
RESEARCH ARTICLE

PandoGen: Generating complete instances of

future SARS-CoV-2 sequences using Deep

Learning

Anand RamachandranID, Steven S. Lumetta, Deming ChenID*

University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America

* dchen@illinois.edu

Abstract

One of the challenges in a viral pandemic is the emergence of novel variants with different

phenotypical characteristics. An ability to forecast future viral individuals at the sequence

level enables advance preparation by characterizing the sequences and closing vulnerabili-

ties in current preventative and therapeutic methods. In this article, we explore, in the con-

text of a viral pandemic, the problem of generating complete instances of undiscovered viral

protein sequences, which have a high likelihood of being discovered in the future using pro-

tein language models. Current approaches to training these models fit model parameters to

a known sequence set, which does not suit pandemic forecasting as future sequences differ

from known sequences in some respects. To address this, we develop a novel method,

called PandoGen, to train protein language models towards the pandemic protein forecast-

ing task. PandoGen combines techniques such as synthetic data generation, conditional

sequence generation, and reward-based learning, enabling the model to forecast future

sequences, with a high propensity to spread. Applying our method to modeling the SARS-

CoV-2 Spike protein sequence, we find empirically that our model forecasts twice as many

novel sequences with five times the case counts compared to a model that is 30× larger.

Our method forecasts unseen lineages months in advance, whereas models 4× and 30×
larger forecast almost no new lineages. When trained on data available up to a month before

the onset of important Variants of Concern, our method consistently forecasts sequences

belonging to those variants within tight sequence budgets.

Author summary

Viral protein sequences play a pivotal role in the spread of a pandemic. As the virus

evolves, so do the viral proteins, increasing the potency of the virus. Knowledge of future

viral protein sequences can be invaluable because it allows us to test the efficacy of preven-

tative and treatment methods against future changes to the virus, and tailor them to such

changes early. We attempt to forecast viral proteins ahead of time. Making such predic-

tions is very challenging and complex because the prediction target is a sequence with

thousands of positions, and a single mis-predicted sequence position may invalidate the

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 1 / 31

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ramachandran A, Lumetta SS, Chen D

(2024) PandoGen: Generating complete instances

of future SARS-CoV-2 sequences using Deep

Learning. PLoS Comput Biol 20(1): e1011790.

https://doi.org/10.1371/journal.pcbi.1011790

Editor: Samuel V. Scarpino, Northeastern

University, UNITED STATES

Received: August 22, 2023

Accepted: December 27, 2023

Published: January 19, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1011790

Copyright: © 2024 Ramachandran et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data used for the

study are available at GISAID’s EpiCov repository,

as well as from the UniRef database. Accession IDs

of GISAID sequences have been deposited in

GISAID under the following EPISET_ID:

https://orcid.org/0000-0001-7042-0244
https://orcid.org/0000-0002-3016-0270
https://doi.org/10.1371/journal.pcbi.1011790
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011790&domain=pdf&date_stamp=2024-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011790&domain=pdf&date_stamp=2024-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011790&domain=pdf&date_stamp=2024-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011790&domain=pdf&date_stamp=2024-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011790&domain=pdf&date_stamp=2024-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011790&domain=pdf&date_stamp=2024-01-31
https://doi.org/10.1371/journal.pcbi.1011790
https://doi.org/10.1371/journal.pcbi.1011790
http://creativecommons.org/licenses/by/4.0/

entire prediction. Also, as the virus continues to evolve, the data available to train models

becomes obsolete. Addressing these challenges, we create a novel approach to train mod-

els of the SARS-CoV-2 Spike protein, that are especially tailored to forecasting future

sequences. Models trained using this approach outperform existing approaches in their

effectiveness. In addition, our method can train models to forecast important pandemic

variants ahead of time.

1 Introduction

In the midst of a viral pandemic, many policies and therapeutics are geared towards preven-

tion and advance preparation. However, many such public health and preventative protocols

in place are constantly under threat of being upended by evolutionary changes in the virus. In

this context, we ask the question—is it possible to computationally generate complete, self-

contained, and as-yet undiscovered instances of biological sequences of a virus that is presently

causing a viral pandemic? We treat this question within the scope of the SARS-CoV-2 virus,

specifically with respect to the Spike protein sequence, which is the initiator of a SARS-CoV-2

infection cycle. An ability to generate viral sequences ahead of time comes with many obvious

and powerful benefits. If we know which viral sequences will be encountered in the future, we

can study the characteristics of these sequences in vitro, and prepare ahead of time, by closing

gaps in existing therapeutic interventions or preventative methods.

Recent developments in methods such as Deep Mutational Scanning (DMS) [1] have

enabled us to probe the entirety of the Spike protein sequence, and learn properties such as

potential for antibody escape, and binding affinity of the protein to the ACE-2 receptor [2], a

key step in the host cell entry process for the virus, thus providing effective means to test viral

sequences once they are generated.

Coincidentally, in Deep Learning, models used for language modeling, called Large Lan-

guage Models (LLM) have achieved breakthrough results in generating complete, self-con-

tained, and realistic examples of complex sequence data. LLMs achieve ground-breaking

performance in following human instructions faithfully [3, 4] and perform at the human-level

in competitive programming [5]. Models based on LLM architectures have recently gained

popularity in modeling biological sequences as well [6, 7] and can be useful tools in generating

sequences with interesting properties [8–10]. When applied to proteins these models are

referred to as Protein Language Models (PLMs) in literature.

PLMs are of two flavors. Masked Language Models (MLM) such as ProtTrans [7] and ESM

[11] learn vector representations of proteins at the sequence or residue level by learning to pre-

dict randomly masked positions in a known protein sequence. The vector representations

learnt by these models are used in downstream tasks for predicting structural and functional

characteristics of sequences. The second type of PLMs are autoregressive models such as Prot

GPT2 [8], RITA [12], ProGen [10], and ProGen2 [13] which learn to generate protein

sequences by sampling one residue at a time, conditioned on all residues generated so far. In

addition to inference tasks where properties of a given protein sequence are predicted, these

models have also been used to generate artificial protein sequences in an unconstrained man-

ner, or within specific protein families. A hallmark of PLMs is their ability to learn through

self-supervision from unlabeled data and make complex predictions, achieving state-of-the-art

performance.

Naturally-occurring protein sequences reside in a small subspace of an exponentially large

space of sequences defined on the amino acid alphabet. For example, for a sequence length of

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 2 / 31

EPI_SET_230807ta. The UniRef50 database

version used in this article is 2019_09. The source

code for PandoGen is available at https://github.

com/UIUC-ChenLab/PandoGen as open-source

software under the MIT license.

Funding: This material is based upon work

supported by the National Science Foundation

under Grant Nos. CNS 1624790, and CNS

1337732. This work also utilizes resources

supported by the National Science Foundation’s

Major Research Instrumentation program, grant

#1725729, as well as the University of Illinois at

Urbana-Champaign. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors declare that they

have no competing interests.

https://doi.org/10.1371/journal.pcbi.1011790
https://github.com/UIUC-ChenLab/PandoGen
https://github.com/UIUC-ChenLab/PandoGen

1273 (the Spike protein reference sequence length), there are 201273 possible amino acid

sequences. However, less than a few million unique Spike sequences have been reported so far.

In language and protein generation tasks, LLMs and PLMs have shown an ability to generate

sensible (for language), plausible (for protein), and sufficiently varied and representative

sequences (for both language and protein) from within an exponentially large space of all pos-

sible sequences. Hence, PLMs represent a promising method to solve the problem of advance

pandemic sequence forecasting end-to-end, which involves recalling a sufficiently large cohort

of novel protein sequences with a high chance to be discovered in the future in nature. PLMs’

ability to work without complex, expensive annotations or labeling (e.g., sequence alignment

or laboratory classification of sequences) represent another significant advantage.

However, the problem of advance generation of the complete Spike protein sequence has

not been studied before. While PLMs have been used to label Spike mutations with properties

[14, 15] or to generate individual mutations, or sub-sequences within certain regions of the

Spike protein [16, 17], they have not been applied to the problem of advance generation of com-

plete Spike protein sequences. Other machine learning methods have been developed to analyze

the Spike protein, where they are used to characterize individual Spike mutations or effects of

mutations on Spike sub-sequences [18–21]. The goal in these studies is to either identify muta-

tions in existing data that have public health implications, or to identify mutated sub-sequences

of the Spike protein that may contribute to the potency of the virus. However, these works are

not applied to the problem of generating complete Spike protein instances in advance.

The problem of advance generation of complete Spike protein instances presents some

unique and novel challenges that do not exist in other types of generation problems. By

advance sequence generation, we imply a specific type of evaluation criterion for the generated

sequences: a novel generated sequence must exactly match a sequence that will be discovered

in the future, to be considered successful. In addition, the usefulness of generated sequences

depends on how infectious the forecasted sequences prove to be. For example, a vast majority

of SARS-CoV-2 sequences in the GISAID repository [22] have only been recorded once. These

likely represent viral individuals that are not very infectious and hence generating them does

not present interesting advance information. We want to generate sequences showing higher

propensity to spread, as evidenced by real epidemiological information, rather than through

simulated or estimated characteristics using computational or laboratory techniques. That is,

while sequence generation happens in silico, the evaluation is neither in silico or in vitro, but

against in vivo sequences. Let’s examine these challenges in greater detail.

First, the requirement of generating complete sequences that exactly match a small discrete

set of possibilities is distinct from several popular generation problems in language, vision and

bioinformatics. For instance, in language, human evaluation is typically used to determine

whether an LLM completed a task correctly, and the results are graded on a scale, with a large

number of acceptable responses to a given prompt or prefix [3]. In the case of protein sequence

generation, quality is usually determined in silico [8, 13] or in vitro [9] by measuring a small

set of properties of the generated sequences in aggregate, such as sequence similarity, stability,

and fold prediction. Prior generative work related to the Spike protein only evaluated individ-

ual mutations [16], or generated sub-segments of the Spike protein carrying point mutations

using methods that are not scalable to the full sequence generation task [17] (where possible,

we have included prior work in our experiments). Thus, the generated output is either a

response to a prefix in the case of language (partial generation), not entirely correct or incor-

rect based on small discrete set membership (language, prior bioinformatics works), or only

examines sub-sequences or individual mutations of the virus (partial generation). Unlike these

approaches, our problem setting, which requires generating long, self-contained sequences

that match a strict solution set is more akin to generating computer code. Like in code, where

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 3 / 31

https://doi.org/10.1371/journal.pcbi.1011790

a syntax error can cause catastrophic failure, in our case, even a single mispredicted amino

acid can result in the answer being invalidated. However, unlike code, we do not have certain

tools such as compilers or test-benches that would allow us to filter a large fraction of bad gen-

erated samples [5], to obtain a high quality output set.

Second, the problem of generating future sequences is unique to pandemic sequence gener-

ation. Traditionally, generative models are trained using a known set of sequences related to a

task, during which the models learn the distribution of the training data. Large PLMs do this

in two steps: (1) they are pre-trained on a general database of proteins which contains

sequences belonging to various different protein families sourced from various different

organisms such as those found in the UniProt database [23], and (2) they are finetuned on the

specific subfamily of proteins that are desired to be generated [10, 13]. The use-case of the

models typically requires them to generate sequences from this distribution of known

sequences. In a pandemic situation, there are distinctions between sequences known until a

point in time, and new sequences to come, which means that the data distribution changes

over time. For example, as the pandemic progresses, sequences accumulate more mutations,

and as a result future sequences likely carry a larger number of mutations than the sequences

on which models are trained. Sampling from models, which are trained and finetuned to learn

the data distribution of known sequences is not suited to our purposes which needs to sample

from the future data distribution of unknown sequences, which is different from the known

training set. Hence, models need to learn such arrow of time effects, and existing pre-training

and finetuning methods do not have a mechanism to address this.

