜂(𝜎, 𝜍))
𝛼

(𝜂(𝜎, 𝛤𝜎))
𝛽

(𝜂(𝜍, 𝛤𝜍))
𝛾
                                            (3.3) 

 

for all 𝜎, 𝜍 ∈ 𝔇, with 𝜎 ≠ 𝜍.   

 

Definition 3.4 Let (𝔇, 𝜂, 𝑠) be a super metric space and 𝛤: 𝔇 → 𝔇 a self-map. Then  𝛤 is called a (𝜆, 𝛼, 𝛽)-

interpolative Dass-Gupta rational contraction, if there exist 𝜆 ∈ [0,1), 𝛼, 𝛽 ∈ (0,1), 𝛼 + 𝛽 < 1 such that 

 

                                  𝜂(𝛤𝜎, 𝛤𝜍) ≤ 𝜆(𝜂(𝜎, 𝜍))
𝛼

(
[1+𝜂(𝜎,𝛤𝜎)]𝜂(𝜍,𝛤𝜍)

1+𝜂(𝜎,𝜍)
)

𝛽

                                                   (3.4) 

 

for all 𝜎, 𝜍 ∈ 𝔇, with 𝜎 ≠ 𝜍.   

 

Our first result as follows. 

 

Theorem 3.5 Let (𝔇, 𝜂, 𝑠) be a complete super metric space and 𝛤: 𝔇 → 𝔇 be a (𝜆, 𝛼)-interpolative Kannan 

contraction. Then, 𝛤 has a unique fixed point. 

 

Proof Let 𝜎0 ∈ 𝔇 and let 𝛤𝜎0 = 𝜎1. If 𝜎0 = 𝜎1 then 𝜎1is the fixed point and the proof is completed. Henceforward, 

assume that 𝜎0 ≠ 𝜎1. Thus, 𝜂(𝜎0, 𝜎1) > 0. Thus, without loss of generality, for each nonnegative integer 𝑛, we 

can define 

 

                                                  𝜎𝑛+1 =  𝛤𝜎𝑛                                                                                                                                      (3.5) 

 

 such that 𝜎𝑛+1 ≠  𝛤𝜎𝑛. So 𝜂(𝜎𝑛 , 𝜎𝑛+1) > 0, for all 𝑛 ∈ ℕ. From inequality (3.1), we have 

 

                                  𝜂(𝜎𝑛, 𝜎𝑛+1) = 𝜂(𝛤𝜎𝑛−1, 𝛤𝜎𝑛) 

≤ 𝜆(𝜂(𝜎𝑛−1, 𝛤𝜎𝑛−1))
𝛼

(𝜂(𝜎𝑛 , 𝛤𝜎𝑛))
1−𝛼

 

= 𝜆(𝜂(𝜎𝑛−1, 𝜎𝑛))
𝛼

(𝜂(𝜎𝑛 , 𝜎𝑛+1))
1−𝛼

. 

 

Thus, 

   

(𝜂(𝜎𝑛 , 𝜎𝑛+1))
𝛼

≤ 𝜆(𝜂(𝜎𝑛−1, 𝜎𝑛))
𝛼

 

 

Therefore, the above inequality gives, 

 

                                      𝜂(𝜎𝑛 , 𝜎𝑛+1) ≤ 𝜆
1

𝛼𝜂(𝜎𝑛−1, 𝜎𝑛) ≤ 𝜆𝜂(𝜎𝑛−1, 𝜎𝑛)                                           (3.6) 

 

So, inequality (3.6) implies that  

 

                              𝜂(𝜎𝑛, 𝜎𝑛+1) ≤ 𝜆𝜂(𝜎𝑛−1, 𝜎𝑛) ≤ 𝜆2𝜂(𝜎𝑛−1, 𝜎𝑛) ≤ ⋯ ≤ 𝜆𝑛𝜂(𝜎0, 𝜎1)                                 (3.7)                                                                                                                           

 

Taking the limit 𝑛 tends to infinity in inequality (3.7), we get 

 