Third, generated sequences must be salient. In the context of SARS-CoV-2, this means that

sampled sequences must have non-trivial case counts in public databases. In data downloded

from GISAID on 2022–12-02, there are 852, 529 unique Spike sequences, out of which only 52,

409 (6.1%) sequences had been reported 10 or more times, and 587, 706 sequences had been

reported exactly once. Our goal is that generated sequences from our models should go on to

have non-trivial case counts in GISAID, not just that they are simply discovered in the future.

Given that the vast majority of available sequences do not fit this criterion, the training scheme

needs to use the available data efficiently. It needs to use all sequences to learn the basic struc-

tural aspects of the protein to be generated, but at the same time, needs to prioritize character-

istics found in a subset of the available data (more infectious sequences) at the time of

generating output sequences.

In this article, we propose a method to solve these challenges and train a generative model

to forecast future SARS-CoV-2 Spike sequences. As mentioned above, we need the model to

learn to generate data according to data distribution that is in the future. However, such data is

not available. Hence, we generate training data ourselves from a generative model that is

trained following standard practices. This generated training data suffers from the issues dis-

cussed before, when taken in aggregate; however, due to the use of sampling, there will be a

small subset of the data that has desirable properties, namely unknown sequences with high

potential for infectiousness. We mark such subsets in the generated data, and feed it back to

the model to learn, where the model learns the characteristics of the type of data that it should

not generate, as well as the characteristics of the type of data that it should generate. The cycle

of generation! labeling! training is repeated in an iterative manner, helping the model

zoom in more and more on the types of sequences that are desired. During this process, guard-

rails are applied so that the model does not deviate too far from the SARS-CoV-2 Spike

sequence space. All the models and methods, including the generative model and the method

used to label generated sequences, use only currently known data directly available from public

data sources, without additional in vitro experiments to characterize synthetic sequences. We

will zoom in on a few details below.

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 4 / 31

https://doi.org/10.1371/journal.pcbi.1011790

During the iterative refinement process described above, we label the generated sequences

with two attributes: (1) whether a generated sequence is already known and (2) if it is an

unknown sequence, what is its potential for infectiousness. Labeling whether a sequence is

known is accomplished by comparing to existing sequences. To label a sequence with its

potential for infectiousness, we use a model that we train, called the reward model. The reward

model is trained using only data that is already available, that is, the same data that was used to

train the generative model. The reward model is trained to determine the winning odds in

pairwise games between known sequences. To play a game, all known instances, in a public

database, of two sequences are assembled in the game arena, and then an instance is randomly

selected from this mix. The sequence whose instance is selected is the winner in the game

(Fig 1). It is difficult to define infectiousness potential based purely on sequence occurrence

data in public databases, as there may be confounding factors such as maturity of sequence

surveillance, number of variants in circulation, disease penetration etc. Through our pairwise

game prediction strategy, we avoid the need to learn absolute potentials, and instead help the

model learn relative potentials. Also, only fair games are played in our training scheme. The

Fig 1. Training the reward model. If two sequences are first reported within a short timeframe of each other, a pairwise game can be played between

them. To play the game, all instances of the two sequences within the training period are collected into the game arena, and an instance is randomly

sampled. The sequence whose instance is sampled is the winner. To train the reward model, we ask the reward model to produce a potential, γ, for each

sequence that is involved in the game. Using these potentials, we calculate the winning probability for each sequence. The ground-truth distribution of

wins and losses is calculated from the occurrence counts of the two sequences. The calculated outcome distribution is trained to be similar to the

ground-truth distribution.

https://doi.org/10.1371/journal.pcbi.1011790.g001

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 5 / 31

https://doi.org/10.1371/journal.pcbi.1011790.g001
https://doi.org/10.1371/journal.pcbi.1011790

goal of defining fair games is that the case counts of sequences in public databases are largely

reflective of the infectiousness of the sequences. Specifically, for playing a game between two

sequences, (1) we need the sequences to be first reported close to each other in time (2) we

need sequence count ratios to be similar in two disjoint geographic regions and (3) we require

that the sequences have been in circulation for many weeks. These steps are intended to build

robustness against variations in sequence case counts due to factors outside of infectiousness.

Additional details and limitations of the reward modeling approach are in Section 4.5.

To finetune the generative model using this in silico data, we combine two different meth-

ods: conditional generation [24] which has been used before to produce sequences of a specific

type, and reward-based training [25], which has been used before to improve quality of gener-

ated Natural Language sequences, namely to reduce toxicity and improve alignment to human

intent. Fig 2 illustrates the procedure. In conditional generation, a generative model is speci-

fied a condition, under which to generate a sequence. In our case, we define two conditions.

• Condition 1: to generate known sequences and

• Condition 2: to generate unknown sequences

If an in silico training sequence carries a label of “known sequence”, during iterative fine-

tuning, the model learns to generate this sequence conditioned on Condition 1. For unknown

sequences in the in silico dataset, we use the reward model to create floating point scores

which are quantized into discrete values. These discrete quanta form a sub-condition within

Condition 2. Hence for Condition 2, the model learns to generate sequences based on Condi-

tion 2 and a sub-condition that specifies the sequence quality. In practice, the conditions and

Fig 2. PandoGen flow. First, a SARS-CoV-2 deep autoregressive (SDA) model is prepared following standard practices for training PLMs, first

pretraining it on UniProt and then finetuning on GISAID sequences. From the SDA model, a reward model is trained to predict winners in pairwise

games between known sequences. Next, the SDA model initializes the PandoGen model which is improved in an iterative process. First, the model is

used to generate in silico sequences, which are then classified as known (K) and unknown (U) sequences. Unknown sequences are scored using the

reward model and scores are quantized (γ). An in silico sequence (X), and its labels, (K or (U, γ)) are added to a data pool. Samples from the data pool

are used to finetune the PandoGen model while keeping it close to the SDA model. During the generation process PandoGen is conditioned to generate

unknown (U), highly infectious sequences, which is indicated through the highest reward quantile, γH. PPandoGen is the probability distribution of the

PandoGen model, and PSDA is the probability distribution of the SDA model. DKL is the KL-divergence measure between two distributions.

https://doi.org/10.1371/journal.pcbi.1011790.g002

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 6 / 31

https://doi.org/10.1371/journal.pcbi.1011790.g002
https://doi.org/10.1371/journal.pcbi.1011790

the sub-conditions are flattened into a single generation framework. When the model is used

to generate sequences, it is conditioned to generate unknown, high-quality sequences. The

combination of conditional generation and reward modeling allow us to inculcate two crucial

capabilities that are essential to solving the problem of advance pandemic sequence generation

in our model, namely, the ability to learn about the arrow of time by differentiating between

known and unknown sequences, and the ability to learn, for unknown sequences, properties

related to higher likelihood of being discovered widely in nature.

PandoGen can be applied as a finetuning step on top of existing training and finetuning

methods. We applied PandoGen to the problem of modeling the SARS-CoV-2 Spike protein.

To evaluate its performance and compare it to other methods, we trained all methods on

sequences available until a pre-designated cutoff date, and evaluated sequences generated from

the methods on sequences reported in GISAID after that date. In the sequel, we refer to the

date on or before the pre-designated cutoff date as the training period. We also trained Pando-

Gen on sequences available many days prior to the first reporting of dominant variants of the

virus, namely the Delta variant, Omicron BA.5, Omicron BQ.1 and Omicron XBB.1.5 variants,

and tested whether sequences generated from PandoGen, within a strict sequence budget,

guided by the scale of recent DMS experiments, contain sequences belonging to these variants.

The following are a summary of our most significant results.

• We present PandoGen, the first model to forecast complete SARS-CoV-2 Spike protein

sequences, generating novel sequences and lineages ahead of time. Our method uses only

information available in a public sequence database, and does not need additional in vitro
experiments or sequence characterizations of any type. We present novel approaches to tai-

lor the model’s training process towards the goal of forecasting future SARS-CoV-2

sequences. These approaches differ from standard practices of training Protein Language

Models.

• PandoGen presents several new techniques to address the problem of pandemic sequence

forecasting. We have tailored and integrated several methods to fit to the problem, namely,

1. in silico training data generation to address the arrow of time effects in known data

2. conditional generation to encourage model to focus on unknown sequences rather than

known sequences

3. reward-based finetuning to encourage model to produce infectious sequences

• When generating an equal number of sequences, and a similar number of novel sequences,

PandoGen forecasts up to four times as many sequences as a model that is 4 times bigger,

and two times as many sequences as a model that is 30 times bigger. A novel sequence is a

sequence that was never reported in GISAID in the training period. A forecast, is a sequence

that is a novel sequence, which will be reported in GISAID after the training period.

• When generating an equal number of sequences and a similar number of novel sequences,

sequences forecasted by PandoGen account for 10 times as many cases in GISAID as

sequences from a model that is 4 times bigger. The case count ratio is 5 compared to a model

that is thirty times bigger.

• PandoGen forecasts many novel lineages, whereas competing methods fail to reliably fore-

cast novel lineages of the virus, instead generating sequences from already known lineages.

Similar to a novel sequence, a novel lineage is a lineage that was never reported in GISAID

in the training period, and a forecasted lineage is a novel lineage that was reported in

GISAID after the training period.

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 7 / 31

https://doi.org/10.1371/journal.pcbi.1011790

• When asked to generate over 16,000 sequences, PandoGen forecasts lineages first reported

up to 10 weeks after the training period, accounting for close to 25% of all novel lineages

reported in the 10 week period after the training end date.

• When generating an equal number of sequences, and a similar number of novel sequences,

PandoGen forecasts close to 7 times the number of salient sequences as competing methods.

By a salient sequence, we mean a sequence that has at least 10 cases reported in GISAID

through its lifetime.

• When trained on sequences only avilable prior to the reporting of certain dominant variants

in GISAID, PandoGen is able to generate sequences belonging to those variants consistently

within a strict sequence budget. This holds true for the Delta variant (1 month ahead), Omi-

cron BA.5 (10 days ahead), and Omicron BQ.1 (1 month ahead). We also report that Pando-

Gen failed to forecast the Omicron XBB.1.5 variant.

In the next section, we outline our experiments and results in more detail. In the subse-

quent section, we describe the methodology behind PandoGen in greater detail.

2 Results

We present two sets of results: 1) Quantitative comparisons of PandoGen with baseline meth-

ods and 2) Testing the efficacy of PandoGen in forecasting important COVID-19 variants.

2.1 Quantitative comparisons

2.1.1 Training models to forecast SARS-CoV-2 sequences. As mentioned before, the

problem of advance generation of complete viral sequences has not been studied before. Exist-

ing approaches for finetuning PLMs depend on transfer learning [26], where a PLM is first

pre-trained on a large protein dataset, and then it is finetuned on a problem-specific protein

dataset. Both pre-training and finetuning try to fit model parameters to the respective datasets

by maximizing the likelihood of the dataset under the model. As PLMs are autoregressive

models, the likelihood of a dataset, D, under model parameters, Θ, is written as follows where

L(X) represents the length of the sequence X, and Θ represents the parameters of the model.

log PðD;YÞ ¼
X

X2D

XLðXÞ

i¼1

log PðxijX1:i� 1;YÞ ð1Þ

Parameters are typically fit to the data during pre-training and finetuning by calculating the

log-likelihood over the data in a batched fashion and improving it through gradient descent.

To determine the efficacy of current approaches, and to compare them to PandoGen, we train

a model from scratch using prevalent practices, and finetune two pre-trained models from lit-

erature on SARS-CoV-2 data. For the model that we trained from scratch, we performed pre-

training on the UniProt database and finetuning on SARS-CoV-2 data. This allows us to com-

pare PandoGen to an equivalent model that undergoes all training steps in an identical manner

except the final PandoGen finetuning step, thus providing the most faithful measure of the

improvement produced by the PandoGen finetuning step.

Prot GPT2 is a protein generation model obtained by training a model based on the GPT2

LLM [27] architecture to generate amino acid token sequences. An amino acid token is a k-

mer from a pre-determined alphabet of k-mers of amino acids, produced from an analysis of a

protein repository such as UniProt. The k-mers are not necessarily of the same length. Prot

GPT2 uses the same tokenization algorithm as GPT2. Prot GPT2 has been applied in limited

capacity to the Spike protein modeling problem [16], for the purposes of generating individual

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 8 / 31

https://doi.org/10.1371/journal.pcbi.1011790

mutations in the Receptor Binding Domain (RBD) sub-segment of the Spike protein. In this

article, we present the first application of Prot GPT2 as a de novo generator of complete Spike

protein sequences. Prot GPT2 has close to 800 million trainable parameters. Among other gen-

erative protein language models, we examined ProGen [10], RITA [12] and ProGen2 [13]. We

selected the largest model variant from among these, which is ProGen2. Model scaling is a typ-

ical approach to obtaining higher performance from LLMs and PLMs [12], hence we will be

able to pit PandoGen against this approach by doing this. ProGen2 is similarly pretrained as

Prot GPT2, and generates protein sequences one amino acid at a time. The model stands at

over 6 billion trainable parameters. Pretrained model parameters for Prot GPT2 and ProGen2

are available for public access. Both are architectures based on transformers [28].

A related work, ProtFound [17], uses masked language modeling to generate mutated sub-

sequences within the RBD sub-segment of the Spike protein. To do this, positions in the Spike

sub-sequence are masked and the model is asked to fill in the masked locations. Masked lan-

guage models are not scalable generative models because the number of masks that can be

applied to a sequence grows combinatorially with sequence length. To generate instances of

the RBD subsegment using masked language modeling, ProtFound utilized supercomputing

resources. Hence, scaling to the complete SARS-CoV-2 Spike sequence is infeasible. Due to

the scalability issues with masked language models in modeling long sequences, we exclude

the method from this article.

For PandoGen, we create a decoder-only transformer model. This model is similar to Prot

GPT2 and ProGen2 in that it generates sequences element by element, conditioned on already

generated elements. The model operates on individual amino acids like ProGen2, and has

close to 200 million trainable parameters, which puts it at a quarter of the size of Prot GPT2

and 1/30th the size of ProGen2.

We pretrained this model on UniRef50 sequences released prior to the COVID-19 pan-

demic [23]. For convenience, we refer to the pre-trained version of this model as the UniRef50

Deep Autoregressive (UDA) model. Prot GPT2, ProGen2 and UDA models are then finetuned

on unique SARS-CoV-2 Spike protein sequences from the GISAID database [22], which were

reported on or before a pre-designated cut-off date. The period before this cut-off date is desig-

nated the training period. The goal is to forecast sequences that occur after the training period.

The period after the training period is referred to as the evaluation period. The UDA model

finetuned in this way is referred to as the SARS-CoV-2 Deep Autoregressive (SDA) model in

the sequel. The SDA model is finally finetuned using the PandoGen flow described in Section

1. This involves first training the reward model using sequences reported in the training

period, followed by finetuning the SDA model according to the flow in Fig 2. The finished

SDA model is referred to as PandoGen. The reward model is constructed by taking the SDA

model and replacing its final layer with a new layer to produce a reward value rather than per-

form sequence generation. Further details regarding reward modeling are presented in Section

4.5. Details regarding PandoGen finetuning are in Section 4.6.

For Prot GPT2, we trained a second variant where the training set contains all sequences

including repetitions for sequences reported multiple times; that is, if GISAID has a sequence

reported n times, we have n instances of that sequence in the training set. This is done to see

whether representing sequences in proportion to their occurrence in the training data will

help the model learn the population distribution better. The first Prot GPT2 version, men-

tioned in the previous paragraph, which is trained on the unique set of SARS-CoV-2

sequences, is referred to as “Prot GPT2 unenumerated” and the second Prot GPT2 version,

with the repeated sequences in the training set, is referred to as “Prot GPT2 enumerated” in

the sequel. Sequences were sampled from each model finetuned on SARS-CoV-2 Spike

sequences using multiple sampling configurations. Except for ProGen2, each model and

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 9 / 31

https://doi.org/10.1371/journal.pcbi.1011790

sampling configuration was run five or six independent times, each time generating 2048

sequences. Since ProGen2 is a much larger model than the other two, the computational

requirements of the model are very high. To accommodate this within the computational

resources available to us, we ran the ProGen2 model three times for each configuration gener-

ating 2048 sequences each time.

We performed all training and quantitative comparisons using GISAID data snapshot

taken on 2022–12-02. Since we evaluate models based on sequences generated by the models

after the training period, we need to have sufficiently long evaluation period after the training

period to capture the model performance accurately so that all true model predictions are cap-

tured in the evaluations. To account for this, we make an allowance for approximately 1.5

years for evaluation, and designate the training period as on or before 2021–06-15. As will be

seen later, models forecast sequences many months into the future, and this amount of lead

time is warranted for accurate evaluations.

2.1.2 Sampling algorithms and operating points. The unrestricted sampling process

from a deep autoregressive model proceeds as follows

x̂i � Pðxi j X1:i� 1;FÞ ð2Þ

Here, F represents the model parameters. As shown, the ith sequence element, xi, is sampled

from the model distribution, which is conditioned on all previous sequence elements sampled

from the model. This is iteratively performed until the end of sequence is encountered. On the

other extreme, the following greedy search algorithm is also available, which always yields

exactly one sequence, representing one of the most restricted methods of sampling from a

model.

x̂i ¼ arg max
xi

Pðxi j X1:i� 1;FÞ ð3Þ

There are different methods to tune the model’s operating point so that it lies somewhere

between the unrestricted sampling process and the restricted greedy sampling process. We

adopt nucleus sampling [29], a widely popular sampling method used for LLMs.

To explain nucleus sampling, we define a few terms for clarity first. A sequence is an

ordered tuple of sequence elements. Each sequence element is a token that is sampled from the

set of all possible tokens that can appear in the sequence, called the sequence alphabet. Nucleus

sampling filters away noisy cases from the sampling process in Eq 2 by defining a nucleus,

which is a subset of the sequence alphabet, and then sampling from within that nucleus at each

step. The nucleus at step i is defined as follows.

Ni ¼ arg min
jjMjj

�X

x2M

Pðx j X1:i� 1;FÞ � p
�

ð4Þ

Here, M is a subset of the sequence alphabet. The nucleus, Ni, is the smallest subset of this

set for which the sum of the probabilities at timestep i in the sequence generation process is at

least p, a parameter of nucleus sampling. If multiple subsets of the same cardinality satisfy the

condition, the subset, M*, with the maximum sum ∑x2M* P(x j X1:i−1;F) can be selected to

break the tie. The tokens in the sequence alphabet outside Ni are discarded, and the ith

sequence element is sampled from within Ni (the probabilities within Ni are renormalized for

this purpose). The maximum value of p is 1 where the nucleus is the complete sequence alpha-

bet. As p decreases, fewer elements are kept inside the nucleus, reducing the number of poten-

tial outcomes for each sampling step in the sequence generation process. Essentially, this

removes lower likelihood, potentially erroneous, elements from consideration at each

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 10 / 31

https://doi.org/10.1371/journal.pcbi.1011790

sampling step. However, when p is sufficiently small, the nucleus will begin to exclude non-

erroneous, high-information cases. So, at sufficiently low values of p, the model would fail to

output new information. Hence, varying p allows us to explore the trade-off between error

control, and novelty of information in the sampled output.

While p gives us a knob to tune the sampling operation, the value of p alone does not con-

vey a meaningful characterization of the operating point of the model in terms of characteris-

tics of its sequence sample. To provide this characterization, we look to quantify the difference

between a generated sample and the known sequences of SARS-CoV-2. A higher degree of dif-

ference indicates that generated sequences are likely further apart, evolutionarily, from known

sequences. It is natural to expect the models to have a higher error rate when the sample differ-

ence with respect to the training set is higher, as models would need to predict further into the

future in this case. We expect that lower values of p cause the sample difference to be lower

and higher values allow generated sequences to deviate further from the training set.

To quantify sample difference from the known SARS-CoV-2 corpus without expensive

computational overheads, we formulate a method using k-mer matching. This is based on

methods used to determine data quality in genome sequencing [30]. First, we collect all unique

SARS-CoV-2 Spike sequences in the training period. We obtain all the k-mers in these

sequences into a reference k-mer set (k = 11 in our experiments). Next, for each unique

sequence in a generated sample, we count the number of k-mers in the sequence that are not

found in the reference set. Using this, we find the average per-sequence k-mer novelty of the

sample with respect to the reference k-mer set. We designate this quantity as the measure of

sample difference with respect to the reference (training) sample, and refer to this simply as k-

mer distance. Specifically, if Si is the number of k-mers in the ith sequence that are not found in

the reference k-mer set, the k-mer distance for the sample is

PN

i¼1
Si

N , where N is the number of

unique sequences in the sample. Naturally, the higher the k-mer difference of a sample, the fur-

ther it is from the known set of SARS-CoV-2 sequences.

2.1.3 Model comparisons. Prot GPT2 unenumerated, Prot GPT2 enumerated, SDA, Pro-

Gen2, and PandoGen were run through multiple sampling configurations. In each configura-

tion, sampling was performed multiple times per model generating 2048 sequences each time.

One set of 2048 sequences generated this way is referred to as “a sample” below. The global

lower bound for p was chosen to be 0.95 because, at 0.95 the models output very few sequences

not already present in the training set (e.g., “Prot GPT2 unenumerated” produces an average

of only 31 novel out of 2048 generated sequences), and values lower than 0.95 are expected to

produce even less novelty in the output, hence being uninteresting operating points.

Output sequence variety will differ among different models for a given value of p. So, we

removed sampling configurations that produced too few novel sequences (< 20 novel

sequences or 1% of sample size). Second, we wanted to make sure competing models produce a

similar number of novel sequences as the best PandoGen sampling configurations so that com-

parisons are fair to the competing methods. All methods except “Prot GPT2 enumerated” pro-

duce comparable sequence diversity in their output samples compared to PandoGen, whereas

“Prot GPT2 enumerated”, by default, produces very few novel sequences. Hence, we applied a

technique called temperature shaping [31] to this model to improve its output diversity. Tem-

perature shaping has been widely used in literature [5, 32, 33], for improving output variety in

LLMs. We include the temperature-shaped version of the “Prot GPT2 enumerated” results in

the main article. Details regarding temperature shaping are in Section 4.7. In the plots below

T0, T1 refer to the temperature-shaped sampling configuration for “Prot GPT2 enumerated”.

Since ProGen2 is a much larger model than the others, to fit the runs in a reasonable

amount of time within the computational resources available to us, we further removed the

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 11 / 31

https://doi.org/10.1371/journal.pcbi.1011790

p = 0.95 configuration for ProGen2, because it was determined to produce the least sequence

variety out of all the configurations for the model. This determination was based on a separate

small-scale experiment for ProGen2. Details are in Section 4.8.

In all cases, the generated sequences represent the complete Spike amino acid sequence.

The Spike amino acid reference has a length of 1273, hence models generate sequences of

approximately this length (sequence lengths will vary slightly due to indels).

We measured the following characteristics of the generated samples. Some of these terms

were briefly introduced in a previous section, but we repeat them here for clarity.

• #Forecasts. This is the number of sequences in the model outputs that were not in the train-

ing period, but were reported in GISAID after the training period. Sequences in a model’s

output that were not present in the training period are referred to as novel sequences. Note

that not all novel sequences are forecasts, as some novel sequences are never reported in

GISAID. These are considered to be erroneous outputs. A forecasted sequence is a biologi-

cally significant, as it represents a stable, fit protein sequence that was realized in vivo.