                                     lim
𝑛→∞

𝜂(𝜎𝑛, 𝜎𝑛+1) = 0.                                                                                  (3.8) 
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In what follows, we want to show that the sequence {𝜎𝑛} is a Cauchy sequence. Now suppose that, 𝑚, 𝑛 ∈ 𝑁 with 

𝑚 > 𝑛. If 𝜎𝑛 = 𝜎𝑚, then 𝛤𝑚𝜎0 = 𝛤𝑛𝜎0. This implies that 𝛤𝑚−𝑛(𝛤𝑛𝜎0) = 𝛤𝑛𝜎0. Thus, we have 𝛤𝑛𝜎0 is the fixed 

point of 𝛤𝑚−𝑛. Also,  

 

                                𝛤(𝛤𝑚−𝑛(𝛤𝑛𝜎0)) = 𝛤𝑚−𝑛(𝛤(𝛤𝑛𝜎0)) = 𝛤(𝛤𝑛𝜎0)                                              (3.9) 

 

It means that, 𝛤(𝛤𝑛𝜎0) is the fixed point of 𝛤𝑚−𝑛. Thus, 𝛤(𝛤𝑛𝜎0) = 𝛤𝑛𝜎0. So, 𝛤𝑛𝜎0 is the fixed point of 𝛤. Now, 

suppose that 𝜎𝑛 ≠ 𝜎𝑚. Then from inequality (3.8) and using (s3), we get 

 

                            lim sup
𝑛→∞

 𝜂(𝜎𝑛, 𝜎𝑛+2) ≤ 𝑠 lim sup
𝑛→∞

 𝜂(𝜎𝑛+1, 𝜎𝑛+2) ≤ 𝑠 lim sup
𝑛→∞

{ 𝜆𝑛+1𝜂(𝜎0, 𝜎1)} = 0.         (3.10) 

 

Hence, lim sup
𝑛→∞

 𝜂(𝜎𝑛, 𝜎𝑛+2) = 0. Similarly, we have 

 

                              lim sup
𝑛→∞

 𝜂(𝜎𝑛 , 𝜎𝑛+3) ≤ 𝑠 lim sup
𝑛→∞

 𝜂(𝜎𝑛+2, 𝜎𝑛+3) ≤ 𝑠 lim sup
𝑛→∞

{ 𝜆𝑛+2𝜂(𝜎0, 𝜎1)} = 0.       (3.11)  

Inductively, one can conclude that lim sup
𝑛→∞

{𝜂(𝜎𝑛 , 𝜎𝑚): 𝑚 > 𝑛} = 0. Thus {𝜎𝑛} is a Cauchy sequence in a complete 

super metric space (𝔇, 𝜂, 𝑠), the sequence {𝜎𝑛} converges to 𝜎∗ ∈ 𝔇. We claim that 𝜎∗ is the fixed point of 𝛤. On 

the contrary, assume 𝜂( 𝜎∗, 𝛤 𝜎∗) > 0. Note that 

 

                                        𝜂(𝜎𝑛+1, 𝛤𝜎∗) = 𝜂(𝛤𝜎𝑛, 𝛤𝜎∗) 

≤ 𝜆(𝜂(𝜎∗, 𝛤𝜎∗))
𝛼

(𝜂(𝜎𝑛, 𝛤𝜎𝑛))
1−𝛼

 

                                 = 𝜆(𝜂(𝜎∗, 𝛤𝜎∗))
𝛼

(𝜂(𝜎𝑛 , 𝜎𝑛+1))
1−𝛼

→ 0   as 𝑛 → 0.                        (3.12) 

  

Thus, 𝜂(𝜎𝑛+1, 𝛤𝜎∗)  = 0. If there is 𝑁 > 0 such that for all 𝑛 > 𝑁 such that 𝜎𝑁+1 = 𝜎∗, then we can conclude 

that 𝜂(𝜎∗, 𝛤𝜎∗) = 0 and so 𝜎∗ is the fixed point for 𝛤𝜎∗. Otherwise, suppose that for all 𝑛 ∈ ℕ, 𝜎𝑛 ≠ 𝜎∗. Thus, 

we have, 

 

                                𝜂(𝜎∗, Γ𝜎∗) ≤ lim sup
𝑛→∞

𝜂(𝜎𝑛+1, Γ𝜎∗)                                                         (3.13) 

 

and one can conclude that 𝜂(𝜎∗, 𝛤𝜎∗) = 0, which is a contradiction. Hence 𝜎∗ = 𝛤𝜎∗ is the fixed point of 𝛤 in 𝔇. 