• #Forecasted lineages. Number of forecasted lineages from the outputs. A forecasted lineage

is a Pango lineage [34] that was not reported in the training period. Pango lineages annotate

SARS-CoV-2 sequences with lineage labels tracking evolutionary developments in the

SARS-CoV-2 virus based on phylogenetic analysis. The scheme is designed to track and

identify lineages that contribute to the spread of the disease. Pango lineage designation is a

widely accepted way to track the SARS-CoV-2 virus. New Pango lineages indicate potential

changes in local and regional epidemiology and represent potential new information about

the pandemic. As such, predicting sequences from new lineages ahead of time is a desirable

property for models such as those discussed in this article.

• #Salient forecasts. This is the number of salient sequences that are forecasted by a model. A

salient forecast is a forecasted sequence that has at least 10 cases reported in GISAID. Since a

forecast is not a sequence enountered in the training period, all of the occurrences of a salient

sequence in GISAID are reported after the end of the training period. Salience is used as a

measure of the biological significance of a forecasted sequence. A salient sequence is not

only a fit, stable sequence which was realized in vivo, but it is also a sequence which has a

likely higher propensity to spread.

• Case counts. This is the total number of times forecasted sequences in a generated sample

are eventually reported in GISAID. Sequences reported within the training period are not

included in case count calculation. Case counts constitute an important measure because it

shows the ability of the models to predict sequences with higher propensity to spread rather

than unimportant sequences with very few case counts.

• Positive Predictive Value (PPV). This is the fraction of novel sequences from the model

outputs that were eventually reported in GISAID. That is, if the number of novel sequences

in a sample is Nnovel and the number of forecasted sequences from the sample is Nforecast, the

PPV of the sample is
Nforecast
Nnovel

. Note that PPV is measured exclusively in the subset of novel

sequences, and not within the full set of sequences generated by a model.

• k-mer distance. This is the average k-mer distance between the generated sample and the

training data as described in Section 2.1.2.

Fig 3 summarizes the characteristics of generated samples from all methods. We plot all

quantities against the number of novel sequences in generated samples. Among the methods,

ProGen2, the largest model by far, outperforms other methods except PandoGen. PandoGen

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 12 / 31

https://doi.org/10.1371/journal.pcbi.1011790

performs better than competing methods across all measures, and in some cases overwhelm-

ingly so. Most notably, the best PandoGen sampling configuration produces sequences with

over ten times the case counts as Prot GPT2 and five times the case counts of ProGen2. Pando-

Gen forecasts four times as many sequences as Prot GPT2 and twice as many sequences as

Fig 3. Sequence sample characteristics from the competing methods. The X-axis of the plots represent the number of novel sequences per sample

produced from each method. All experiments are based on sampling 2048 sequences from each model. The spreads represent the 95% Confidence

Interval (C.I.) based on multiple sampling runs.

https://doi.org/10.1371/journal.pcbi.1011790.g003

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 13 / 31

https://doi.org/10.1371/journal.pcbi.1011790.g003
https://doi.org/10.1371/journal.pcbi.1011790

ProGen2. The case counts show a sharper increase than the number of forecasted sequences in

both comparisons; this means that PandoGen is able to not only forecast a significantly larger

number of Spike protein sequences, but also, these sequences have higher propensity to be

infectious compared to other methods. PandoGen also forecasts tens of lineages not reported

before. Competing methods notably fail to reliably forecast novel lineages, instead, simply gen-

erating sequences from already known lineages. PPV of all methods fall as the methods pro-

duce more novel sequences. PandoGen’s PPV values are higher than other methods when

generating a similar number of novel sequences. Finally, PandoGen produces close to seven

times more salient sequences than competing methods. Combined, PandoGen samples have

significantly more case counts, salient sequences and novel lineages, indicating that PandoGen

samples are qualitatively superior from a pandemic forecasting perspective—outputting bio-

logically novel, and significant sequences compared to other methods.

Overall PandoGen samples tend to have larger k-mer distances compared to other methods

as well, indicating PandoGen’s ability to produce novel information. Related to this, we note

that PandoGen’s performance at p = 1 shows a drop-off. This is because, at p = 1, PandoGen

samples exhibit a stark increase in the k-mer distance. This means the model is trying to pre-

dict sequences very different from training sequences, which may be expected to occur further

in the future. Making such predictions can be difficult and unreliable. We recommend using

k-mer distance to filter out operating points which are too ambitious and hence unreliable or

error-prone.

Next, we examine sequence generation metrics as a function of sequence rank. This analysis

is performed using the same samples as discussed above. As generative sequence models, all

methods assign probabilities to generated samples. Sequence ranking is determined based on

this probability value. Higher ranking sequences are expected to have better quality, and focus-

ing on higher ranking sequences is a way to get the most reliable data out of a sample set for

downstream analyses.

Fig 4 shows the PPV of novel sequences generated from the models, as a function of

sequence rank. PPV is higher for all models for higher ranked sequences. ProGen2 again out-

performs competing methods except for PandoGen, retaining a flatter PPV curve, meaning

that lower ranked sequences from ProGen2 are not as noisy as from competing methods. Pan-

doGen far outperforms all of the competing methods. Notably, the highest ranked novel

sequences from PandoGen are at least twice as likely to be sucessful forecasts than other meth-

ods with a PPV of over 70%. This lead holds at almost every sequence rank in the top 1000 for

the best performing PandoGen configurations (p 2 {0.995, 0.997}).

Fig 5 shows the cumulative number of GISAID cases of the generated novel sequences from

the models as a function of sequence rank. Multiple PandoGen configurations dominate the

plot. For all methods, the curves flatten out further out from the origin, indicating that the

more likely sequences from the methods are also more potent. The curves for competing meth-

ods flatten earlier, whereas PandoGen case counts continue to increase for lower-ranked

sequences as well.

In Figs 4 and 5, we looked at stats for novel sequence generations from the models. We next

look at the fraction of novel, real sequences produced from the models among all sequences

generated from the models in Fig 6. This fraction is termed “Efficiency” in the figure. The effi-

ciency of all methods is low among the highest likelihood sequences. This is presumably

because the highest likelihood sequences are closer to the training data distribution, hence

there may be fewer novel sequences among high-likelihood sequences. In the case of Pando-

Gen, the efficiency rises sharply away from the highest ranked sequences, compared to the

other methods, which show more modest increases in efficiency. During PandoGen training,

we explicitly force the model to learn to generate sequences not in the training set, but we also

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 14 / 31

https://doi.org/10.1371/journal.pcbi.1011790

include guardrails to prevent the model from deviating too far from the training distribution

to avoid the risk of misrepresenting the viral sequence structure. This leads to dramatically

higher sample efficiency except at the highest sequence likelihoods.

Next, we examine the ability of the models to predict into the future. To benchmark this,

we plotted the number of sequences, and number of salient sequences forecasted by the models

Fig 5. GISAID case count by sequence rank for the top 1000 novel sequences produced by the different methods. Error bars represent the 95%

confidence intervals for multiple independent sampling runs, each sampling run generating 2048 sequences.

https://doi.org/10.1371/journal.pcbi.1011790.g005

Fig 4. PPV by sequence rank for the top 1000 novel sequences produced by the different methods. Error bars represent the 95% confidence intervals

for multiple independent sampling runs, each sampling run generating 2048 sequences.

https://doi.org/10.1371/journal.pcbi.1011790.g004

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 15 / 31

https://doi.org/10.1371/journal.pcbi.1011790.g005
https://doi.org/10.1371/journal.pcbi.1011790.g004
https://doi.org/10.1371/journal.pcbi.1011790

against post-training time in Fig 7. The same samples are used for this analysis as in the pre-

quel. In the figure, a point on the X-axis represents number of months after the end of the

training period, say n, and Y-axis represents the number of sequences forecasted by the models

during the nth month after the training period. For instance, PandoGen forecasts between 40

and 50 sequences in the first month after the end of the training period, out of which between

30 and 40 sequences are salient. From the plots, it is clear that all the models predict several

months into the future, with PandoGen maintaining a lead over competitors until month 8

after the training period. Beyond month 10, models make only sporadic forecasts until month

15. PandoGen also holds a significant lead over other methods forecasting salient sequences

until month 6 after the training period. No methods produce salient sequences after month 7.

We performed another set of experiments where we scaled model sample size to 16,384

sequences to see how much of the sequence space PandoGen can capture. We observed that

when generating 16,384 sequences PandoGen forecasts close to 25% of all novel lineages

reported in GISAID the first 10 weeks after the end of the training period. Detailed results are

in the Supplementary Document S1 File.

2.2 Generating instances of notable variants

Next, the ability of PandoGen to generate important Pandemic variants ahead of time, is exam-

ined. Since 2022, various subvariants of the Omicron lineage have practically replaced all other

variants of SARS-CoV-2 in circulation and have become the dominant strains of the virus in

circulation by far. The BA.5 subvariant of Omicron was the dominant lineage in circulation

since mid- to end-2022, which was then replaced by the BQ.1 subvariant [35]. The XBB.1.5

variant is a current variant of concern. Hence these variants are included in the experiments.

Prior to the Omicron lineage, the Delta variant (B.1.617.2 and AY.* lineages) caused a large-

scale outbreak during the pandemic. To examine PandoGen’s performance during the earlier

Fig 6. Fraction of real, novel sequences among all sequences generated from the models by sequence rank. Error bars represent the 95% confidence

intervals for multiple independent sampling runs, each sampling run generating 2048 sequences.

https://doi.org/10.1371/journal.pcbi.1011790.g006

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 16 / 31

https://doi.org/10.1371/journal.pcbi.1011790.g006
https://doi.org/10.1371/journal.pcbi.1011790

phases of the pandemic, where fewer sequences are available to train on, Delta was also

included in the experiments.

For each variant considered, PandoGen was trained using sequences reported prior to the

date on which the first sequence belonging to the given variant was reported in GISAID. To

determine the first reported date of a variant, we searched the GISAID database for the corre-

sponding lineage(s) or sub-lineages and took the first Spike protein entry with at least one of

the mutations characteristic of the variant. For example, for Delta, we looked for all sequences

with lineages matching B.1.617.2 or AY.*, and looked for the first reported sequence with one

of the three mutations: T478K, P681R, L452R. We referred prior works for mutations in Delta

(B.1.617.2 or AY.*) [36], BA.5 [37], BQ.1 [38], and XBB.1.5 [39] variants. More details are in

Table 1. In these experiments, the training cutoff date is between 10 days to a month before the

first reported date for these variants in GISAID.

In the intended use-case sequences generated from PandoGen are to be examined in a labo-

ratory setting through methods such as DMS. Hence only a limited sequence budget is

assumed. We assume a sequence budget of * 105 sequences, following the budget of full-

sequence DMS experiments [1]. To capture a wide range of sequences PandoGen was operated

under 11 different nucleus sampling settings with p 2 [0.99, 1.0] with a step size of 0.01. For

0.99� p� 0.995 16, 384 sequences were generated each, and 4096 sequences for the rest of the

settings. This is because, at lower values of p, the model generates less variety as discussed

before. While the total number of sequences generated may exceed the sequence budget, the

Fig 7. Forecasted sequences over time. The X-axis represents months after the training period, and the Y-axis represents the number of sequences

forecasted by the models in any given month. For this plot, a month is considered to be a 4-week period.

https://doi.org/10.1371/journal.pcbi.1011790.g007

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 17 / 31

https://doi.org/10.1371/journal.pcbi.1011790.g007
https://doi.org/10.1371/journal.pcbi.1011790

number of novel and unique sequences does not, as models generate the same sequence multi-

ple times. Since these are the only sequences that will be tested using DMS, the sequence bud-

get would be honored.

It is also important to see how consistently PandoGen generates a given variant ahead of

time. Hence the sampling procedure was repeated many times for each variant. Success is

determined by the ability of the model to generate sequences belonging to the targeted lineage

or one of its sublineages, as reported in GISAID. In addition to checking the lineage of the gen-

erated sequences, we also check whether the sequences contain at least one characteristic

mutation belonging to the variant.

The results of the experiments are summarized in Table 2. Except for XBB.1.5, the experi-

ments successfully predicted sequences belonging to the targeted variants ahead of time, and

within the requisite sequence budget. For Delta, and BA.5, the predictions are successful in all

the experiments. For BQ.1, predictions are successful in 5/6 cases. A higher rate of success may

be expected for BQ.1 by increasing the number of sequences generated in this case, as the

sequence budget has not been hit in any of these cases.

XBB.1.5 is a sublineage of XBB, a recombinant of two other Omicron lineages. The reward

model training was unsuccessful, resulting in a model whose performance was similar to that

of random coin-toss for sequences within the training period for XBB.1.5. As a result, the Pan-

doGen pipeline is designated as “failed” for XBB.1.5. This may be because the recombinant

parent of XBB.1.5 had been reported only a few weeks before XBB.1.5 itself. In this case, the

recombinant breakpoint is located in the Spike sequence’s receptor binding domain [40]. The

recombinant event does not represent an accumulation of mutations over time such as in the

case of most other notable variants of the virus, but the fusion of two other lineages. Hence,

from a sequence prediction point of view, this may present some problems for our model,

which is based on training data where such events are rare or not notable in effect [40].

Table 1. Characteristic mutations searched for variants in the experiments.

Variant Characteristic mutations

B.1.617.2, AY.

*
T478K,P681R,L452R [36]

BA.5 G339, S371F, S373P, S375F, T376A, D405A, R408S, K417N, N440K, L452Q, S477N, T478K, E484A,

Q493R, Q498R, N501Y, Y505H [37]

BQ.1 K444T, L452R, N460K, F486V [38]

XBB.1.5 V83A, H146Q, Q183E, V213E, G339H, R346T, L368I, F486S, F490S, G252V, F486P [39]

https://doi.org/10.1371/journal.pcbi.1011790.t001

Table 2. Efficacy of generating variants ahead of time using PandoGen (Spreads represent 95% C.I.).

VoC Report date Training cutoff #Exp #Gen #Success

B.1.617.2, AY.* 2021–03–23 2021–02–18 5 11685.6 ± 100.66 5/5

BA.5 2022–03–15 2022–03–05 6 33599.33 ± 135.77 6/6

BQ.1 2022–08–08 2022–07–08 6 36401.83 ± 47.42 5/6

XBB.1.5 2022–10–10 2022–09–30 0 N/A Failed

Report date: First reported date of variant in GISAID

Training cutoff: Date after which no data is included in training

#Exp: Number of sampling runs

#Gen: Number of generated sequences per run

#Success: Number of sampling runs which forecasted the variant

https://doi.org/10.1371/journal.pcbi.1011790.t002

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 18 / 31

https://doi.org/10.1371/journal.pcbi.1011790.t001
https://doi.org/10.1371/journal.pcbi.1011790.t002
https://doi.org/10.1371/journal.pcbi.1011790

3 Discussion

We presented a novel method to train deep generative models to generate future pandemic

sequences with the goal that the generated samples must have a high fraction of real sequences,

and that the case count of the generated corpus should be high. We compared models trained

through our approach to standard models in the field and found that our method outperforms

existing approaches significantly, even when our models are substantially smaller, indicating

that alignment of large sequence models to the purposes of generating sequences during a pan-

demic doesn’t automatically happen through transfer learning approaches. Meanwhile, our

training pipeline used only information available in GISAID, and did not depend on addi-

tional laboratory experiments to perform sequence characterization, making it an attractive

approach. We also found that our method is able to predict sequences belonging to important

variants before they were available in GISAID.

It is of vital importance that we prepare for the next pandemic. Information-sharing sys-

tems such as GISAID were setup very quickly, to combat the COVID-19 pandemic. A system

supporting such international data-sharing is vital to analytical efforts such as ours as predic-

tion of future sequences and other important elements of the pandemic can be done more

accurately and in a timely manner if the most up to date information is available. We note that

there are delays between sequences discovered in the real world versus when they are available

in GISAID. But we hope these delays can be significantly reduced with GISAID or another sys-

tem in case we find ourselves in the unfortunate situation of having to combat another global

pandemic. As sequencing infrastructure improves and becomes more commonplace around

the world, we have hopes that this will indeed become the case. As such, we hope methods

such as ours, will provide valuable tooling supporting pandemic management in the future.

While we presented promising results, we note that there is potential for further research in

the future. Being able to predict recombinant lineages is a valuable next step. Recombinant

events between two different sublineages typically need co-infection of the same host [41].

Since these events are not as frequent as mutation accumulation events, and since the effect of

recombinant events may not be pronounced as frequently, additional considerations will be

involved. PandoGen’s framework of guiding the generator using the discriminative model can

be extended to such cases with some changes. During the training process the generator must

generate recombinant candidates and the reward model must rate them as stable, feasible viral

sequences. To bootstrap this process and target it towards recombinants, we may need to

resort to data augmentation approaches as naturally occurring sequences are not rich in such

scenarios. Data augmentation can be envisaged to include the following steps: (1) identifica-

tion of candidate lineage pairs that may result in recombinants based on sublineages infecting

common regions, (2) generation of candidate recombinants by combining the collected pairs,

(3) ranking of recombinant candidates through PandoGen models, and through other

approaches that can be used to determine protein fitness [42], (4) retraining of the PandoGen

reward model to favor candidates ranked high against low-ranked ones and the PandoGen

generative model to generate high-ranking candidates, and (5) iterative refinement of the Pan-

doGen generator using the PandoGen reward model. Patterns of prior spread can be used to

further improve the process. For example, lineages discovered in a region may show a propen-

sity to spread to other geographic regions due to travel, or nearness, which may be inferred

from geographic information present in GISAID. Such patterns can be used to enlarge the set

of candidate lineage pairs in step (1) by including nascent lineages in the pairings.

Another potential direction is to integrate PandoGen in a laboratory setting to continually

improve the model through incorporation of experimental data. For instance, after PandoGen

is trained as in this article, purely using sequence information in GISAID, a second dataset can

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 19 / 31

https://doi.org/10.1371/journal.pcbi.1011790

be prepared where sequences generated from PandoGen are evaluated in the laboratory setting

using DMS to annotate them with multiple properties. Given that these new sequences will

have rich annotations that directly reflect the phenotypical characteristics of the virus, this offers

an avenue to incorporate more accurate and precise information into a second PandoGen train-

ing loop offering more potential improvements. Finally, model sizes [43], training infrastruc-

ture [44], and gradient update algorithms [45] are evolving constantly, allowing larger models

to be finetuned more efficiently. Such developments will allow bigger models to be incorporated

into methods such as ours holding promise for improvements continuing into the future.

4 Materials and methods

4.1 SARS-CoV-2 sequences

We downloaded the file variant_surveillance.tsv from GISAID, which contains information

such as submission date, Pango lineage, list of mutations, geographic location etc. From this

file, for each entry, we extracted mutations in the Spike protein sequence, and applied them to

the GISAID-designated Spike protein reference to obtain the actual Spike sequences. We col-

lected all sequences except those containing a stop codon mutation, as premature stop codons

have a propensity to result in non-functional proteins [46]. The experiments in this article

were performed using GISAID variants file downloaded on 2022–12-02. The Accession IDs of

sequences in this file have been deposited in GISAID with the following EPISET ID:

EPI_SET_230807ta.

We validated the Pango lineage assignments in the GISAID variants file. To do this, we

downloaded all SARS-CoV-2 genomic sequences from GISAID, and used the latest Pangolin

release, v4.3.1, to assign lineages to these sequences. Out of the GISAID variants file, 613, 093

Accession IDs had lineage assignments that disagreed with our new assignments. Given that

the GISAID variants file has 14, 035, 944 entries, this comes to a 95.6% agreement between the

GISAID’s lineage designation and our independent Pangolin assignment. The disagreeing

Accession IDs account for a total of 112, 116 unique Spike sequences, and all Accession IDs in

the GISAID variants file account for 852, 529 unique Spike sequences, which means, at the

unique sequence level there is an 86.8% agreement between the GISAID assignments and our

independent assignments. When looking only at sequences in the training period, the agree-

ment for Accession IDs is 97.8% and the agreement for unique Spike protein sequences is

90.5%. Additional details are in the Supplementary Document S1 File. We used the new line-

age assignments to perform all evaluations presented in this article.

For comparing sequences, we allow ambiguous amino acid characters to match with their

corresponding disambiguated targets. That is, we consider “B” to be equal to either “D” or

“N”, “J” to be equal to either “L” or “I”, “Z” to be either “Q” or “E”, and “X” to be any amino

acid. The matching algorithm, in full detail, is given in the Supplementary Document S1 File.

Sequences are first checked to see whether they match sequences reported in the training

period. Sequences not matching sequences in the training period are designated as novel

sequences. Novel sequences are checked among sequences first reported after the training

period to determine which novel sequences are real sequences, or successful forecasts.

For reporting the number of generated sequences in Section 2.2, where only the order of

magnitude of unique sequences is relevant, we used the computationally inexpensive exact

string matching predefined in Python.

4.2 Model architecture

We base our models on decoder-only autoregressive models, which consist of stacks of mod-

ules, each module consisting of a self-attention layer, a layer-normalization layer, a non-

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 20 / 31

https://doi.org/10.1371/journal.pcbi.1011790

linearity and dropout layer [28]. The model has eight of these modules, with attention head

dimensionality of 128, with 12 attention heads, and a fully connected layer that is three times

the attention size. On top of the 8 stacked modules, we have a final Softmax layer that predicts

a distribution over the protein sequence elements (amino acids). We call this final layer, the

Protein Model head (PM head), for ease of reference later. Overall, there are approximately

192 million parameters in our models (SDA and PandoGen).

Given a training set, each amino acid character in a protein sequence in the training set is

converted to an embedding; hence the input protein sequence becomes a sequence of embed-

dings of the same length. To this sequence, we prepend a special character indicating start of

sequence. To this, a second embedding sequence of the same length and dimensionality is

added. This second embedding indicates the position of each embedding in the sequence, and

is trained along with the rest of the model. These conventions largely follow standard Trans-

former models [28].

The model predicts the probability of a protein sequence as follows.

log P½X1:N � ¼
X

i

log Pðxi j X1:i� 1;FÞ ð5Þ

Here, F represents the parameters of the model, and P(xi j X1:i−1;F) is the output of the PM

head. During data generation from the model, the generation is conditioned on the start of

sequence character, that is, we ask the model to complete the sequence provided only the start

of sequence special character.

4.3 Pretraining on UniProt dataset

We downloaded the UniProt version 2019−09 which contains protein sequences released

before the onset of the COVID-19 pandemic. We first pretrained our 192M parameter model

using UniRef50 sequences, split randomly into 35M training sequences and 3.9M validation

sequences. Pretraining was done for our models using snippets of UniRef50 sequences of

length 255. Where a sequence was shorter than length 255, the complete sequence was used

and when sequence was longer, a random substring of length 255 was sliced out. During vali-

dation, to keep the validation set deterministic, we used only sequences shorter than length

256. We trained the model for two epochs with a learning rate of 1 × 10−4, and a weight decay

of 1 × 10−2. We employed learning rate warmup for 1024 batches, and thereafter, a linear

decay in learning rate was instituted. We used 4 NVIDIA V100 GPUs to pretrain the model

using half-precision floating point with a batch-size of 30 per device. Validation loss was calcu-

lated once every quarter of an epoch, and the model version with the best validation loss was

retained for further finetuning. We call this model, the UniProt Deep autoregressive Model

(UDA), for ease of reference.