We shall now prove the uniqueness of the fixed point. If 𝜍∗ ∈ 𝔇 is another fixed point of 𝛤, that is, 𝛤𝜍∗ = 𝜍∗, then 

we get 

 

𝜂(𝜎∗, 𝜍∗) = 𝜂(𝛤𝜎∗, 𝛤𝜍∗) ≤ 𝜆(𝜂(𝜎∗, 𝛤𝜎∗))
𝛼

(𝜂(𝜍∗, 𝛤𝜍∗))
1−𝛼

≤ 0 

which is a contradiction, and hence, 𝜎∗ = 𝜍∗. 

 

Theorem 3.6 Let (𝔇, 𝜂, 𝑠) be a complete super metric space and 𝛤: 𝔇 → 𝔇 be a (𝜆, 𝛼, 𝛽)-interpolative Kannan 

contraction. Then 𝛤 has a unique fixed point. 

 

Proof Following the steps of proof of Theorem 3.5, we construct the sequence {𝜎𝑛}  by iterating 

 

                                              𝜎𝑛+1 = 𝛤 𝜎𝑛, ∀ 𝑛 ∈ 𝑁, 

 

where 𝜎0 ∈ 𝔇 is arbitrary starting point. Then, by (3.2), we have 

 

                                     𝜂(𝜎𝑛, 𝜎𝑛+1) = 𝜂(𝛤𝜎𝑛−1, 𝛤𝜎𝑛) 

                                                             ≤ 𝜆(𝜂(𝜎𝑛−1, 𝛤𝜎𝑛−1))
𝛼

(𝜂(𝜎𝑛, 𝛤𝜎𝑛))
𝛽

    
                                   

                                                             = 𝜆(𝜂(𝜎𝑛−1, 𝜎𝑛))
𝛼

(𝜂(𝜎𝑛 , 𝜎𝑛+1))
𝛽
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Since 𝛼 < 1 − 𝛽, the last inequality gives  

 

                        𝜂(𝜎𝑛, 𝜎𝑛+1)1−𝛽 ≤ 𝜆𝜂(𝜎𝑛−1, 𝜎𝑛)𝛼 ≤ 𝜆𝜂(𝜎𝑛−1, 𝜎𝑛)1−𝛽                                              (3.14)                                                                    

 

Hence 

 

𝜂(𝜎𝑛, 𝜎𝑛+1) ≤ 𝜆
1

1−𝛽𝜂(𝜎𝑛−1, 𝜎𝑛) ≤ 𝜆𝜂(𝜎𝑛−1, 𝜎𝑛) 

 

and then 

 

                                    𝜂(𝜎𝑛, 𝜎𝑛+1) ≤ 𝜆𝑛𝜂(𝜎0, 𝜎1)                                                                            (3.15) 

                                                                                                                

 

and in taking the limit from the above inequality, we get 

 

                                       lim
𝑛→∞

𝜂(𝜎𝑛, 𝜎𝑛+1) = 0.                                                                                  (3.16) 

 

As already elaborated in the proof of Theorem 3.5, the classical procedure leads to the existence of a fixed-point  

𝜎∗ ∈ 𝔇. Now, we prove the uniqueness of 𝜎∗. If 𝜍∗ ∈ 𝔇 is another fixed point of 𝛤, that is, 𝛤𝜍∗ = 𝜍∗, then from 

(3.2), we get 

 

                      𝜂(𝜎∗, 𝜍∗) = 𝜂(𝛤𝜎∗, 𝛤𝜍∗) ≤ 𝜆(𝜂(𝜎∗, 𝛤𝜎∗))
𝛼

(𝜂(𝜍∗, 𝛤𝜍∗))
𝛽

≤ 0                                  (3.17) 

 

This yields that 𝜎∗ = 𝜍∗. This completes the proof. 