4.4 Finetuning on SARS-CoV-2 Spike protein sequences

To create the training dataset from GISAID, we selected a cutoff date, and sequences on or

before this cutoff date were used for training. The goal would be to predict sequences after this

cutoff date.

For training deep learning models, typically, the training data is split into a training set, on

which the model parameters are fit, and a validation set, on which the models are continually

evaluated using the loss function. The model in the training iteration that has the best loss

value on the validation set is selected for downstream experiments. This avoids overfitting the

models to the training set, which Deep Learning models show a propensity to memorize dur-

ing the course of training. To determine the training/validation split, we used Pango lineages

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 21 / 31

https://doi.org/10.1371/journal.pcbi.1011790

reported in GISAID, splitting the lineages into training and validation lineages. Sequences

belonging to training lineages were used designated the training set and the remaining

sequences were designated as validation sequences. Any Spike sequence occurring in both a

training and a validation Pango lineage was moved to the training set. Note that the Pango

lineage assignments are themselves not fed to the models. Presumably, other methods of split-

ting the training data into training and validation set would also work, such as a simple ran-

dom split, or another method of clustering, such as by dates or using a machine learning

method such as K-Means clustering operating on sequence embeddings. The manner of split

need not be exact in some sense. All of the generative models described in this article are

trained on the same training and validation set split, hence the same data split is applied every-

where. As mentioned before, for evaluations we did not use the lineages reported by GISAID,

but rather lineage assignments obtained by us after rerunning Pangolin.

We finetuned the model resulting from Section 4.3 as well as the Prot GPT2 unenumerated

model and ProGen2, on this same training/validation split, for 24 epochs, checkpointing the

models twice per epoch. All models used a fine-tuning learning rate of 1 × 10−5, with a weight

decay of 1 × 10−2, 1024 learning rate linear warmup steps and linear decay afterwards. All

models were trained using 16-bit floating point weights. We evaluated each checkpoint on the

validation set, and selected the one with the best loss. We term the finetuned version of our

UDA model as the SARS-CoV-2 deep autoregressive model (or SDA model) in the sequel.

In addition, we trained “Prot GPT2 enumerated” where the training sequences are not

made unique. So, if a sequence is deposited in GISAID 500 times, the sequence occurs in the

training set 500 times as well. The training data size for this case resulted in a similar number

of gradient updates for a single epoch as 24 epochs of the data with unique sequences used for

finetuning the other models. Hence training in this case was performed for a single epoch

only. The training and validation split for the model is the same as that of the other models,

just that the sequences may be repeated depending on their GISAID frequencies.

4.5 Reward model training

The reward model’s goal is to predict potential infectiousness for an input sequence as a scalar

value. We would like to use the number of times a Spike protein sequence has been reported in

the GISAID database as a signal indicating the infectiousness of the sequence. However, it is

not straightforward to use this data due to the following reasons. First, a sequence discovered

earlier during the pandemic has had more time to spread, compared to a newer sequence. Sec-

ond, sequencing resources may have needed time to ramp up around the world. Third, restric-

tions and interventions against the pandemic have shown variation over time. As a result of

these, using the raw GISAID case counts as a label is misleading. For instance, the original

strain of the SARS-CoV-2 virus discovered in 2019 has had many years to circulate, whereas a

more recently discovered sequence has had very little time, but their case counts may imply

that the original strain is more infectious, which is not necessarily true.

We simulate a game between two sequences. The arena for the game between Seq A and

Seq B, is the set of all GISAID cases within the training period that belong to Seq A and Seq B.

The game is to randomly select an item from this set. Seq A wins if the selected item is Seq A,

and Seq B wins otherwise. The probability of Seq A winning a game is
NA

NAþNB
where NA, NB are

the GISAID case counts of Seq A and Seq B respectively.

We ensure that the games are played only between sequences whose first reported date in

GISAID is within a narrow timeframe of each other. Implicit here is the assumption that this

ensures that they were under similar constraints throughout their lifetimes within the training

period, and that their case counts are sufficiently indicative of their relative infectiousness.

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 22 / 31

https://doi.org/10.1371/journal.pcbi.1011790

Sequences can have a small difference between their respective discovery dates (discovery

dates are dates on which the sequences are first reported in GISAID), depending on how clear,

on average, the winner is, between the two sequences. The largest difference in sequence dis-

covery date in our dataset is 5 weeks, but this requires one sequence to have at least 105 times

more cases than the other. As the ratio of case counts between sequences shrinks, the allowed

gap between their discovery dates is also tightened. The scheme is detailed in Table 3. As

shown, as the case count ratio between two sequences increases, they are allowed to be discov-

ered further apart in time to be inducted into the competition draw.

Another condition to include a pair of sequences in the competition draw is that their rela-

tive case counts must be similar in disjoint geographic regions, and the expected winner in the

majority of the games between the two sequences must be unchanged between the two regions.

That is, if Sequence A and Sequence B are being considered for inclusion in the competition

draw, we require that the relative counts of the two sequences within Asia and Europe must be

similar to their relative case counts outside of Asia and Europe, within the training period. In

addition, if Sequence A leads in Asia and Europe, it should also be the leader outside of Asia

and Europe—that is the majority winner in these two disjoint regions must be the same.

Finally, we do not use any sequences first reported in the last 7 weeks of the training period

(sequences reported within the 7 week period, which were first reported before that period, are

still considered), as the sequences discovered in this time frame may not have had sufficient

time to spread.

Examples of considerations when creating the competition draw are illustrated in Fig 8.

Consider pairs of sequences which satisfy the criteria that 1) they have similar relative case

counts in Eurasia and the rest of the world, 2) the majority winner is the same in Eurasia vs

Table 3. Ratio of case counts of the lower-occurrence sequence to that of the higher-occurrence sequence and

allowed tolerance in their weekly discovery dates for them to be allowed to be compared.

Case count ratio (r) Discovery week tolerance

0� r< 1e − 5 5

1e − 5� r< 1e − 4 4

1e − 4� r< 1e − 3 3

1e − 3� r< 1e − 2 2

1e − 2� r< 1e − 1 1

1e − 1� r < 1 0

https://doi.org/10.1371/journal.pcbi.1011790.t003

Fig 8. Heuristics for creating fair games. We allow games only among sequences first reported within a certain timeframe of each other.

https://doi.org/10.1371/journal.pcbi.1011790.g008

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 23 / 31

https://doi.org/10.1371/journal.pcbi.1011790.t003
https://doi.org/10.1371/journal.pcbi.1011790.g008
https://doi.org/10.1371/journal.pcbi.1011790

rest of the world and 3) the sequences are not first reported in the last 7 weeks of the training

period. If these sequences are discovered close to each other in time and they have a large dif-

ference in case counts, the competition between the sequences are accepted. Small differences

in discovery dates are not deemed to upset who the winner between the sequences is in the

majority of games due to the overwhelming number of cases of one sequence compared to the

other. An example of this is the Sequence A vs Sequence B competition. When sequences have

very similar case counts, the requirements are more stringent. In these cases, the sequences

would need to be discovered in the same week. Sequence C vs Sequence A is rejected because

they have almost the same case counts, but were discovered 2 weeks apart. Sequence D vs

Sequence E will be considered a valid competition if the geographic conditions hold.

We apply additional heuristics so that the number of comparisons are tractable. Each

sequence can be compared to a maximum of 750 sequences in competitions (random subsam-

pling is used to cut down larger lists). If the total number of surviving competitions exceeds

1,000,000 competitions, we subsample the list to 1,000,000 cases. The case counts of two com-

peting sequences in a pair is taken to be the cumulative case count for the first lweeks where l is

the minimum of the number of weeks of the two sequences’ lifetimes within the training period.

We use this data to train the reward model (Fig 9). During training, we fetch paired

sequences from the competition draw. Lets say we selected Seq A, and Seq B. The reward

model predicts an infectiousness potential for Seq A, and an infectiousness potential for Seq B,

which are denoted as values γA, γB respectively. The probability distribution of the outcome is

predicted as PðSeq A winsÞ ¼ expðgAÞ
expðgAÞþexpðgBÞ

. This predicted distribution is trained using the

“actual” distribution which is PðSeq A winsÞ ¼ NA
NAþNB

by minimizing the KL-divergence

between the two. Note that this causes the reward model to learn to predict higher values for

γA if Seq A is the winner in majority of the games, hence learning to predict a potential for

each sequence that increases with the infectiousness potential of the sequence.

The reward model uses the same architecture as the SDA model, except that the PM head is

replaced with a reward head. A PM head produces as many outputs as there are characters in

our amino acid alphabet, whereas the reward head produces a single scalar output. The rest of

the layers in the reward model are initialized from the SDA model’s parameter values. Also,

the reward head output is only valid after the complete sequence has been passed through the

model.

The reward model was trained with a learning rate of 1 × 10−5 over 1 epoch. Learning rate

warmup was instituted for the first 1024 steps, and then linearly decayed. Weight decay of 10−2

was also used. A total of four checkpoints were kept during training. For selecting the check-

point for downstream use, we used sequences discovered in the 7th week from the end of the

training period (note that these sequences were not used in training; see Fig 8). Among these,

sequences having an occurrence count of over 50 in the last 7 weeks of the training period

were labeled 1 and the remaining sequences were labeled 0. The sequences were each scored

by the checkpoints, and the area under the receiver operating characteristic (AUROC) curve, a

popular metric for model selection for binary classifiers, was computed. The checkpoint per-

forming the best was chosen.

While we have constructed the pairwise competition draw for the sequences through robust

heuristics to account for factors other than infectiousness, we note that the approaches come

with some limitations and may not capture all outside variations. For instance, confounding

factors such as superspreader events, and transport hubs may skew the numbers in favor of

some sequences over others through short-term bursts from external factors. As such, our

approach has the following limitations: (1) some data from the most recent weeks are not used

to train the reward model (though it is used to train the generative model), which can result in

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 24 / 31

https://doi.org/10.1371/journal.pcbi.1011790

our model not responding to certain sudden developments (2) our heuristics for ensuring fair-

ness use sequence metadata which does not include information on specific situations in dif-

ferent locations or times (e.g., local events, travel patterns etc), and hence some short-term

events or other locality-specific characteristics can still contaminate the data. A more thorough

analysis of locations and times by integrating external knowledge such as nature of location

(e.g., “transport hub”), or special events taking place in different locations (e.g., “conference”

or “festival”) can improve on our assumptions further. The exact form of these analyses are

not clear to us presently, but they are worthy of future study.

4.6 PandoGen finetuning

The final step in our pipeline is to finetune the SDA model directly within its operational set-

ting of sequence generation, using the reward model we presented in Section 4.5. To finetune

Fig 9. Reward model training method. The reward model processes two incoming sequences Seq A and Seq B, and

produces infectiousness potentials σA, σB for these respectively. These are converted to probabilities for competition

outcomes in a differentiable manner. The probabilities are trained on the ground-truth label. The probability of Seq A

winning is trained on the label value
NA

NAþNB
where NA, NB are GISAID case counts of the two sequences within the

training period.

https://doi.org/10.1371/journal.pcbi.1011790.g009

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 25 / 31

https://doi.org/10.1371/journal.pcbi.1011790.g009
https://doi.org/10.1371/journal.pcbi.1011790

the model, in addition to the reward signal, we also use a second signal indicating whether a

sequence generated by the model already exists in the list of known sequences or not.

To perform finetuning, we adapt an algorithm called Quark [25]. Quark was developed to

improve an LLM’s ability to generate text that conforms to certain qualities such as reduced

toxicity, based on reward modeling. Quark converts floating point reward scores to discrete

quanta over a pre-defined quantization scheme, and the model learns to generate sequences

belonging to different reward quanta. In addition to reward modeling, using Quark, we incor-

porate the conditional generation framework [24], whose goal is to generate sequences of dif-

ferent types. We use conditional generation to incorporate the fact that data available for

training can be either known in the training period, or unknown. We collapse both approaches

into a single loss computation framework, as follows.