 

Theorem 3.7 Let (𝔇, 𝜂, 𝑠) be a complete super metric space and 𝛤: 𝔇 → 𝔇 be a (𝜆, 𝛼, 𝛽, 𝛾)-interpolative Reich 

contraction. Then 𝛤 has a unique fixed point. 

 

 

Proof Following the steps of proof of Theorem 3.5, we construct the sequence {𝜎𝑛}  by iterating 

 

                                                 𝜎𝑛+1 = 𝛤 𝜎𝑛 , ∀ 𝑛 ∈ ℕ, 

 

where 𝜎0 ∈ 𝔇 is arbitrary starting point. Then, by (3.3), we have 

 

                       𝜂(𝜎𝑛, 𝜎𝑛+1) = 𝜂(𝛤𝜎𝑛−1, 𝛤𝜎𝑛) 

                                             ≤ 𝜆(𝜂(𝜎𝑛−1, 𝜎𝑛))
𝛼

(𝜂(𝜎𝑛−1, 𝛤𝜎𝑛−1))
𝛽

(𝜂(𝜎𝑛, 𝛤𝜎𝑛))
𝛾

            

                                             = 𝜆(𝜂(𝜎𝑛−1, 𝜎𝑛))
𝛼+𝛽

(𝜂(𝜎𝑛, 𝜎𝑛+1))
𝛾
                  

 

Since 𝛼 + 𝛽 < 1 − 𝛾, the last inequality gives  

 

                           (𝜂(𝜎𝑛, 𝜎𝑛+1))
1−𝛾

≤ 𝜆(𝜂(𝜎𝑛−1, 𝜎𝑛))
𝛼+𝛽

≤ 𝜆(𝜂(𝜎𝑛−1, 𝜎𝑛))
1−𝛾

                            (3.18)                                                 

 

Hence 

 

𝜂(𝜎𝑛 , 𝜎𝑛+1) ≤ 𝜆
1

1−𝛾𝜂(𝜎𝑛−1, 𝜎𝑛) ≤ 𝜆𝜂(𝜎𝑛−1, 𝜎𝑛) 

 

and then 

                                    𝜂(𝜎𝑛, 𝜎𝑛+1) ≤ 𝜆𝑛𝜂(𝜎0, 𝜎1)                                                                            (3.19) 
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and in taking the limit from the above inequality, we get 

 

           lim
𝑛→∞

𝜂(𝜎𝑛 , 𝜎𝑛+1) = 0.                                                                                                 (3.20) 

 

As already elaborated in the proof of Theorem 3.5, the classical procedure leads to the existence of a fixed-point  

𝜎∗ ∈ 𝔇. Now, we prove the uniqueness of 𝜎∗. If 𝜍∗ ∈ 𝔇 is another fixed point of 𝛤, that is, 𝛤𝜍∗ = 𝜍∗, then from 

(3.3), we get 

 

                  𝜂(𝜎∗, 𝜍∗) = 𝜂(𝛤𝜎∗, 𝛤𝜍∗) 

                                 ≤ 𝜆( 𝜂(𝜎∗, 𝜍∗))
𝛼

(𝜂(𝜎∗, 𝛤𝜎∗))
𝛽

(𝜂(𝜍∗, 𝛤𝜍∗))
𝛾

≤ 0                                                          (3.21)  

 

This yields that 𝜎∗ = 𝜍∗. This completes the proof. 

 

Theorem 3.8 Let (𝔇, 𝜂, 𝑠) be a complete super metric space and 𝛤: 𝔇 → 𝔇 be a (𝜆, 𝛼, 𝛽)-interpolative Dass-

Gupta rational contraction. Then 𝛤 has a unique fixed point. 

 

Proof Following the steps of proof of Theorem 3.5, we construct the sequence {𝜎𝑛}  by iterating 

 

                                         𝜎𝑛+1 = 𝛤 𝜎𝑛, ∀ 𝑛 ∈ ℕ, 

 

where 𝜎0 ∈ 𝔇 is arbitrary starting point. Then, by (3.4), we have 

 

                                         𝜂(𝜎𝑛, 𝜎𝑛+1) = 𝜂(𝛤𝜎𝑛−1, 𝛤𝜎𝑛) 

                                                                 ≤ 𝜆(𝜂(𝜎𝑛−1, 𝜎𝑛))
𝛼

(
[1+𝜂(𝜎𝑛−1,𝛤𝜎𝑛−1)]𝜂(𝜎𝑛,𝛤𝜎𝑛)

1+𝜂(𝜎𝑛−1,𝜎𝑛)
)

𝛽

 

                                                                 ≤ 𝜆(𝜂(𝜎𝑛−1, 𝜎𝑛))
𝛼

(
[1+𝜂(𝜎𝑛−1,𝜎𝑛)]𝜂(𝜎𝑛,𝜎𝑛+1)

1+𝜂(𝜎𝑛−1,𝜎𝑛)
)

𝛽

      

                                                                          = 𝜆(𝜂(𝜎𝑛−1, 𝜎𝑛))
𝛼

(𝜂(𝜎𝑛, 𝜎𝑛+1))
𝛽

 

       

Since 𝛼 + 𝛽 < 1, the last inequality gives  

 

(𝜂(𝜎𝑛, 𝜎𝑛+1))
1−𝛽

≤ 𝜆(𝜂(𝜎𝑛−1, 𝜎𝑛))
𝛼

≤ 𝜆(𝜂(𝜎𝑛−1, 𝜎𝑛))
1−𝛽

 

 

i.e.                                             𝜂(𝜎𝑛, 𝜎𝑛+1) ≤ 𝜆
1

1−𝛽𝜂(𝜎𝑛−1, 𝜎𝑛) ≤ 𝜆𝜂(𝜎𝑛−1, 𝜎𝑛) 

 

and then 

 

                                          𝜂(𝜎𝑛, 𝜎𝑛+1) ≤ 𝜆𝑛𝜂(𝜎0, 𝜎1)                                                                      (3.22) 

 

and in taking the limit from the above inequality, we get 

 

                                       lim
𝑛→∞

𝜂(𝜎𝑛, 𝜎𝑛+1) = 0.                                                                                  (3.23) 

 

 

As already elaborated in the proof of Theorem 3.5, the classical procedure leads to the existence of a fixed-point  

𝜎∗ ∈ 𝔇. Now, we prove the uniqueness of 𝜎∗. If 𝜍∗ ∈ 𝔇 is another fixed point of 𝛤, that is, 𝛤𝜍∗ = 𝜍∗, then from 

(3.4), we get 
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                                      𝜂(𝜎∗, 𝜍∗) = 𝜂(𝛤𝜎∗, 𝛤𝜍∗) 

                                                      ≤ 𝜆(𝜂(𝜎∗, 𝜍∗))
𝛼

(
[1+𝜂(𝜎∗,𝛤𝜎∗)]𝜂(𝜍∗,𝛤𝜍∗)

1+𝜂(𝜎∗,𝜍∗)
)

𝛽

 

                                                      = 0                                                                                                           

 

This yields that 𝜎∗ = 𝜍∗. This completes the proof. 

 

4 Conclusion  
 

In this paper, using the new framework of super metric spaces, we introduced the concept of (𝜆, 𝛼)-interpolative 

Kannan contraction, (𝜆 𝛼, 𝛽)-interpolative Kannan contraction and (𝜆, 𝛼, 𝛽, 𝛾)-interpolative Riech contraction 

and (𝜆 𝛼, 𝛽)-interpolative Dass-Gupta rational contraction and proved the existence of fixed points for self-

mapping.  
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