First we recollect (Section 4.2) that the SDA model generates sequences conditioned on a

special beginning of sequence character. The PandoGen model, which is a finetuned version of

the SDA model, generates sequences conditioned also on a second special character, which we

call the conditional. Hence the PandoGen model generates sequences following the following

conditional iterative sampling algorithm, where C is the conditional based on which Pando-

Gen generates sequences, and F represents the model’s parameters.

xi � PðxijX1:i� 1;C;FÞ ð6Þ

The conditional captures two aspects: whether a sequence is known (K) or unknown (U) in

the training period, and if unknown, what is the reward quantile of the sequence (γ). Hence,

the full space of conditionals for the model is represented as C ¼ fKg [fðU; giÞgj
NR
i¼1

, where

NR is the number of reward quantiles. The conditional, C, essentially represents one item from

the set of all conditionals. That is C 2 C.

As described in Section 1, PandoGen creates in silico data for training the model. For gener-

ating this data, PandoGen is conditioned on C = (U, γH), where γH is the highest reward quan-

tile. Each generated sequence, X is assigned a conditional, CX in two steps. CX = K if X 2 T ,

where T is the training set. If not, the reward model processes X producing a reward score,

which is quantized to produce γX; in this case, CX = (U, γX). The reward quantiles are static

throughout the training process and determined based on generations from the original SDA

model scored by the reward model. The generated sequences annotated with the conditionals,

(X, CX) are added to a data pool, D of sequences (initialized using data generated from the

SDA model). A fixed-size sample, D, is taken from this data pool, and used to perform a fine-

tuning step. The finetuning step maximizes the following objective through mini-batch gradi-

ent descent.

EX�D
X

i

n
log P½xi j X1:i� 1;CX;F� � bDKL½pðxi j X1:i� 1;FSDAÞkpðxi j X1:i� 1;CX;FÞ�

o

Here, FSDA represents the parameter set of the original SDA model which is not adjusted

during PandoGen finetuning, and F represents the parameter set of the PandoGen model,

which is initialized from FSDA, and modified through the finetuning step.DKL(p||q) is the KL-

divergence between two distributions, p, q. In addition to the incorporation of conditional

generation, the learning objective here is slightly different from the original Quark cost func-

tion in one more manner. The original Quark algorithm requires D to be a stratified subset of

D, where sequences in each reward quantile are uniformly represented. For the default Pando-

Gen implementation, D is a simple random subset of D.

We also implemented a looser version of stratified sampling as an option for hyperpara-

meter tuning (explained below). In our implementation, we continue sampling from different

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 26 / 31

https://doi.org/10.1371/journal.pcbi.1011790

conditionals in D, and stop when 1) only one conditional is left and 2) the remaining condi-

tional has already the highest representation in D.

The procedure of generating sequences from the PandoGen model, scoring it using the

reward model, checking historicity, andfinetuning the model using the annotated generations

is carried out iteratively. Through the procedure, the PandoGen model istrained to generate

sequences according to their quality and historicity (via conditioning on C). In the process, it

learns togenerate high reward, non-historic sequences. At the same time, the loss term βDKL(p
(xi j X1:i−1; FSDA)kp(xi j X1:i−1, CX; F)) prevents the model from deviating too far from the

probability distribution learnt by the original SDA model. This is important as the SDA model

has a grasp of the structure of the SARS-CoV-2 Spike protein sequence, and deviating too far

from the basic structure is detrimental to our goals. The training scheme is shown in Fig 2.

During training, we perform a lazy version of hyperparameter tuning to save compute

resources and time. We run PandoGen finetuning steps with default hyperparameter settings

for 24 epochs. The default hyperparameter case involves not using dropout, and not using

stratified sampling. These settings were selected based on small-scale experiments. We use the

early stopping criterion to terminate finetuning, whereby if the rewards of the generated

batches (evaluated by the reward model) do not increase for three consecutive epochs, the

training is halted. When training is halted, we examine the average reward for a batch gener-

ated from the best model checkpoint. We require that this reward be in the top two quantiles

of rewards for samples from the SDA model prior to PandoGen finetuning. If this condition is

met, we select the model for experiments. We use this criterion because the learning objective

of the PandoGen model is to generate unknown sequences from the highest reward quantile.

If a sample from the model achieves close to this reward on average, the model is very close to

its objective, and further hyperparameter tuning may result in only marginal gains, while

expending computational resources.

On the other hand if the goal is not met, we deem the training not to have succeeded,

because the model is not aligned to its training objective (generating high quantile sequences)

and further improvements are possible. In this case, we launch hyperparameter search. The

following hyperparameter settings were explored in this case: 1) using stratified sampling, 2)

no early stopping (train for all 24 epochs and select the best), and 3) train with stratified sam-

pling and dropout. The best model checkpoint (as determined by the reward model) from

these three runs is chosen for downstream experiments. Note that the model-selection method

used here does not use data outside of the training period, and simply uses the reward model

to determine the right model checkpoint and test convergence.

The only case where the default training hyper-parameters yielded a model which did not

meet the model selection criteria was for the Delta variant experiment in Section 2.2. For this

case, hyperparameter search revealed that stratified sampling and dropout provided the best

results, and this model was used for further downstream experiments and analyses.

4.7 Temperature shaping

We summarize temperature shaping below.

Recall that the last layer of a deep autoregressive model produces the distribution of the

next sequence element to be generated. The distribution is written as follows.

Pðxl ¼ i j X1:l� 1Þ ¼
expð f iðX1:l� 1ÞÞP
j expð f jðX1:l� 1ÞÞ

ð7Þ

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 27 / 31

https://doi.org/10.1371/journal.pcbi.1011790

Here fi are Neural Network outputs. Application of temperature changes the output distri-

bution at each time-step of the sampling process as follows.

PTðxl ¼ i j X1:l� 1Þ ¼
expð f

iðX1:l� 1Þ

T Þ
P

j expð
f jðX1:l� 1Þ

T Þ
ð8Þ

Values of T> 1 flatten the output distribution and increase its entropy beyond the normal

operating range, thus increasing the chance of the sampling process realizing sequences further

away from the training distribution, resulting in a larger number of novel sequences in the

model outputs.

4.8 Protein sequence generation

We used the trained models: SDA, ProGen2, Prot GPT2 enumerated, and Prot GPT2 une-

numerated, to produce sequences through nucleus sampling. Batch size for generation was

adjusted based on the GPU memory availability and the model size. For all cases except Pro-

Gen2, we ran five or six sampling runs at nucleus sampling values, p 2 {0.95, 0.97, 0.99, 0.995,

0.997, 1.0}, in each case generating 2048 sequences. The models are also used to evaluate the

log-likelihood of the sequences generated by them.

For ProGen2, we initially ran smaller scale experiments generating 256 sequences for p 2
{0.95, 0.97, 0.99, 0.995, 0.997, 1.0}, with the goal of pruning cases which did not produce suffi-

cient sequence variety. Based on this experiment, we excluded p = 0.95 from subsequent exper-

iments because 88% of sequences produced from this configuration were sequences already

found in the training set. For the remaining configurations, we ran ProGen2 three times in

each case producing 2048 sequences. Additionally, we used the fp16 option for data generation

using ProGen2 to feasibly run the experiments within our available hardware. To produce a

single sample of 2048 sequences, PandoGen and Prot GPT2 were run using one V100 GPU or

one A100 GPU. For ProGen2, we used 2 A100 GPUs per single sample generation run [47].

Supporting information

S1 File. PandoGen: Supplementary document. Supplementary information including algo-

rithm for sequence comparisons, details on scaling PandoGen sample size, and Performing

Pango lineage reassignments.

(PDF)

Acknowledgments

We gratefully acknowledge all data contributors, i.e., the Authors and their Originating labora-

tories responsible for obtaining the specimens, and their Submitting laboratories for generat-

ing the genetic sequence and metadata and sharing via the GISAID Initiative, on which this

research is based.

Disclaimer

This work does not relate to Anand Ramachandran’s position at Amazon.

Author Contributions

Conceptualization: Anand Ramachandran, Steven S. Lumetta, Deming Chen.

Data curation: Anand Ramachandran.

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 28 / 31

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011790.s001
https://doi.org/10.1371/journal.pcbi.1011790

Formal analysis: Anand Ramachandran, Steven S. Lumetta.

Investigation: Anand Ramachandran.

Methodology: Anand Ramachandran, Steven S. Lumetta, Deming Chen.

Software: Anand Ramachandran.

Supervision: Steven S. Lumetta, Deming Chen.

Validation: Anand Ramachandran.

Visualization: Anand Ramachandran.

Writing – original draft: Anand Ramachandran.

Writing – review & editing: Anand Ramachandran, Steven S. Lumetta, Deming Chen.

References
1. Fowler DM, Fields S. Deep mutational scanning: a new style of protein science. Nature methods. 2014;

11(8):801–807. https://doi.org/10.1038/nmeth.3027 PMID: 25075907

2. Dadonaite B, Crawford KH, Radford CE, Farrell AG, Timothy CY, Hannon WW, et al. A pseudovirus

system enables deep mutational scanning of the full SARS-CoV-2 spike. Cell. 2023; 186(6):1263–

1278. https://doi.org/10.1016/j.cell.2023.02.001 PMID: 36868218

3. OpenAI. GPT-4 Technical Report; 2023.

4. Ouyang L, Wu J, Jiang X, Almeida D, Wainwright CL, Mishkin P, et al. Training language models to fol-

low instructions with human feedback; 2022. Available from: https://arxiv.org/abs/2203.02155.

5. Li Y, Choi D, Chung J, Kushman N, Schrittwieser J, Leblond R, et al. Competition-level code generation

with alphacode. Science. 2022; 378(6624):1092–1097. https://doi.org/10.1126/science.abq1158 PMID:

36480631

6. Rives A, Meier J, Sercu T, Goyal S, Lin Z, Liu J, et al. Biological Structure and Function Emerge from

Scaling Unsupervised Learning to 250 Million Protein Sequences. PNAS. 2019.

7. Elnaggar A, Heinzinger M, Dallago C, Rehawi G, Wang Y, Jones L, et al. Prottrans: Toward under-

standing the language of life through self-supervised learning. IEEE transactions on pattern analy-

sis and machine intelligence. 2021; 44(10):7112–7127. https://doi.org/10.1109/TPAMI.2021.

3095381

8. Ferruz N, Schmidt S, Höcker B. ProtGPT2 is a deep unsupervised language model for protein design.

Nature communications. 2022; 13(1):4348. https://doi.org/10.1038/s41467-022-32007-7 PMID:

35896542

9. Shin JE, Riesselman AJ, Kollasch AW, McMahon C, Simon E, Sander C, et al. Protein design and vari-

ant prediction using autoregressive generative models. Nature communications. 2021; 12(1):2403.

https://doi.org/10.1038/s41467-021-22732-w PMID: 33893299

10. Madani A, Krause B, Greene ER, Subramanian S, Mohr BP, Holton JM, et al. Large language models

generate functional protein sequences across diverse families. Nature Biotechnology. 2023; p. 1–8.

https://doi.org/10.1038/s41587-022-01618-2 PMID: 36702895

11. Lin Z, Akin H, Rao R, Hie B, Zhu Z, Lu W, et al. Evolutionary-scale prediction of atomic-level protein

structure with a language model. Science. 2023; 379(6637):1123–1130. https://doi.org/10.1126/

science.ade2574 PMID: 36927031

12. Hesslow D, Zanichelli N, Notin P, Poli I, Marks D. Rita: a study on scaling up generative protein

sequence models. arXiv preprint arXiv:220505789. 2022;.

13. Nijkamp E, Ruffolo JA, Weinstein EN, Naik N, Madani A. ProGen2: exploring the boundaries of protein

language models. Cell Systems. 2022;.

14. Hie B, Zhong ED, Berger B, Bryson B. Learning the language of viral evolution and escape. Science.

2021; 371(6526):284–288. https://doi.org/10.1126/science.abd7331 PMID: 33446556

15. Maher MC, Bartha I, Weaver S, di Iulio J, Ferri E, Soriaga L, et al. Predicting the mutational drivers of

future SARS-CoV-2 variants of concern. Science Translational Medicine. 2022; 14(633):eabk3445.

https://doi.org/10.1126/scitranslmed.abk3445 PMID: 35014856

16. Dhodapkar RM. A deep generative model of the SARS-CoV-2 spike protein predicts future variants.

bioRxiv. 2023. https://doi.org/10.1101/2023.01.17.524472

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 29 / 31

https://doi.org/10.1038/nmeth.3027
http://www.ncbi.nlm.nih.gov/pubmed/25075907
https://doi.org/10.1016/j.cell.2023.02.001
http://www.ncbi.nlm.nih.gov/pubmed/36868218
https://arxiv.org/abs/2203.02155
https://doi.org/10.1126/science.abq1158
http://www.ncbi.nlm.nih.gov/pubmed/36480631
https://doi.org/10.1109/TPAMI.2021.3095381
https://doi.org/10.1109/TPAMI.2021.3095381
https://doi.org/10.1038/s41467-022-32007-7
http://www.ncbi.nlm.nih.gov/pubmed/35896542
https://doi.org/10.1038/s41467-021-22732-w
http://www.ncbi.nlm.nih.gov/pubmed/33893299
https://doi.org/10.1038/s41587-022-01618-2
http://www.ncbi.nlm.nih.gov/pubmed/36702895
https://doi.org/10.1126/science.ade2574
https://doi.org/10.1126/science.ade2574
http://www.ncbi.nlm.nih.gov/pubmed/36927031
https://doi.org/10.1126/science.abd7331
http://www.ncbi.nlm.nih.gov/pubmed/33446556
https://doi.org/10.1126/scitranslmed.abk3445
http://www.ncbi.nlm.nih.gov/pubmed/35014856
https://doi.org/10.1101/2023.01.17.524472
https://doi.org/10.1371/journal.pcbi.1011790

17. Chen J, Nie Z, Wang Y, Wang K, Xu F, Hu Z, et al. Running ahead of evolution-AI based simulation for

predicting future high-risk SARS-CoV-2 variants. bioRxiv. 2022; p. 2022–11.

18. Obermeyer F, Jankowiak M, Barkas N, Schaffner SF, Pyle JD, Yurkovetskiy L, et al. Analysis of 6.4 mil-

lion SARS-CoV-2 genomes identifies mutations associated with fitness. Science. 2022; 376

(6599):1327–1332. https://doi.org/10.1126/science.abm1208 PMID: 35608456

19. Taft JM, Weber CR, Gao B, Ehling RA, Han J, Frei L, et al. Deep mutational learning predicts ACE2

binding and antibody escape to combinatorial mutations in the SARS-CoV-2 receptor-binding domain.

Cell. 2022; 185(21):4008–4022. https://doi.org/10.1016/j.cell.2022.08.024 PMID: 36150393

20. Wang G, Liu X, Wang K, Gao Y, Li G, Baptista-Hon DT, et al. Deep-learning-enabled protein–protein

interaction analysis for prediction of SARS-CoV-2 infectivity and variant evolution. Nature Medicine.

2023; 29(8):2007–2018. https://doi.org/10.1038/s41591-023-02483-5 PMID: 37524952

21. Han J, Liu T, Zhang X, Yang Y, Shi Y, Li J, et al. D3AI-Spike: A deep learning platform for predicting

binding affinity between SARS-CoV-2 spike receptor binding domain with multiple amino acid mutations

and human angiotensin-converting enzyme 2. Computers in Biology and Medicine. 2022; 151:106212.

https://doi.org/10.1016/j.compbiomed.2022.106212 PMID: 36327885

22. Shu Y, McCauley J. GISAID: from vision to reality. Eurosurveillance. 2017; 22(13):30494. https://doi.

org/10.2807/1560-7917.ES.2017.22.13.30494

23. UniProt: the universal protein knowledgebase. Nucleic acids research. 2017; 45(D1):D158–D169.

https://doi.org/10.1093/nar/gkw1099 PMID: 27899622

24. Keskar NS, McCann B, Varshney LR, Xiong C, Socher R. Ctrl: A conditional transformer language

model for controllable generation. arXiv preprint arXiv:190905858. 2019;.

25. Lu X, Welleck S, Jiang L, Hessel J, Qin L, West P, et al. Quark: Controllable text generation with rein-

forced unlearning. arXiv preprint arXiv:220513636. 2022;.

26. Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, et al. Exploring the limits of transfer learn-

ing with a unified text-to-text transformer. The Journal of Machine Learning Research. 2020; 21

(1):5485–5551.

27. Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I, et al. Language models are unsupervised

multitask learners. OpenAI blog. 2019; 1(8):9.

28. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need.

Advances in neural information processing systems. 2017;30.

29. Holtzman A, Buys J, Du L, Forbes M, Choi Y. The curious case of neural text degeneration. arXiv pre-

print arXiv:190409751. 2019;.

30. Heo Y, Manikandan G, Ramachandran A, Chen D. Comprehensive Evaluation of Error-Correction

Methodologies for Genome Sequencing Data. Exon Publications. 2021; p. 89–108.

31. Ackley DH, Hinton GE, Sejnowski TJ. A learning algorithm for Boltzmann machines. Cognitive science.

1985; 9(1):147–169.

32. Ficler J, Goldberg Y. Controlling linguistic style aspects in neural language generation. arXiv preprint

arXiv:170702633. 2017;.

33. Caccia M, Caccia L, Fedus W, Larochelle H, Pineau J, Charlin L. Language gans falling short. arXiv pre-

print arXiv:181102549. 2018;.

34. Rambaut A, Holmes EC, O’Toole Á, Hill V, McCrone JT, Ruis C, et al. A dynamic nomenclature pro-

posal for SARS-CoV-2 lineages to assist genomic epidemiology. Nature microbiology. 2020; 5

(11):1403–1407. https://doi.org/10.1038/s41564-020-0770-5 PMID: 32669681

35. Parums DV. The XBB. 1.5 (‘Kraken’) Subvariant of Omicron SARS-CoV-2 and its Rapid Global Spread.

Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 2023;

29:e939580–1. https://doi.org/10.12659/MSM.939580 PMID: 36722047

36. Dhawan M, Sharma A, Priyanka n, Thakur N, Rajkhowa TK, Choudhary OP. Delta variant (B. 1.617. 2)

of SARS-CoV-2: Mutations, impact, challenges and possible solutions. Human Vaccines & Immu-

notherapeutics. 2022; 18(5):2068883. https://doi.org/10.1080/21645515.2022.2068883

37. Chatterjee S, Bhattacharya M, Nag S, Dhama K, Chakraborty C. A detailed overview of SARS-CoV-2

omicron: its sub-variants, mutations and pathophysiology, clinical characteristics, immunological land-

scape, immune escape, and therapies. Viruses. 2023; 15(1):167. https://doi.org/10.3390/v15010167

PMID: 36680207

38. Akash S, Islam MR, Dhama K. Emergence BQ. 1 and BQ. 1.1 as newly identified omicron subvariants:

current scenario and future outlook–an update. Annals of Medicine and Surgery. 2023; 85(4):1329.

https://doi.org/10.1097/MS9.0000000000000469 PMID: 37113863

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 30 / 31

https://doi.org/10.1126/science.abm1208
http://www.ncbi.nlm.nih.gov/pubmed/35608456
https://doi.org/10.1016/j.cell.2022.08.024
http://www.ncbi.nlm.nih.gov/pubmed/36150393
https://doi.org/10.1038/s41591-023-02483-5
http://www.ncbi.nlm.nih.gov/pubmed/37524952
https://doi.org/10.1016/j.compbiomed.2022.106212
http://www.ncbi.nlm.nih.gov/pubmed/36327885
https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494
https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494
https://doi.org/10.1093/nar/gkw1099
http://www.ncbi.nlm.nih.gov/pubmed/27899622
https://doi.org/10.1038/s41564-020-0770-5
http://www.ncbi.nlm.nih.gov/pubmed/32669681
https://doi.org/10.12659/MSM.939580
http://www.ncbi.nlm.nih.gov/pubmed/36722047
https://doi.org/10.1080/21645515.2022.2068883
https://doi.org/10.3390/v15010167
http://www.ncbi.nlm.nih.gov/pubmed/36680207
https://doi.org/10.1097/MS9.0000000000000469
http://www.ncbi.nlm.nih.gov/pubmed/37113863
https://doi.org/10.1371/journal.pcbi.1011790

39. Ao D, He X, Hong W, Wei X. The rapid rise of SARS-CoV-2 Omicron subvariants with immune evasion

properties: XBB. 1.5 and BQ. 1.1 subvariants. MedComm. 2023; 4(2):e239. https://doi.org/10.1002/

mco2.239 PMID: 36938325

40. Tamura T, Ito J, Uriu K, Zahradnik J, Kida I, Anraku Y, et al. Virological characteristics of the SARS-

CoV-2 XBB variant derived from recombination of two Omicron subvariants. Nature communications.

2023; 14(1):2800. https://doi.org/10.1038/s41467-023-38435-3 PMID: 37193706

41. Focosi D, Maggi F. Recombination in Coronaviruses, with a Focus on SARS-CoV-2. Viruses. 2022; 14

(6):1239. https://doi.org/10.3390/v14061239 PMID: 35746710

42. Hsu C, Nisonoff H, Fannjiang C, Listgarten J. Learning protein fitness models from evolutionary and

assay-labeled data. Nature biotechnology. 2022; 40(7):1114–1122. https://doi.org/10.1038/s41587-

021-01146-5 PMID: 35039677

43. Narang S, Chowdhery A. Pathways Language Model (PaLM): Scaling to 540 Billion Parameters for

Breakthrough Performance; 2022.

44. PyTorch T. PyTorch 2.0: Our next generation release that is faster, more Pythonic and Dynamic as

ever; 2023.

45. Hu EJ, Shen Y, Wallis P, Allen-Zhu Z, Li Y, Wang S, et al. Lora: Low-rank adaptation of large language

models. arXiv preprint arXiv:210609685. 2021;.

46. Dabrowski M, Bukowy-Bieryllo Z, Zietkiewicz E. Advances in therapeutic use of a drug-stimulated trans-

lational readthrough of premature termination codons. Molecular medicine. 2018; 24:1–15. https://doi.

org/10.1186/s10020-018-0024-7 PMID: 30134808

47. Kindratenko V, Mu D, Zhan Y, Maloney J, Hashemi SH, Rabe B, et al. Hal: Computer system for scal-

able deep learning. In: Practice and experience in advanced research computing; 2020. p. 41–48.

PLOS COMPUTATIONAL BIOLOGY PandoGen: Predicting future COVID-19 sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011790 January 19, 2024 31 / 31

https://doi.org/10.1002/mco2.239
https://doi.org/10.1002/mco2.239
http://www.ncbi.nlm.nih.gov/pubmed/36938325
https://doi.org/10.1038/s41467-023-38435-3
http://www.ncbi.nlm.nih.gov/pubmed/37193706
https://doi.org/10.3390/v14061239
http://www.ncbi.nlm.nih.gov/pubmed/35746710
https://doi.org/10.1038/s41587-021-01146-5
https://doi.org/10.1038/s41587-021-01146-5
http://www.ncbi.nlm.nih.gov/pubmed/35039677
https://doi.org/10.1186/s10020-018-0024-7
https://doi.org/10.1186/s10020-018-0024-7
http://www.ncbi.nlm.nih.gov/pubmed/30134808
https://doi.org/10.1371/journal.pcbi.1011790

